Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,054)

Search Parameters:
Keywords = fluid composites

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2332 KiB  
Article
Evaluation of Spent Catalyst from Fluid Catalytic Cracking in Fly Ash and Blast Furnace Slag Based Alkali Activated Materials
by Yolanda Luna-Galiano, Domigo Cabrera-Gallardo, Mónica Rodríguez-Galán, Rui M. Novais, João A. Labrincha and Carlos Leiva Fernández
Recycling 2025, 10(4), 149; https://doi.org/10.3390/recycling10040149 (registering DOI) - 1 Aug 2025
Abstract
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a [...] Read more.
The objective of this work is to evaluate how spent catalyst from fluid catalytic cracking (SCFCC) affects the physical, mechanical and durability properties of fly ash (FA) and blast furnace slag (BFS)-based alkali-activated materials (AAMs). Recycling of SCFCC by integrating it in a AAM matrix offers several advantages: valorization of the material, reducing its disposal in landfills and the landfill cost, and minimizing the environmental impact. Mineralogical, physical and mechanical characterization were carried out. The durability of the specimens was studied by performing acid attack and thermal stability tests. Mass variation, compressive strength and porosity parameters were determined to assess the durability. BFS- and FA-based AAMs have a different chemical composition, which contribute to variations in microstructure and physical and mechanical properties. Acid neutralization capacity was also determined to analyse the acid attack results. Porosity, including the pore size distribution, and the acid neutralization capacity are crucial in explaining the resistance of the AAMs to sulfuric acid attack and thermal degradation. Herein, a novel route was explored, the use of SCFCC to enhance the durability of AAMs under harsh operating conditions since results show that the compositions containing SCFCC showed lower strength decay due to the lower macroporosity proportions in these compositions. Full article
Show Figures

Figure 1

16 pages, 6426 KiB  
Article
Manganese-Rich Chromite in Myanmar Jadeite Jade: A Critical Source of Chromium and Manganese and Its Role in Coloration
by Yu Zhang, Guanghai Shi and Jiabao Wen
Crystals 2025, 15(8), 704; https://doi.org/10.3390/cryst15080704 (registering DOI) - 31 Jul 2025
Abstract
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including [...] Read more.
Color is a primary determinant of the value of jadeite jade, but the petrological provenance of the chromogenic elements of jadeite jade remains uncertain. The characteristics of the associated chromite in Myanmar jadeite jade were systematically investigated through a series of tests, including polarized microscopy, microarea X-ray fluorescence spectroscopy (micro-XRF) mapping, electron probe microanalysis (EPMA), and backscattered electron (BSE) imaging. The results demonstrate that the chromite composition in Myanmar jadeite jade is characterized by a high concentration of Cr2O3 (46.18–67.11 wt.%), along with a notable abundance of MnO (1.68–9.13 wt.%) compared with the chromite from the adjacent Myitkyina peridotite. The diffusion of chromium (Cr) and manganese (Mn) in jadeite jade is accomplished by accompanying the metamorphic pathway of Mn-rich chromite → kosmochlor → chromian jadeite → jadeite. In the subsequent phase of jadeite jade formation, the chromium-rich omphacite veins generated by the fluid enriched in Ca and Mg along the fissures of kosmochlor and chromian jadeite play a role in the physical diffusion of Cr and Mn. The emergence of the lavender hue in jadeite is contingent upon the presence of a relatively high concentration of Mn (approximately 100–1000 ppmw) and the simultaneous absence of Cr, which would otherwise serve as a more effective chromophore (no Cr or up to a dozen ppmw). The distinctive Mn-rich chromite represents the primary origin of the chromogenic element Cr (green) and, perhaps more notably, an overlooked provider of Mn (lavender) in Myanmar jadeite jade. Full article
Show Figures

Figure 1

14 pages, 2265 KiB  
Communication
Bioelectrical Impedance Assessment in a Patient with Breast Cancer: A Case Report on the Effect of Integrative Therapies on Cellular Homeostasis
by Graziella Marino, Giovanni Pace, Lucia Sabato, Marzia Sichetti and Marisabel Mecca
Nutrients 2025, 17(15), 2506; https://doi.org/10.3390/nu17152506 (registering DOI) - 30 Jul 2025
Abstract
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies [...] Read more.
Background/Objectives: Since breast cancer (BC) survival rates have increased to 91% at 5 years and 80% at 15 years postdiagnosis, there is a growing awareness of the importance of addressing the long-term well-being of patients. Consequently, integrative oncology, which combines standard therapies with complementary approaches (nutrition, mind–body practices, and lifestyle modifications), has emerged as a patient-centred model aimed at improving symptom management, treatment adherence, and overall quality of life (QoL). This study aims to demonstrate how integrative therapies can benefit body composition, phase angle, and fluid and electrolyte balance through bioelectrical impedance analysis (BIA). Methods: This study considers a patient who underwent BC surgery and was enrolled in the AMICO clinic for anamnesis, as well as their oncological pathology data, assessment of QoL, and BIA. The breast surgeon specialising in integrative oncology therapies prescribed the patient curcumin and polydatin, moderate physical activity, a balanced diet, and Qigong sessions. The patient underwent monitoring through haematochemical analysis, BIA, and a QoL questionnaire, with follow-up every four months. Results: Between 4 and 12 months, fat mass (FM) and body mass index (BMI) markedly decreased, whereas fat-free mass (FFM), total body water (TBW), and skeletal muscle mass (SMM) increased progressively. Moreover, the improvements in the Na/K ratio and phase angle (PhA) suggest a shift toward better electrolyte and fluid balance and enhanced cellular integrity and membrane function. Equally outstanding were her psychological benefits in terms of mood, sleep, anxiety, and melancholy. Conclusions: Patient progress in body composition, metabolic function, pain management, and psychological status measured during the 12-month follow-up demonstrates the potential benefits of an integrative approach to supportive cancer care. Full article
Show Figures

Figure 1

23 pages, 4117 KiB  
Review
Analytical Strategies for Tocopherols in Vegetable Oils: Advances in Extraction and Detection
by Yingfei Liu, Mengyuan Lv, Yuyang Wang, Jinchao Wei and Di Chen
Pharmaceuticals 2025, 18(8), 1137; https://doi.org/10.3390/ph18081137 - 30 Jul 2025
Abstract
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud [...] Read more.
Tocopherols, major lipid-soluble components of vitamin E, are essential natural products with significant nutritional and pharmacological value. Their structural diversity and uneven distribution across vegetable oils require accurate analytical strategies for compositional profiling, quality control, and authenticity verification, amid concerns over food fraud and regulatory demands. Analytical challenges, such as matrix effects in complex oils and the cost trade-offs of green extraction methods, complicate these processes. This review examines recent advances in tocopherol analysis, focusing on extraction and detection techniques. Green methods like supercritical fluid extraction and deep eutectic solvents offer selectivity and sustainability, though they are costlier than traditional approaches. On the analytical side, hyphenated techniques such as supercritical fluid chromatography-mass spectrometry (SFC-MS) achieve detection limits as low as 0.05 ng/mL, improving sensitivity in complex matrices. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) provides robust analysis, while spectroscopic and electrochemical sensors offer rapid, cost-effective alternatives for high-throughput screening. The integration of chemometric tools and miniaturized systems supports scalable workflows. Looking ahead, the incorporation of Artificial Intelligence (AI) in oil authentication has the potential to enhance the accuracy and efficiency of future analyses. These innovations could improve our understanding of tocopherol compositions in vegetable oils, supporting more reliable assessments of nutritional value and product authenticity. Full article
Show Figures

Graphical abstract

14 pages, 2360 KiB  
Article
Geochemical Characteristics of the Hida Granitoids in the Unazuki and Katakaigawa Areas, Central Japan
by Kazuki Oishi, Rui Kuwahara, Kazuya Shimooka and Motohiro Tsuboi
Geosciences 2025, 15(8), 285; https://doi.org/10.3390/geosciences15080285 - 29 Jul 2025
Abstract
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. [...] Read more.
The Hida Belt in central Japan is a key geological unit for understanding the crustal growth of the Eurasian continent in the Mesozoic. However, while previous studies have focused primarily on geochronology, the geochemical characteristics of its rocks and minerals remain largely unexplored. This study investigates the geochemical characteristics and magmatic processes of the Hida granitoids, including adakitic rocks, distributed in the Unazuki and Katakaigawa areas. Whole-rock major oxides and trace elements, as well as Rb-Sr isotopes, were analyzed. Based on Rb–Sr isotopic compositions, the Hida granitoids are classified into two types. The younger and older granitoids in the Unazuki area, categorized as Type I, exhibit a narrow range of isotopic ratios, whereas the older granitoids in the Katakaigawa area, classified as Type II, display significantly higher values than those of Type I. The geochemical data suggest that the adakitic rocks in the older granitoids originated from interaction with alkali-rich melts or fluids, while those in the younger granitoids were derived from hydrous felsic magmas sourced from subducted oceanic crust. These findings provide new insights into the formation and evolution of granitic magmatism in the Hida Belt. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

39 pages, 8119 KiB  
Article
Magmatic Redox Evolution and Porphyry–Skarn Transition in Multiphase Cu-Mo-W-Au Systems of the Eocene Tavşanlı Belt, NW Türkiye
by Hüseyin Kocatürk, Mustafa Kumral, Hüseyin Sendir, Mustafa Kaya, Robert A. Creaser and Amr Abdelnasser
Minerals 2025, 15(8), 792; https://doi.org/10.3390/min15080792 - 28 Jul 2025
Viewed by 209
Abstract
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite [...] Read more.
This study explores the magmatic and hydrothermal evolution of porphyry–skarn–transitional Cu-Mo-W-Au systems within the Nilüfer Mineralization Complex (NMC), located in the westernmost segment of the Eocene Tavşanlı Metallogenic Belt, NW Türkiye. Through integration of field data, whole-rock geochemistry, Re–Os molybdenite dating, and amphibole–biotite mineral chemistry, the petrogenetic controls on mineralization across four spatially associated mineralized regions (Kirazgedik, Güneybudaklar, Kozbudaklar, and Delice) were examined. The earliest and thermally most distinct phase is represented by the Kirazgedik porphyry system, characterized by high temperature (~930 °C), oxidized quartz monzodioritic intrusions emplaced at ~2.7 kbar. Rising fO2 and volatile enrichment during magma ascent facilitated structurally focused Cu-Mo mineralization. At Güneybudaklar, Re–Os geochronology yields an age of ~49.9 Ma, linking Mo- and W-rich mineralization to a transitional porphyry–skarn environment developed under moderately oxidized (ΔFMQ + 1.8 to +0.5) and hydrous (up to 7 wt.% H2O) magmatic conditions. Kozbudaklar represents a more reduced, volatile-poor skarn system, leading to Mo-enriched scheelite mineralization typical of late-stage W-skarns. The Delice system, developed at the contact of felsic cupolas and carbonates, records the broadest range of redox and fluid compositions. Mixed oxidized–reduced fluid signatures and intense fluid–rock interaction reflect complex, multistage fluid evolution involving both magmatic and external inputs. Geochemical and mineralogical trends—from increasing silica and Rb to decreasing Sr and V—trace a systematic evolution from mantle-derived to felsic, volatile-rich magmas. Structurally, mineralization is controlled by oblique fault zones that localize magma emplacement and hydrothermal flow. These findings support a unified genetic model in which porphyry and skarn mineralization styles evolved continuously from multiphase magmatic systems during syn-to-post-subduction processes, offering implications for exploration models in the Western Tethyan domain. Full article
Show Figures

Figure 1

26 pages, 4687 KiB  
Article
Geant4-Based Logging-While-Drilling Gamma Gas Detection for Quantitative Inversion of Downhole Gas Content
by Xingming Wang, Xiangyu Wang, Qiaozhu Wang, Yuanyuan Yang, Xiong Han, Zhipeng Xu and Luqing Li
Processes 2025, 13(8), 2392; https://doi.org/10.3390/pr13082392 - 28 Jul 2025
Viewed by 208
Abstract
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for [...] Read more.
Downhole kick is one of the most severe safety hazards in deep and ultra-deep well drilling operations. Traditional monitoring methods, which rely on surface flow rate and fluid level changes, are limited by their delayed response and insufficient sensitivity, making them inadequate for early warning. This study proposes a real-time monitoring technique for gas content in drilling fluid based on the attenuation principle of Ba-133 γ-rays. By integrating laboratory static/dynamic experiments and Geant4-11.2 Monte Carlo simulations, the influence mechanism of gas–liquid two-phase media on γ-ray transmission characteristics is systematically elucidated. Firstly, through a comparative analysis of radioactive source parameters such as Am-241 and Cs-137, Ba-133 (main peak at 356 keV, half-life of 10.6 years) is identified as the optimal downhole nuclear measurement source based on a comparative analysis of penetration capability, detection efficiency, and regulatory compliance. Compared to alternative sources, Ba-133 provides an optimal energy range for detecting drilling fluid density variations, while also meeting exemption activity limits (1 × 106 Bq) for field deployment. Subsequently, an experimental setup with drilling fluids of varying densities (1.2–1.8 g/cm3) is constructed to quantify the inverse square attenuation relationship between source-to-detector distance and counting rate, and to acquire counting data over the full gas content range (0–100%). The Monte Carlo simulation results exhibit a mean relative error of 5.01% compared to the experimental data, validating the physical correctness of the model. On this basis, a nonlinear inversion model coupling a first-order density term with a cubic gas content term is proposed, achieving a mean absolute percentage error of 2.3% across the full range and R2 = 0.999. Geant4-based simulation validation demonstrates that this technique can achieve a measurement accuracy of ±2.5% for gas content within the range of 0–100% (at a 95% confidence interval). The anticipated field accuracy of ±5% is estimated by accounting for additional uncertainties due to temperature effects, vibration, and mud composition variations under downhole conditions, significantly outperforming current surface monitoring methods. This enables the high-frequency, high-precision early detection of kick events during the shut-in period. The present study provides both theoretical and technical support for the engineering application of nuclear measurement techniques in well control safety. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

16 pages, 2870 KiB  
Article
Development and Characterization of Modified Biomass Carbon Microsphere Plugging Agent for Drilling Fluid Reservoir Protection
by Miao Dong
Processes 2025, 13(8), 2389; https://doi.org/10.3390/pr13082389 - 28 Jul 2025
Viewed by 200
Abstract
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified [...] Read more.
Using common corn stalks as raw materials, a functional dense-structured carbon microsphere with good elastic deformation and certain rigid support was modified from biomass through a step-by-step hydrothermal method. The composition, thermal stability, fluid-loss reduction performance, and reservoir protection performance of the modified carbon microspheres were studied. Research indicates that after hydrothermal treatment, under the multi-level structural action of a small amount of proteins in corn stalks, the naturally occurring cellulose, polysaccharide organic compounds, and part of the ash in the stalks are adsorbed and encapsulated within the long-chain network structure formed by proteins and cellulose. By attaching silicate nanoparticles with certain rigidity from the ash to the relatively stable chair-type structure in cellulose, functional dense-structured carbon microspheres were ultimately prepared. These carbon microspheres could still effectively reduce fluid loss at 200 °C. The permeability recovery value of the cores treated with modified biomass carbon microspheres during flowback reached as high as 88%, which was much higher than that of the biomass itself. With the dense network-like chain structure supplemented by small-molecule aldehydes and silicate ash, the subsequent invasion of drilling fluid was successfully prevented, and a good sealing effect was maintained even under high-temperature and high-pressure conditions. Moreover, since this functional dense-structured carbon microsphere achieved sealing through a physical mechanism, it did not cause damage to the formation, showing a promising application prospect. Full article
Show Figures

Figure 1

22 pages, 2856 KiB  
Article
Impact of Loop Quantum Gravity on the Topological Classification of Quantum-Corrected Black Holes
by Saeed Noori Gashti, İzzet Sakallı, Hoda Farahani, Prabir Rudra and Behnam Pourhassan
Universe 2025, 11(8), 247; https://doi.org/10.3390/universe11080247 - 27 Jul 2025
Viewed by 139
Abstract
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of [...] Read more.
We investigated the thermodynamic topology of quantum-corrected AdS-Reissner-Nordström black holes in Kiselev spacetime using non-extensive entropy formulation derived from Loop Quantum Gravity (LQG). Through systematic analysis, we examined how the Tsallis parameter λ influences topological charge classification with respect to various equation of state parameters. Our findings revealed a consistent pattern of topological transitions: for λ=0.1, the system exhibited a single topological charge (ω=1) with total charge W=1, as λ increased to 0.8, the system transitioned to a configuration with two topological charges (ω=+1,1) and total charge W=0. When λ=1, corresponding to the Bekenstein–Hawking entropy limit, the system displayed a single topological charge (ω=+1) with W=+1, signifying thermodynamic stability. The persistence of this pattern across different fluid compositions—from exotic negative pressure environments to radiation—demonstrates the universal nature of quantum gravitational effects on black hole topology. Full article
Show Figures

Figure 1

16 pages, 3439 KiB  
Review
Glial Remodeling in the Ventricular–Subventricular Zone and Corpus Callosum Following Hydrocephalus
by Tania Campos-Ordoñez, Brenda Nayeli Ortega-Valles and Oscar González-Pérez
Neuroglia 2025, 6(3), 29; https://doi.org/10.3390/neuroglia6030029 - 26 Jul 2025
Viewed by 218
Abstract
Hydrocephalus is a neurological disorder caused by cerebrospinal fluid (CSF) accumulation due to impaired production, circulation, or reabsorption from trauma, neurocysticercosis, neoplasms, subarachnoid hemorrhage, or genetic mutations. This review examines glial remodeling in the ventricular–subventricular zone (V-SVZ) and corpus callosum (CC) in response [...] Read more.
Hydrocephalus is a neurological disorder caused by cerebrospinal fluid (CSF) accumulation due to impaired production, circulation, or reabsorption from trauma, neurocysticercosis, neoplasms, subarachnoid hemorrhage, or genetic mutations. This review examines glial remodeling in the ventricular–subventricular zone (V-SVZ) and corpus callosum (CC) in response to hydrocephalus, as ventricular enlargement leads to structural alterations that impact cellular composition in the V-SVZ and CC of patients with hydrocephalus. Animal models of hydrocephalus indicate V-SVZ niche remodeling, ependymal thinning, reduced neuroblast proliferation, increased microglia and astrocytes, increased cell death, and enlarged extracellular matrix structures (fractones). Alterations in the corpus callosum encompass a reduction in width, abnormalities in myelin, astrogliosis, microglial reactivity, a decreased expression of myelin-related proteins (MOG and CNPase), and a reduced number of oligodendrocytes. Additionally, this narrative review highlights important cellular and molecular findings before and after CSF diversion surgery. This primary treatment restores the ventricular size but does not completely reverse glial changes, indicating that ongoing neuroinflammatory processes may interfere with neural recovery. Full article
Show Figures

Figure 1

24 pages, 1580 KiB  
Article
Liposome-Based Encapsulation of Extract from Wild Thyme (Thymus serpyllum L.) Tea Processing Residues for Delivery of Polyphenols
by Aleksandra A. Jovanović, Bojana Balanč, Predrag M. Petrović, Natalija Čutović, Smilja B. Marković, Verica B. Djordjević and Branko M. Bugarski
Foods 2025, 14(15), 2626; https://doi.org/10.3390/foods14152626 - 26 Jul 2025
Viewed by 260
Abstract
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid [...] Read more.
This study developed phospholipid-based liposomes loaded with extract from wild thyme (Thymus serpyllum L.) tea processing residues to enhance polyphenol stability and delivery. Liposomes were prepared with phospholipids alone or combined with 10–30 mol% cholesterol or β-sitosterol. The effect of different lipid compositions on encapsulation efficiency (EE), particle size, polydispersity index (PDI), zeta potential, stability, thermal properties, diffusion coefficient, and diffusion resistance of the liposomes was investigated. Liposomes with 10 mol% sterols (either cholesterol or β-sitosterol) exhibited the highest EE of polyphenols, while increasing sterol content to 30 mol% resulted in decreased EE. Particle size and PDI increased with sterol content, while liposomes prepared without sterols showed the smallest vesicle size. Encapsulation of the extract led to smaller liposomal diameters and slight increases in PDI values. Zeta potential measurements revealed that sterol incorporation enhanced the surface charge and stability of liposomes, with β-sitosterol showing the most pronounced effect. Stability testing demonstrated minimal changes in size, PDI, and zeta potential during storage. UV irradiation and lyophilization processes did not cause significant polyphenol leakage, although lyophilization slightly increased particle size and PDI. Differential scanning calorimetry revealed that polyphenols and sterols modified the lipid membrane transitions, indicating interactions between extract components and the liposomal bilayer. FT-IR spectra confirmed successful integration of the extract into the liposomes, while UV exposure did not significantly alter the spectral features. Thiobarbituric acid reactive substances (TBARS) assay demonstrated the extract’s efficacy in mitigating lipid peroxidation under UV-induced oxidative stress. In contrast, liposomes enriched with sterols showed enhanced peroxidation. Polyphenol diffusion studies showed that encapsulation significantly delayed release, particularly in sterol-containing liposomes. Release assays in simulated gastric and intestinal fluids confirmed controlled, pH-dependent polyphenol delivery, with slightly better retention in β-sitosterol-enriched systems. These findings support the use of β-sitosterol- and cholesterol-enriched liposomes as stable carriers for polyphenolic compounds from wild thyme extract, as bioactive antioxidants, for food and nutraceutical applications. Full article
(This article belongs to the Special Issue Encapsulation and Delivery Systems in the Food Industry)
Show Figures

Figure 1

37 pages, 3791 KiB  
Review
The Advancing Understanding of Magnetorheological Fluids and Elastomers: A Comparative Review Analyzing Mechanical and Viscoelastic Properties
by Salah Rouabah, Fadila-Yasmina Didouche, Abdelmalek Khebli, Salah Aguib and Noureddine Chikh
Magnetochemistry 2025, 11(8), 62; https://doi.org/10.3390/magnetochemistry11080062 - 24 Jul 2025
Viewed by 207
Abstract
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical [...] Read more.
Magnetorheological fluids (MRFs) and elastomers (MREs) are two types of smart materials that exhibit modifiable rheological properties in response to an applied magnetic field. Although they share a similarity in their magnetorheological response, these two materials differ in their nature, structure, and mechanical behavior when exposed to a magnetic field. They also have distinct application differences due to their specific rheological properties. These fundamental differences therefore influence their properties and applications in various industrial fields. This review provides a synthesis of the distinct characteristics of MRFs and MREs. The differences in their composition, rheological behavior, mechanical properties, and respective applications are summarized and highlighted. This analysis will enable a comprehensive understanding of these differences, thereby allowing for the appropriate selection of the material based on the specific requirements of a given application and fostering the development of new applications utilizing these MR materials. Full article
(This article belongs to the Section Applications of Magnetism and Magnetic Materials)
Show Figures

Figure 1

17 pages, 3179 KiB  
Article
Changes in Physical Parameters of CO2 Containing Impurities in the Exhaust Gas of the Purification Plant and Selection of Equations of State
by Xinyi Wang, Zhixiang Dai, Feng Wang, Qin Bie, Wendi Fu, Congxin Shan, Sijia Zheng and Jie Sun
Fluids 2025, 10(8), 189; https://doi.org/10.3390/fluids10080189 - 23 Jul 2025
Viewed by 232
Abstract
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the [...] Read more.
CO2 transport is a crucial part of CCUS. Nonetheless, due to the physical property differences between CO2 and natural gas and oil, CO2 pipeline transport is distinct from natural gas and oil transport. Gaseous CO2 transportation has become the preferred scheme for transporting impurity-containing CO2 tail gas in purification plants due to its advantages of simple technology, low cost, and high safety, which are well suited to the scenarios of low transportation volume and short distance in purification plants. The research on its physical property and state parameters is precisely aimed at optimizing the process design of gaseous transportation so as to further improve transportation efficiency and safety. Therefore, it has important engineering practical significance. Firstly, this paper collected and analyzed the research cases of CO2 transport both domestically and internationally, revealing that phase state and physical property testing of CO2 gas containing impurities is the basic condition for studying CO2 transport. Subsequently, the exhaust gas captured by the purification plant was captured after hydrodesulfurization treatment, and the characteristics of the exhaust gas components were obtained by comparing before and after treatment. By preparing fluid samples with varied CO2 content and conducting the flash evaporation test and PV relationship test, the compression factor and density of natural gas under different temperatures and pressures were obtained. It is concluded that under the same pressure in general, the higher the CO2 content, the smaller the compression factor. Except for pure CO2, the higher the CO2 content, the higher the density under constant pressure, which is related to the content of C2 and heavier hydrocarbon components. At the same temperature, the higher the CO2 content, the higher the viscosity under the same pressure; the lower the pressure, the slower the viscosity growth slows down. The higher the CO2 content at the same temperature, the higher the specific heat at constant pressure. With the decrease in temperature, the CO2 content reaching the highest specific heat at the identical pressure gradually decreases. Finally, BWRS, PR, and SRK equations of state were utilized to calculate the compression factor and density of the gas mixture with a molar composition of 50% CO2 and the gas mixture with a molar composition of 100% CO2. Compared with the experimental results, the most suitable equation of state is selected as the PR equation, which refers to the parameter setting of critical nodes of CO2 gas transport. Full article
Show Figures

Figure 1

26 pages, 5763 KiB  
Article
The Development and Optimization of Extrusion-Based 3D Food Printing Inks Using Composite Starch Gels Enriched with Various Proteins and Hydrocolloids
by Evgenia N. Nikolaou, Eftychios Apostolidis, Eirini K. Nikolidaki, Evangelia D. Karvela, Athena Stergiou, Thomas Kourtis and Vaios T. Karathanos
Gels 2025, 11(8), 574; https://doi.org/10.3390/gels11080574 - 23 Jul 2025
Viewed by 162
Abstract
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, [...] Read more.
This study presents a comprehensive evaluation of starch-based gel formulations enriched with proteins and hydrocolloids for extrusion-based 3D food printing (3DFP). Food inks were prepared using corn or potato starch, protein concentrates (fava, whey, rice, pea and soya), and hydrocolloids (κ-carrageenan, arabic gum, xanthan gum, and carboxy methylcellulose). Their rheological, mechanical, and textural properties were systematically analyzed to assess printability. Among all formulations, those containing κ-carrageenan consistently demonstrated superior viscoelastic behavior (G′ > 4000 Pa), optimal tan δ values (0.096–0.169), and yield stress conducive to stable extrusion. These inks also achieved high structural fidelity (93–96% accuracy) and favourable textural attributes such as increased hardness and chewiness. Computational Fluid Dynamics (CFD) simulations further validated the inks’ performances by linking pressure and velocity profiles with rheological parameters. FTIR analysis revealed that gel strengthening was primarily driven by non-covalent interactions, such as hydrogen bonding and electrostatic effects. The integration of empirical measurements and simulation provided a robust framework for evaluating and optimizing printable food gels. These findings contribute to the advancement of personalized and functional 3D-printed foods through data-driven formulation design. Full article
(This article belongs to the Special Issue Recent Advances in Food Gels (2nd Edition))
Show Figures

Figure 1

23 pages, 12729 KiB  
Article
Genetic Mineralogical Characteristics of Pyrite and Quartz from the Qiubudong Silver Deposit, Central North China Craton: Implications for Ore Genesis and Exploration
by Wenyan Sun, Jianling Xue, Zhiqiang Tong, Xueyi Zhang, Jun Wang, Shengrong Li and Min Wang
Minerals 2025, 15(8), 769; https://doi.org/10.3390/min15080769 - 22 Jul 2025
Viewed by 233
Abstract
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and [...] Read more.
The Qiubudong silver deposit on the western margin of the Fuping ore cluster in the central North China Craton is a representative breccia-type deposit characterized by relatively high-grade ores, thick mineralized zones, and extensive alteration, indicating considerable potential for economic resource development and further exploration. Previous studies on this deposit have not addressed its genetic mineralogical characteristics. This study focuses on pyrite and quartz to investigate their typomorphic features, such as crystal morphology, trace element composition, thermoelectric properties, and luminescence characteristics, and their implications for ore-forming processes. Pyrite crystals are predominantly cubic in early stages, while pentagonal dodecahedral and cubic–dodecahedral combinations peak during the main mineralization stage. The pyrite is sulfur-deficient and iron-rich, enriched in Au, and relatively high in Ag, Cu, Pb, and Bi contents during the main ore-forming stage. Rare earth element (REE) concentrations are low, with weak LREE-HREE fractionation and a strong negative Eu anomaly. The thermoelectric coefficient of pyrite ranges from −328.9 to +335.6 μV/°C, with a mean of +197.63 μV/°C; P-type conduction dominates, with an occurrence rate of 58%–100% and an average of 88.78%. A weak–low temperature and a strong–high temperature peak characterize quartz thermoluminescence during the main mineralization stage. Fluid inclusions in quartz include liquid-rich, vapor-rich, and two-phase types, with salinities ranging from 10.11% to 12.62% NaCl equiv. (average 11.16%) and densities from 0.91 to 0.95 g/cm3 (average 0.90 g/cm3). The ore-forming fluids are interpreted as F-rich, low-salinity, low-density hydrothermal fluids of volcanic origin at medium–low temperatures. The abundance of pentagonal dodecahedral pyrite, low Co/Ni ratios, high Cu contents, and complex quartz thermoluminescence signatures are key mineralogical indicators for deep prospecting. Combined with thermoelectric data and morphological analysis, the depth interval around 800 m between drill holes ZK3204 and ZK3201 has high mineralization potential. This study fills a research gap on the genetic mineralogy of the Qiubudong deposit and provides a scientific basis for deep exploration. Full article
(This article belongs to the Special Issue Using Mineral Chemistry to Characterize Ore-Forming Processes)
Show Figures

Figure 1

Back to TopTop