Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = fluorescence real-time loop-mediated isothermal amplification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2536 KB  
Article
A Portable Dual-Mode Microfluidic Device Integrating RT-qPCR and RT-LAMP for Rapid Nucleic Acid Detection in Point-of-Care Testing
by Baihui Zhang, Xiao Li, Mengjie Huang, Maojie Jiang, Leilei Du, Peng Yin, Xuan Fang, Xiangyu Jiang, Feihu Qi, Yanna Lin and Fuqiang Ma
Biosensors 2026, 16(1), 51; https://doi.org/10.3390/bios16010051 - 8 Jan 2026
Viewed by 515
Abstract
Point-of-care testing (POCT) has emerged as a vital diagnostic approach in emergency medicine, primary care, and resource-limited environments because of its convenience, affordability, and capacity to provide immediate results. Here, we present a multifunctional portable nucleic acid detection platform integrating reverse transcription polymerase [...] Read more.
Point-of-care testing (POCT) has emerged as a vital diagnostic approach in emergency medicine, primary care, and resource-limited environments because of its convenience, affordability, and capacity to provide immediate results. Here, we present a multifunctional portable nucleic acid detection platform integrating reverse transcription polymerase chain reaction (RT-qPCR) and reverse transcription loop-mediated isothermal amplification (RT-LAMP) within a unified microfluidic device. The system leverages Tesla-valve-based passive flow control to enhance reaction efficiency and operational simplicity. A four-channel optical detection unit allows for multiplex fluorescence quantification (CY5, FAM, VIC, ROX) and has high sensitivity and reproducibility for RT-LAMP. The compact design reduces the overall size by approximately 90% compared with conventional qPCR instruments. For RT-PCR, the system achieves a detection limit of 2.0 copies μL−1 and improves analytical efficiency by 27%. For RT-LAMP, the detection limit reaches 2.95 copies μL−1 with a 14% enhancement in analytical efficiency. Compared with commercial qPCR instruments, the device maintains equivalent quantitative accuracy despite significant miniaturization, ensuring reliable performance in decentralized testing. Furthermore, the total RT-LAMP assay time is reduced from more than two hours to 42 min, enabling truly rapid molecular diagnostics. This dual-mode platform offers a flexible, scalable strategy for bridging laboratory-grade molecular assays with real-time POCT applications, supporting early disease detection and epidemic surveillance. Full article
(This article belongs to the Section Nano- and Micro-Technologies in Biosensors)
Show Figures

Figure 1

22 pages, 1555 KB  
Article
Toothbrush-Driven Handheld Droplet Generator for Digital LAMP and Rapid CFU Assays
by Xiaochen Lai, Yong Zhu, Mingpeng Yang and Xicheng Wang
Biosensors 2026, 16(1), 30; https://doi.org/10.3390/bios16010030 - 1 Jan 2026
Viewed by 320
Abstract
Droplet microfluidics enables high-throughput, compartmentalized reactions using minimal reagent volumes, but most implementations rely on precision-fabricated chips and external pumping systems that limit portability and accessibility. Here, we present a handheld vibrational droplet generator that repurposes a consumer electric toothbrush and a modified [...] Read more.
Droplet microfluidics enables high-throughput, compartmentalized reactions using minimal reagent volumes, but most implementations rely on precision-fabricated chips and external pumping systems that limit portability and accessibility. Here, we present a handheld vibrational droplet generator that repurposes a consumer electric toothbrush and a modified disposable pipette tip to produce nearly monodisperse water-in-oil droplets without microfluidic channels or syringe pumps. The device is powered by the toothbrush’s built-in motor and controlled by a simple 3D-printed adapter and adjustable counterweight that tune the vibration amplitude transmitted to the pipette tip. By varying the aperture of the pipette tip, droplets with diameters from ~100–300 µm were generated at rates of ~100 droplets s−1. Image analysis revealed narrow size distributions with coefficients of variation below 5% in typical operating conditions. We further demonstrate proof-of-concept applications in digital loop-mediated isothermal amplification (LAMP) and microbiological colony-forming unit (CFU) assays. A commercial feline parvovirus (FPV) kit manufactured by Beyotime Biotechnology Co., Ltd. (Shanghai, China), three template concentrations yielded emulsified reaction droplets that remained stable at 65 °C for 45 min and produced distinct fractions of fluorescent-positive droplets, allowing estimation of template concentration via a Poisson model. In a second set of experiments, the device was used as a droplet-based spreader to dispense diluted Escherichia coli suspensions onto LB agar plates, achieving uniform colony distributions across the plate at different dilution factors. The proposed handheld vibrational generator is inexpensive, easy to assemble from off-the-shelf components, and minimizes dead volume and cross-contamination because only the pipette tip contacts the sample. Although the current prototype still exhibits device-to-device variability and moving droplets in open containers complicate real-time imaging, these results indicate that toothbrush-based vibrational actuation can provide a practical and scalable route toward “lab-in-hand” droplet assays in resource-limited or educational settings. Full article
Show Figures

Figure 1

14 pages, 1686 KB  
Article
Development and Optimization of a LAMP Assay for Lupin Detection in Foods
by Marta Trujillo, Beatriz Beroiz, Carmen Cuadrado, Rosario Linacero and Isabel Ballesteros
Allergies 2026, 6(1), 1; https://doi.org/10.3390/allergies6010001 - 28 Dec 2025
Viewed by 408
Abstract
Lupin (Lupinus spp.) is increasingly incorporated into processed foods as a gluten-free ingredient and alternative protein source, but it is also a regulated allergen in the European Union due to cross-reactivity with other legumes, especially peanut. Reliable methods for detecting undeclared lupin [...] Read more.
Lupin (Lupinus spp.) is increasingly incorporated into processed foods as a gluten-free ingredient and alternative protein source, but it is also a regulated allergen in the European Union due to cross-reactivity with other legumes, especially peanut. Reliable methods for detecting undeclared lupin traces in complex food matrices are therefore essential for consumer protection. In this study, a loop-mediated isothermal amplification (LAMP) assay was developed for rapid and sensitive detection of lupin DNA. Several nuclear and chloroplast regions were evaluated for primer design, and gene encoding the Lup a 1 allergen was selected as the optimal target. Amplification was monitored by real-time fluorescence, agarose gel electrophoresis, and visual colorimetry. The selected primer set achieved a detection limit of 25 pg of lupin DNA and consistently detected lupin in binary mixtures down to 10 mg/kg, with no cross-reactivity against closely related legumes or tree nuts. Application to processed foods confirmed detection in products declaring lupin and revealed potential undeclared presence in some commercial samples. Colorimetric detection provided reliable results comparable to real-time monitoring, enabling simple readouts without specialized equipment. Overall, the developed LAMP assay represents a rapid, specific, and sensitive alternative to PCR-based methods for allergen monitoring and food safety management. Full article
(This article belongs to the Special Issue Feature Papers 2025)
Show Figures

Graphical abstract

12 pages, 1256 KB  
Article
Rapid On-Site Detection of Pseudomonas aeruginosa via ecfX-Targeted Loop-Mediated Isothermal Amplification
by Xuliang He, Meimei Zeng, Wentao Bai, Ziyan Tang, Jianhua Ding and Zhu Chen
Biosensors 2025, 15(11), 750; https://doi.org/10.3390/bios15110750 - 7 Nov 2025
Viewed by 801
Abstract
Pseudomonas aeruginosa (PA) is a significant pathogen of clinical concern that is frequently associated with multidrug resistance, leading to respiratory tract, wound, and hospital-acquired infections. To enable rapid and accurate detection, we developed a fluorescence-based loop-mediated isothermal amplification (LAMP) method, targeting the PA-specific [...] Read more.
Pseudomonas aeruginosa (PA) is a significant pathogen of clinical concern that is frequently associated with multidrug resistance, leading to respiratory tract, wound, and hospital-acquired infections. To enable rapid and accurate detection, we developed a fluorescence-based loop-mediated isothermal amplification (LAMP) method, targeting the PA-specific ecfX gene. Among ten primer sets designed, the optimal set (EC2) was identified, and reaction conditions were optimized (Bst polymerase 320 U/mL, Mg2+ 8 mM, dNTP 1.4 mM, inner/outer primer ratio 1:8, 64 °C, 20 min). The assay demonstrated a detection limit that was comparable to a real-time polymerase chain reaction and immunochromatographic assays, but with a markedly reduced turnaround time. No cross-reactivity was observed with non-PA pathogens, and reproducibility tests confirmed high stability. In addition, the reliability of the results was further verified using 60 standard bacterial strains, and the feasibility of the assay was validated with 2 real soil samples and 1 water sample. This LAMP method offers a simple, rapid, and sensitive tool for on-site detection of PA, with potential applications in clinical diagnostics and public health surveillance. Full article
Show Figures

Figure 1

18 pages, 4025 KB  
Article
Development of an RT-LAMP Assay for Detecting tet(M) in Enterococcus Species: Enhancing AMR Surveillance Within the One Health Sectors
by Ebthag A. M. Mussa, Anis Rageh Al-Maleki, Musheer A. Aljaberi, Abdulsamad Alsalahi, Mohd Nasir Mohd Desa, Azmiza Syawani Jasni, Siti Zubaidah Ramanoon, Atiyeh M. Abdallah and Rukman Awang Hamat
Diagnostics 2025, 15(10), 1213; https://doi.org/10.3390/diagnostics15101213 - 12 May 2025
Cited by 3 | Viewed by 1190
Abstract
The increasing prevalence of antimicrobial-resistant (AMR) bacteria in humans, animals, and the environment underscores the necessity for a rapid, sensitive, and specific method to identify resistance genes. Objectives: This study aims to develop a reliable detection tool for identifying the tetracycline-resistant gene [...] Read more.
The increasing prevalence of antimicrobial-resistant (AMR) bacteria in humans, animals, and the environment underscores the necessity for a rapid, sensitive, and specific method to identify resistance genes. Objectives: This study aims to develop a reliable detection tool for identifying the tetracycline-resistant gene tet(M) in Enterococcus species using a real-time loop-mediated isothermal amplification (RT-LAMP) assay. Real-time visualization through a turbidimeter enabled precise estimation of time-to-positivity for gene detection. Methodology: Six primers were designed using PrimerExplorer v.5, and the assay was optimized across different temperatures and incubation times. Validation was conducted by testing 52 tet(M)-positive clinical enterococci isolates and spiking urine samples from a healthy volunteer and a cow with tet(M)-positive Enterococcus species. Results: The tet(M) gene was detected as early as 33 min, with optimal amplification occurring within 60 min at 60 °C. The assay demonstrated 100% specificity with the established primers. The sigmoidal graphs were corroborated with visual confirmation methods, including a green color change (visible to the naked eye), green fluorescence (under UV light), and a 200 bp PCR product observed via agarose gel electrophoresis. Notably, the tet(M) RT-LAMP assay exhibited a detection limit of 0.001 pg/μL, significantly surpassing conventional PCR, which had a detection limit of 0.1 pg/μL. Conclusions: This rapid, cost-effective, highly sensitive, and specific tet(M) RT-LAMP assay holds significant promise as a surveillance tool for antimicrobial resistance monitoring within a One Health framework, particularly in low-resource countries. Full article
(This article belongs to the Special Issue Laboratory Diagnosis in Microbial Diseases, 3rd Edition)
Show Figures

Figure 1

12 pages, 601 KB  
Review
Detection of Porcine Circovirus (PCV) Using CRISPR-Cas12a/13a Coupled with Isothermal Amplification
by Huijuan Wang, Gang Zhou, Huiming Liu, Ruqun Peng, Tingli Sun, Sujuan Li, Mingjie Chen, Yingsi Wang, Qingshan Shi and Xiaobao Xie
Viruses 2024, 16(10), 1548; https://doi.org/10.3390/v16101548 - 30 Sep 2024
Cited by 3 | Viewed by 3036
Abstract
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed [...] Read more.
The impact of porcine circovirus (PCV) on the worldwide pig industry is profound, leading to notable economic losses. Early and prompt identification of PCV is essential in managing and controlling this disease effectively. A range of detection techniques for PCV have been developed and primarily divided into two categories focusing on nucleic acid or serum antibody identification. The methodologies encompass conventional polymerase chain reaction (PCR), real-time fluorescence quantitative PCR (qPCR), fluorescence in situ hybridization (FISH), loop-mediated isothermal amplification (LAMP), immunofluorescence assay (IFA), immunohistochemistry (IHC), and enzyme-linked immunosorbent assay (ELISA). Despite their efficacy, these techniques are often impeded by the necessity for substantial investment in equipment, specialized knowledge, and intricate procedural steps, which complicate their application in real-time field detections. To surmount these challenges, a sensitive, rapid, and specific PCV detection method using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas12a/13a coupled with isothermal amplification, such as enzymatic recombinase amplification (ERA), recombinase polymerase amplification (RPA), and loop-mediated isothermal amplification (LAMP), has been developed. This novel method has undergone meticulous optimization for detecting PCV types 2, 3, and 4, boasting a remarkable sensitivity to identify a single copy per microliter. The specificity of this technique is exemplary, with no observable interaction with other porcine viruses such as PEDV, PRRSV, PRV, and CSFV. Its reliability has been validated with clinical samples, where it produced a perfect alignment with qPCR findings, showcasing a 100% coincidence rate. The elegance of merging CRISPR-Cas technology with isothermal amplification assays lies in its on-site testing without the need for expensive tools or trained personnel, rendering it exceptionally suitable for on-site applications, especially in resource-constrained swine farming environments. This review assesses and compares the process and characteristics inherent in the utilization of ERA/LAMP/RPA-CRISPR-Cas12a/Cas13a methodologies for the detection of PCV, providing critical insights into their practicality and effectiveness. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

19 pages, 1731 KB  
Article
Development and Validation of the MAST ISOPLEX® VTEC Kit for Simultaneous Detection of Shiga Toxin/Verotoxin 1 and 2 (stx1/vt1 and stx2/vt2) with Inhibition Control (IC) in a Rapid Loop-Mediated Isothermal Amplification (LAMP) Multiplex Assay
by Monika Iwona Suwara, Matthew Bennett, Ilaria Anna Pia Voto, Christopher Allan Brownlie and Elizabeth Ann Gillies
Int. J. Mol. Sci. 2024, 25(18), 10067; https://doi.org/10.3390/ijms251810067 - 19 Sep 2024
Cited by 1 | Viewed by 1711
Abstract
Loop-mediated isothermal amplification (LAMP) is a cost-effective, rapid, and highly specific method of replicating nucleic acids. Adding multiple targets into a single LAMP assay to create a multiplex format is highly desirable for clinical applications but has been challenging due to a need [...] Read more.
Loop-mediated isothermal amplification (LAMP) is a cost-effective, rapid, and highly specific method of replicating nucleic acids. Adding multiple targets into a single LAMP assay to create a multiplex format is highly desirable for clinical applications but has been challenging due to a need to develop specific detection techniques and strict primer design criteria. This study describes the evaluation of a rapid triplex LAMP assay, MAST ISOPLEX® VTEC, for the simultaneous detection of Shiga toxin/verotoxin 1 and 2 (stx1/vt1 and stx2/vt2) genes in verotoxigenic Escherichia coli (E. coli) (VTEC) isolates with inhibition control (IC) synthetic DNA using a single fluorophore–oligonucleotide probe, MAST ISOPLEX® Probes, integrated into the primer set of each target. MAST ISOPLEX® Probes used in the MAST ISOPLEX® VTEC kit produce fluorescent signals as they integrate with reaction products specific to each target, allowing tracking of multiple amplifications in real time using a real-time analyzer. Initial validation on DNA extracts from fecal cultures and synthetic DNA sequences (gBlocks) showed that the MAST ISOPLEX® VTEC kit provides a method for sensitive simultaneous triplex detection in a single assay with a limit of detection (LOD) of less than 100 target copies/assay and 96% and 100% sensitivity and specificity, respectively. Full article
Show Figures

Figure 1

26 pages, 1057 KB  
Review
Advances in Laboratory Diagnosis of Coronavirus Infections in Cattle
by Shaun van den Hurk, Girija Regmi, Hemant K. Naikare and Binu T. Velayudhan
Pathogens 2024, 13(7), 524; https://doi.org/10.3390/pathogens13070524 - 21 Jun 2024
Cited by 7 | Viewed by 3725
Abstract
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the [...] Read more.
Coronaviruses cause infections in humans and diverse species of animals and birds with a global distribution. Bovine coronavirus (BCoV) produces predominantly two forms of disease in cattle: a respiratory form and a gastrointestinal form. All age groups of cattle are affected by the respiratory form of coronavirus, whereas the gastroenteric form causes neonatal diarrhea or calf scours in young cattle and winter dysentery in adult cattle. The tremendous impacts of bovine respiratory disease and the associated losses are well-documented and underscore the importance of this pathogen. Beyond this, studies have demonstrated significant impacts on milk production associated with outbreaks of winter dysentery, with up to a 30% decrease in milk yield. In North America, BCoV was identified for the first time in 1972, and it continues to be a significant economic concern for the cattle industry. A number of conventional and molecular diagnostic assays are available for the detection of BCoV from clinical samples. Conventional assays for BCoV detection include virus isolation, which is challenging from clinical samples, electron microscopy, fluorescent antibody assays, and various immunoassays. Molecular tests are mainly based on nucleic acid detection and predominantly include conventional and real-time polymerase chain reaction (PCR) assays. Isothermal amplification assays and genome sequencing have gained increased interest in recent years for the detection, characterization, and identification of BCoV. It is believed that isothermal amplification assays, such as loop-mediated isothermal amplification and recombinase polymerase amplification, among others, could aid the development of barn-side point-of-care tests for BCoV. The present study reviewed the literature on coronavirus infections in cattle from the last three and a half decades and presents information mainly on the current and advancing diagnostics in addition to epidemiology, clinical presentations, and the impact of the disease on the cattle industry. Full article
(This article belongs to the Special Issue Diagnostics of Emerging and Re-Emerging Pathogens)
Show Figures

Figure 1

16 pages, 6549 KB  
Article
Integrated High-Throughput Centrifugal Microfluidic Chip Device for Pathogen Detection On-Site
by Shuyu Lu, Yuanzhan Yang, Siqi Cui, Anyi Li, Cheng Qian and Xiaoqiong Li
Biosensors 2024, 14(6), 313; https://doi.org/10.3390/bios14060313 - 19 Jun 2024
Cited by 11 | Viewed by 3481
Abstract
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to [...] Read more.
An integrated and high-throughput device for pathogen detection is crucial in point-of-care testing (POCT), especially for early diagnosis of infectious diseases and preventing the spread of infection. We developed an on-site testing platform that utilizes a centrifugal microfluidic chip and automated device to achieve high-throughput detection. The low-power (<32 W), portable (220 mm × 220 mm × 170 mm, 4 kg) device can complete bacterial lysis, nucleic acid extraction and purification, loop-mediated isothermal amplification (LAMP) reaction, and real-time fluorescence detection. Magnetic beads for nucleic acid adsorption can be mixed by applying electromagnetic fields and centrifugal forces, and the efficiency of nucleic acid extraction is improved by 60% compared to the no-mixing group. The automated nucleic acid extraction process achieves equivalent nucleic acid extraction efficiency in only 40% of the time consumed using the kit protocol. By designing the valve system and disc layout, the maximum speed required for the centrifugal microfluidic chip is reduced to 1500 rpm, greatly reducing the equipment power consumption and size. In detecting E. coli, our platform achieves a limit of detection (LOD) of 102 CFU/mL in 60 min. In summary, our active centrifugal microfluidic platform provides a solution for the integration of complex biological assays on turntables, with great potential in the application of point-of-care diagnosis. Full article
(This article belongs to the Special Issue Biosensing Technologies in Medical Diagnosis)
Show Figures

Figure 1

12 pages, 3391 KB  
Article
Development of Loop-Mediated Isothermal Amplification (LAMP) Assays for the Rapid Detection of Toxigenic Aspergillus flavus and A. carbonarius in Nuts
by Wanissa Mellikeche, Alessandra Ricelli, Giulia Casini, Marilita Gallo, Nuray Baser, Giancarlo Colelli and Anna Maria D’Onghia
Int. J. Mol. Sci. 2024, 25(7), 3809; https://doi.org/10.3390/ijms25073809 - 29 Mar 2024
Cited by 7 | Viewed by 2548
Abstract
Aspergillus species create major postharvest problems due to the food losses caused by their mere presence and the hazardous mycotoxins they produce, such as aflatoxin B1 (AFB1) and ochratoxin A (OTA). These mycotoxins are mainly produced by A. flavus and A. carbonarius, [...] Read more.
Aspergillus species create major postharvest problems due to the food losses caused by their mere presence and the hazardous mycotoxins they produce, such as aflatoxin B1 (AFB1) and ochratoxin A (OTA). These mycotoxins are mainly produced by A. flavus and A. carbonarius, respectively. In this study, we developed a rapid detection method for the two aforementioned species based on loop-mediated isothermal amplification (LAMP). The primers were designed to target genes belonging to the mycotoxin clusters pks and aflT for A. carbonarius and A. flavus, respectively. Result visualization was carried out in real time via the detection of fluorescent signals. The method developed showed high sensitivity and specificity, with detection limits of 0.3 and 0.03 pg/reaction of purified DNA of A. carbonarius and A. flavus, respectively. The assays were further implemented on inoculated nuts, including pistachios and almonds, after one-step crude DNA extraction. These tests revealed a detection level of 0.5 spore/g that shows the effectiveness of LAMP as a rapid method for detecting potentially toxigenic Aspergillus spp. directly in food. The validation of the assays included tests on a larger scale that further confirmed their sensitivity and specificity, as well as enabling the production of ready-to-use LAMP prototype kits. These kits are easy to use and aim to simplify the screening of food samples in order to monitor the presence of specific Aspergillus contaminations. Full article
(This article belongs to the Special Issue Molecular Interactions between Plants and Pests)
Show Figures

Figure 1

16 pages, 4095 KB  
Article
Loop-Mediated Isothermal Amplification for the Fast Detection of Bonamia ostreae and Bonamia exitiosa in Flat Oysters
by Irene Cano, Gareth Wood, David Stone, Mathilde Noyer, Lydie Canier and Isabelle Arzul
Pathogens 2024, 13(2), 132; https://doi.org/10.3390/pathogens13020132 - 30 Jan 2024
Cited by 2 | Viewed by 1983
Abstract
The haplosporidian parasites Bonamia ostreae (BO) and B. exitiosa (BE) are serious oyster pathogens. Two independent laboratories evaluated fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for rapidly detecting these parasites. Specific LAMP assays were designed on the BO actin-1 and BE actin genes. [...] Read more.
The haplosporidian parasites Bonamia ostreae (BO) and B. exitiosa (BE) are serious oyster pathogens. Two independent laboratories evaluated fluorescence real-time loop-mediated isothermal amplification (LAMP) assays for rapidly detecting these parasites. Specific LAMP assays were designed on the BO actin-1 and BE actin genes. A further generic assay was conceived on a conserved region of the 18S gene to detect both Bonamia species. The optimal reaction temperature varied from 65 to 67 °C depending on the test and instrument. Melting temperatures were 89.8–90.2 °C, 87.0–87.6 °C, and 86.2–86.6 °C for each of the BO, BE, and generic assays. The analytical sensitivity of these assays was 50 copies/µL in a 30 min run. The BO and BE test sensitivity was ~1 log lower than a real-time PCR, while the generic test sensitivity was similar to the real-time PCR. Both the BO and BE assays were shown to be specific; however, the generic assay potentially cross-reacts with Haplosporidium costale. The performance of the LAMP assays evaluated on samples of known status detected positives within 7–20 min with a test accuracy of 100% for the BO and generic tests and a 95.8% accuracy for BE. The ease of use, rapidity and affordability of these tests allow for field deployment. Full article
Show Figures

Figure 1

15 pages, 3447 KB  
Article
Development of a Duplex LAMP Assay with Probe-Based Readout for Simultaneous Real-Time Detection of Schistosoma mansoni and Strongyloides spp. -A Laboratory Approach to Point-Of-Care
by Beatriz Crego-Vicente, Pedro Fernández-Soto, Juan García-Bernalt Diego, Begoña Febrer-Sendra and Antonio Muro
Int. J. Mol. Sci. 2023, 24(1), 893; https://doi.org/10.3390/ijms24010893 - 3 Jan 2023
Cited by 13 | Viewed by 5755
Abstract
Loop-mediated isothermal amplification (LAMP) is the most popular technology for point-of-care testing applications due its rapid, sensitive and specific detection with simple instrumentation compared to PCR-based methods. Many systems for reading the results of LAMP amplifications exist, including real-time fluorescence detection using fluorophore-labelled [...] Read more.
Loop-mediated isothermal amplification (LAMP) is the most popular technology for point-of-care testing applications due its rapid, sensitive and specific detection with simple instrumentation compared to PCR-based methods. Many systems for reading the results of LAMP amplifications exist, including real-time fluorescence detection using fluorophore-labelled probes attached to oligonucleotide sequences complementary to the target nucleic acid. This methodology allows the simultaneous detection of multiple targets (multiplexing) in one LAMP assay. A method for multiplexing LAMP is the amplification by release of quenching (DARQ) technique by using a 5′-quencher modified LAMP primer annealed to 3′-fluorophore-labelled acting as detection oligonucleotide. The main application of multiplex LAMP is the rapid and accurate diagnosis of infectious diseases, allowing differentiation of co-infecting pathogens in a single reaction. Schistosomiasis, caused among other species by Schistosoma mansoni and strongyloidiasis, caused by Strongyloides stercoralis, are the most common helminth-parasite infections worldwide with overlapping distribution areas and high possibility of coinfections in the human population. It would be of great interest to develop a duplex LAMP to detect both pathogens in the same reaction. In this study, we investigate the use of our two previously developed and well-stablished LAMP assays for S. mansoni and Strongyloides spp. DNA detection in a new duplex real-time eight-primer system based on a modified DARQ probe method that can be performed in a portable isothermal fluorimeter with minimal laboratory resources. We also applied a strategy to stabilize the duplexed DARQ-LAMP mixtures at room temperature for use as ready-to-use formats facilitating analysis in field settings as point-of-care diagnostics for schistosomiasis and strongyloidiasis. Full article
Show Figures

Figure 1

12 pages, 2239 KB  
Article
Enhanced Specificity in Loop-Mediated Isothermal Amplification with Poly(ethylene glycol)-Engrafted Graphene Oxide for Detection of Viral Genes
by Jamin Ku, Khushbu Chauhan, Sang-Hyun Hwang, Yong-Joo Jeong and Dong-Eun Kim
Biosensors 2022, 12(8), 661; https://doi.org/10.3390/bios12080661 - 20 Aug 2022
Cited by 26 | Viewed by 4596
Abstract
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification method that allows the simple, quick, and low-cost detection of various viral genes. LAMP assays are susceptible to generating non-specific amplicons, as high concentrations of DNA primers can give rise to primer dimerization and [...] Read more.
Loop-mediated isothermal amplification (LAMP) is a nucleic acid amplification method that allows the simple, quick, and low-cost detection of various viral genes. LAMP assays are susceptible to generating non-specific amplicons, as high concentrations of DNA primers can give rise to primer dimerization and mismatched hybridizations, resulting in false-positive signals. Herein, we reported that poly(ethylene glycol)-engrafted nanosized graphene oxide (PEG-nGO) can significantly enhance the specificity of LAMP, owing to its ability to adsorb single-stranded DNA (ssDNA). By adsorbing surplus ssDNA primers, PEG-nGO minimizes the non-specific annealing of ssDNAs, including erroneous priming and primer dimerization, leading to the enhanced specificity of LAMP. The detection of complementary DNAs transcribed from the hepatitis C virus (HCV) RNA was performed by the PEG-nGO-based LAMP. We observed that the inclusion of PEG-nGO significantly enhances the specificity and sensitivity of the LAMP assay through the augmented difference in fluorescence signals between the target and non-target samples. The PEG-nGO-based LAMP assay greatly facilitates the detection of HCV-positive clinical samples, with superior precision to the conventional quantitative real-time PCR (RT-qPCR). Among the 20 clinical samples tested, all 10 HCV-positive samples are detected as positive in the PEG-nGO-based LAMP, while only 7 samples are detected as HCV-positive in the RT-qPCR. In addition, the PEG-nGO-based LAMP method significantly improves the detection precision for the false-positive decision by 1.75-fold as compared to the LAMP without PEG-nGO. Thus, PEG-nGO can significantly improve the performance of LAMP assays by facilitating the specific amplification of target DNA with a decrease in background signal. Full article
Show Figures

Figure 1

10 pages, 1174 KB  
Article
Clinical Validation of DNA Extraction-Free qPCR, Visual LAMP, and Fluorescent LAMP Assays for the Rapid Detection of African Swine Fever Virus
by Lili Yang, Lin Wang, Meihui Lv, Yu Sun and Jijuan Cao
Life 2022, 12(7), 1067; https://doi.org/10.3390/life12071067 - 16 Jul 2022
Cited by 12 | Viewed by 3299
Abstract
The global pig industry and food safety are seriously threatened by outbreaks of African swine fever (ASF). To permit early diagnosis of African swine fever virus (ASFV), prevent its spread, and limit its outbreaks, a highly sensitive diagnostic method that can be performed [...] Read more.
The global pig industry and food safety are seriously threatened by outbreaks of African swine fever (ASF). To permit early diagnosis of African swine fever virus (ASFV), prevent its spread, and limit its outbreaks, a highly sensitive diagnostic method that can be performed at pig farms is required. Herein, we established DNA extraction-free real-time PCR (qPCR), visual loop-mediated isothermal amplification (LAMP), and fluorescent LAMP assays, which were compared with the results of World Organization for Animal Health (OIE) qPCR to assess ASFV-infected clinical samples. Based on plasmid DNA, the limit of detection for the three assays and OIE qPCR were 5.8 copies/μL. All four assays had good ASFV specificity and showed no cross-reactivity with other tested viruses. These assays were used to diagnose 100 clinical samples. The assays showed good diagnostic consistency, with kappa values of 1.0, 0.84, and 0.88, respectively. Compared with OIE qPCR, the diagnostic specificity/sensitivity of DNA extraction-free qPCR, visual LAMP, and fluorescent LAMP assays were 100%/100%, 100%/87.1%, and 100%/90.32%, respectively. The assays eliminated the need for DNA extraction and are more suitable for ASF diagnosis by inexperienced farmers in low-resource environments, making them a good choice for on-site monitoring of pig farms. Full article
Show Figures

Figure 1

9 pages, 2078 KB  
Communication
Real-Time Detection of LAMP Products of African Swine Fever Virus Using Fluorescence and Surface Plasmon Resonance Method
by Hao Zhang, Yuan Yao, Zhi Chen, Wenbo Sun, Xiang Liu, Lei Chen, Jianhai Sun, Xianbo Qiu, Duli Yu and Lulu Zhang
Biosensors 2022, 12(4), 213; https://doi.org/10.3390/bios12040213 - 3 Apr 2022
Cited by 7 | Viewed by 3600
Abstract
African swine fever (ASF) is a swine disease with a very high fatality rate caused by a complex double-stranded DNA virus. The fluorescence PCR detection method is widely used for virus nucleic acid detection. Surface plasmon resonance (SPR) is a label-free and real-time [...] Read more.
African swine fever (ASF) is a swine disease with a very high fatality rate caused by a complex double-stranded DNA virus. The fluorescence PCR detection method is widely used for virus nucleic acid detection. Surface plasmon resonance (SPR) is a label-free and real-time detection method, unlike the fluorescence PCR detection method. In this research, we detected the loop-mediated isothermal amplification (LAMP) products of the African swine fever virus by using the SPR and fluorescence methods separately and simultaneously. By comparing the positive and negative control results, we found that the SPR response unit is completely different before and after the LAMP process. In addition, the fluorescence results on a chip showed that with an increase in the concentration of the sample, the cycle threshold (CT) value decreased, which is consistent with commercial instruments. Both the decline rate of the SPR response unit and the CT value of the fluorescence realized were used to distinguish the positive control from the negative control and water, which indicates that the SPR method can be combined with fluorescence to detect LAMP products. This research provides a label-free and simple method for detecting LAMP products. Full article
(This article belongs to the Special Issue Surface Plasmon Resonance for Biosensing)
Show Figures

Figure 1

Back to TopTop