Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = flow-through catalysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5197 KB  
Article
Nanoliter-Fabricated Paper-Based Colorimetric Lateral Flow Strip for Urea Detection
by Supatinee Kongkaew, Suparat Cotchim and Warakorn Limbut
Biosensors 2025, 15(10), 688; https://doi.org/10.3390/bios15100688 - 11 Oct 2025
Viewed by 577
Abstract
A nanoliter-scale fabrication method was applied to construct a colorimetric lateral flow strip for urea detection (Urea-CLFS). The device involves two main papers: a nitrocellulose membrane (NC-Mb) for urease enzyme immobilization and chromatography paper (CH-PP) containing a phenol red indicator. Urea-CLFS is a [...] Read more.
A nanoliter-scale fabrication method was applied to construct a colorimetric lateral flow strip for urea detection (Urea-CLFS). The device involves two main papers: a nitrocellulose membrane (NC-Mb) for urease enzyme immobilization and chromatography paper (CH-PP) containing a phenol red indicator. Urea-CLFS is a tool for detecting urea that is based on enzyme catalysis and the change in color of phenol red when urea is present. The Urea-CLFS fabrication was made possible by the minimal amount of nanoliters used in reagent consumption. The use of small arrays of phenol red dots provides a higher response result compared to single dots applied on CH-PP. To find the most effective design, it analyzed how urease was aligned on NC-Mb horizontally and vertically. According to our findings, the vertical alignment of the urease enzyme on NC-Mb leads to a prolonged reaction time, which leads to higher product production. The optimization process included optimizing various parameters, including the layer number of phenol red on CH-PP, phenol red concentration, urease concentration, reaction time, and sample volume. Under optimal conditions, the Urea-CLFS provided a linear range of 0.25–8.0 mmol L−1 with an LOD of 0.34 mmol L−1, which is sufficient for human health diagnostics. The accuracy of the Urea-CLFS was demonstrated by the recovery of the human urine sample between 95 ± 3% and 103 ± 3% (n = 3). Full article
(This article belongs to the Special Issue Paper-Based Biosensing Technologies: From Design to Application)
Show Figures

Graphical abstract

13 pages, 2231 KB  
Article
Comparison of Composite Materials Designed to Optimize Heterogeneous Decatungstate Oxidative Photocatalysis
by Julia Ong, Benjamin Cajka and Juan C. Scaiano
Molecules 2025, 30(17), 3597; https://doi.org/10.3390/molecules30173597 - 3 Sep 2025
Viewed by 1145
Abstract
Catalysis plays a pivotal role in green chemistry practices, particularly in reducing waste generated during chemical synthesis. Decatungstate (DT) emerges as a potent photocatalyst for Type I oxidations, exhibiting remarkable resilience to oxygen quenching, a characteristic that sets it apart from other excited [...] Read more.
Catalysis plays a pivotal role in green chemistry practices, particularly in reducing waste generated during chemical synthesis. Decatungstate (DT) emerges as a potent photocatalyst for Type I oxidations, exhibiting remarkable resilience to oxygen quenching, a characteristic that sets it apart from other excited triplet state photocatalysts. While homogeneous DT catalysis demonstrates effectiveness, its solubility poses challenges for its separation and recycling. To address these limitations, we focus on the development and comparison of heterogeneous DT photocatalysts, aiming to optimize their yield, recovery, and reusability. We synthesized tetrabutylammonium decatungstate (TBADT)-supported catalysts using silica, alumina, titanium dioxide, and glass wool and characterized them using diffuse reflectance measurements. Subsequently, we evaluated their photocatalytic performance by monitoring the oxidation of 1-phenylethanol and cyclohexanol under UVA irradiation. Our findings reveal that TBADT@silica emerges as the most effective catalyst, achieving approximately 20% conversion of cyclohexanol and 50% conversion of 1-phenylethanol with good reusability. Interestingly, we observed that 3-aminopropyl-triethoxysilane (APTES) treatment, intended to enhance DT anchoring, unexpectedly quenches the 3DT* triplet state, reducing catalytic activity. This unexpected finding underscores the importance of careful consideration in designing robust and recyclable heterogeneous decatungstate catalysts. Our research contributes significantly to the advancement of heterogeneous photocatalysis, paving the way for future applications in flow photochemistry. Further, we share a Python code (Google 3.12.11) to correct spectra obtained in Cary spectrometers. Full article
(This article belongs to the Special Issue Nanomaterials in Photochemical Devices: Advances and Applications)
Show Figures

Figure 1

23 pages, 3019 KB  
Review
Phase-Transfer Catalysis for Fuel Desulfurization
by Xun Zhang and Rui Wang
Catalysts 2025, 15(8), 724; https://doi.org/10.3390/catal15080724 - 30 Jul 2025
Cited by 1 | Viewed by 1061
Abstract
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe [...] Read more.
This review surveys recent advances and emerging prospects in phase-transfer catalysis (PTC) for fuel desulfurization. In response to increasingly stringent environmental regulations, the removal of sulfur from transportation fuels has become imperative for curbing SOx emissions. Conventional hydrodesulfurization (HDS) operates under severe temperature–pressure conditions and displays limited efficacy toward sterically hindered thiophenic compounds, motivating the exploration of non-hydrogen routes such as oxidative desulfurization (ODS). Within ODS, PTC offers distinctive benefits by shuttling reactants across immiscible phases, thereby enhancing reaction rates and selectivity. In particular, PTC enables efficient migration of organosulfur substrates from the hydrocarbon matrix into an aqueous phase where they are oxidized and subsequently extracted. The review first summarizes the deployment of classic PTC systems—quaternary ammonium salts, crown ethers, and related agents—in ODS operations and then delineates the underlying phase-transfer mechanisms, encompassing reaction-controlled, thermally triggered, photo-responsive, and pH-sensitive cycles. Attention is next directed to a new generation of catalysts, including quaternary-ammonium polyoxometalates, imidazolium-substituted polyoxometalates, and ionic-liquid-based hybrids. Their tailored architectures, catalytic performance, and mechanistic attributes are analyzed comprehensively. By incorporating multifunctional supports or rational structural modifications, these systems deliver superior desulfurization efficiency, product selectivity, and recyclability. Despite such progress, commercial deployment is hindered by the following outstanding issues: long-term catalyst durability, continuous-flow reactor design, and full life-cycle cost optimization. Future research should, therefore, focus on elucidating structure–performance relationships, translating batch protocols into robust continuous processes, and performing rigorous environmental and techno-economic assessments to accelerate the industrial adoption of PTC-enabled desulfurization. Full article
(This article belongs to the Special Issue Advanced Catalysis for Energy and a Sustainable Environment)
Show Figures

Figure 1

36 pages, 1130 KB  
Review
The Need for Change: A Roadmap for the Sustainable Transformation of the Chemical Industry
by Klaus Günter Steinhäuser and Markus Große Ophoff
Sustain. Chem. 2025, 6(2), 16; https://doi.org/10.3390/suschem6020016 - 10 Jun 2025
Cited by 2 | Viewed by 3050
Abstract
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite [...] Read more.
The chemical industry faces major challenges worldwide. Since 1950, production has increased 50-fold and is projected to continue growing, particularly in Asia. It is one of the most energy- and resource-intensive industries, contributing significantly to greenhouse gas emissions and the depletion of finite resources. This development exceeds planetary boundaries and calls for a sustainable transformation of the industry. The key transformation areas are as follows: (1) Non-Fossil Energy Supply: The industry must transition away from fossil fuels. Renewable electricity can replace natural gas, while green hydrogen can be used for high-temperature processes. (2) Circularity: Chemical production remains largely linear, with most products ending up as waste. Sustainable product design and improved recycling processes are crucial. (3) Non-Fossil Feedstock: To achieve greenhouse gas neutrality, oil, gas, and coal must be replaced by recycling plastics, renewable biomaterials, or CO2-based processes. (4) Sustainable Chemical Production: Energy and resource savings can be achieved through advancements like catalysis, biotechnology, microreactors, and new separation techniques. (5) Sustainable Chemical Products: Chemicals should be designed to be “Safe and Sustainable by Design” (SSbD), meaning they should not have hazardous properties unless essential to their function. (6) Sufficiency: Beyond efficiency and circularity, reducing overall material flows is essential to stay within planetary boundaries. This shift requires political, economic, and societal efforts. Achieving greenhouse gas neutrality in Europe by 2050 demands swift and decisive action from industry, governments, and society. The speed of transformation is currently too slow to reach this goal. Science can drive innovation, but international agreements are necessary to establish a binding framework for action. Full article
Show Figures

Figure 1

35 pages, 5248 KB  
Review
Effect of Remote Amine Groups on Ground- and Excited-State Properties of Terpyridyl d-Metal Complexes
by Anna Kryczka, Joanna Palion-Gazda, Katarzyna Choroba and Barbara Machura
Molecules 2025, 30(11), 2386; https://doi.org/10.3390/molecules30112386 - 29 May 2025
Viewed by 1066
Abstract
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications [...] Read more.
Over the last nine decades, 2,2′:6′,2″-terpyridine (terpy) derivatives and their transition d-metal complexes have been extensively explored due to their unique and widely tuned optical, electrochemical, and biological properties. Terpyridyl transition metal complexes occupy a prominent position among functional molecular materials for applications in optoelectronics, life science, catalysis, and photocatalysis, as well as they have played a key role in determining structure–property relationships. This review summarizes the developments of amine-functionalized R-C6H4-terpy systems and their d-metal complexes, largely concentrating on their photophysical and electrochemical properties. Functionalization of the terpy core with the electron-rich group, attached to the central pyridine ring of the terpy backbone via the phenylene linker, gives rise to organic push–pull systems showing the photoinduced charge flow process from the peripheral donor substituent to the terpy acceptor. The introduction of amine-functionalized R-C6H4-terpy systems into the coordination sphere of a d-metal ion offers an additional way for controlling the photophysics of these systems, in agreement with the formation of the excited state of intraligand charge transfer (ILCT) nature. Within this review, a detailed discussion has been presented for R-C6H4-terpys modified with acyclic and cyclic amine groups and their Cr(III), Mn(I), Re(I), Fe(II), Ru(II), Os(II), Pt(II), and Zn(II) coordination compounds. Full article
(This article belongs to the Special Issue Advances in Coordination Chemistry, 3rd Edition)
Show Figures

Figure 1

19 pages, 35077 KB  
Article
X-Ray Emissions from Hydrogen Rydberg Matter Detected Using Timepix3 CdTe Detector
by Sindre Andre Zeiner-Gundersen and Sveinn Olafsson
Catalysts 2025, 15(6), 526; https://doi.org/10.3390/catal15060526 - 26 May 2025
Viewed by 1047
Abstract
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed [...] Read more.
This study investigates the X-ray emissions from Hydrogen Rydberg Matter (HRM) using a state of-the-art Timepix3 detector with a Cadmium Telluride (CdTe) sensor, which offers imaging operation. The experimental setup featured an ultra-high vacuum (UHV) chamber containing potassium-doped iron oxide catalytic source, exposed to hydrogen or deuterium gas flowing through the source. A 1064 nm pulsed YAG laser was used to stimulate the HRM. The Timepix detector was calibrated with Cs-137 662 keV and 21 keV source. Results show a prominent emission peak in the 25–50 keV range, with significant contributions at 406 keV identified through aluminum foil attenuation experiments. These findings advance our understanding of radiation phenomena in hydrogen-loaded systems and suggest new avenues for exploring the unique emissions from HRM, potentially impacting material science and catalysis. Full article
(This article belongs to the Special Issue Catalysis by Metals and Metal Oxides)
Show Figures

Figure 1

61 pages, 5997 KB  
Review
A Direct Relationship Between ‘Blood Stasis’ and Fibrinaloid Microclots in Chronic, Inflammatory, and Vascular Diseases, and Some Traditional Natural Products Approaches to Treatment
by Douglas B. Kell, Etheresia Pretorius and Huihui Zhao
Pharmaceuticals 2025, 18(5), 712; https://doi.org/10.3390/ph18050712 - 12 May 2025
Cited by 3 | Viewed by 6875
Abstract
‘Blood stasis’ (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (血瘀). Similar concepts exist in Traditional Korean Medicine (‘Eohyul’) and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large [...] Read more.
‘Blood stasis’ (syndrome) (BSS) is a fundamental concept in Traditional Chinese Medicine (TCM), where it is known as Xue Yu (血瘀). Similar concepts exist in Traditional Korean Medicine (‘Eohyul’) and in Japanese Kampo medicine (Oketsu). Blood stasis is considered to underpin a large variety of inflammatory diseases, though an exact equivalent in Western systems medicine is yet to be described. Some time ago we discovered that blood can clot into an anomalous amyloid form, creating what we have referred to as fibrinaloid microclots. These microclots occur in a great many chronic, inflammatory diseases are comparatively resistant to fibrinolysis, and thus have the ability to block microcapillaries and hence lower oxygen transfer to tissues, with multiple pathological consequences. We here develop the idea that it is precisely the fibrinaloid microclots that relate to, and are largely mechanistically responsible for, the traditional concept of blood stasis (a term also used by Virchow). First, the diseases known to be associated with microclots are all associated with blood stasis. Secondly, by blocking red blood cell transport, fibrinaloid microclots provide a simple mechanistic explanation for the physical slowing down (‘stasis’) of blood flow. Thirdly, Chinese herbal medicine formulae proposed to treat these diseases, especially Xue Fu Zhu Yu and its derivatives, are known mechanistically to be anticoagulatory and anti-inflammatory, consistent with the idea that they are actually helping to lower the levels of fibrinaloid microclots, plausibly in part by blocking catalysis of the polymerization of fibrinogen into an amyloid form. We rehearse some of the known actions of the constituent herbs of Xue Fu Zhu Yu and specific bioactive molecules that they contain. Consequently, such herbal formulations (and some of their components), which are comparatively little known to Western science and medicine, would seem to offer the opportunity to provide novel, safe, and useful treatments for chronic inflammatory diseases that display fibrinaloid microclots, including Myalgic Encephalopathy/Chronic Fatigue Syndrome, long COVID, and even ischemic stroke. Full article
Show Figures

Figure 1

14 pages, 3557 KB  
Article
Marangoni Flow-Driven Self-Assembly of Biomimetic Jellyfish-like Hydrogels for Spatially Controlled Enzyme Catalysis
by Aoxiang Zhang, Huiying Zhou, Yanhui Guo and Yu Fu
Surfaces 2025, 8(2), 28; https://doi.org/10.3390/surfaces8020028 - 22 Apr 2025
Viewed by 927
Abstract
Enzymatic catalysis has gained significant attention in green chemistry due to its high specificity and efficiency under mild conditions. However, challenges related to enzyme immobilization and spatial control often limit its practical applications. In this work, we report a Marangoni flow-driven strategy to [...] Read more.
Enzymatic catalysis has gained significant attention in green chemistry due to its high specificity and efficiency under mild conditions. However, challenges related to enzyme immobilization and spatial control often limit its practical applications. In this work, we report a Marangoni flow-driven strategy to fabricate a biomimetic jellyfish-like hydrogel with tunable tentacle-like structures. The formation process occurs entirely in an aqueous system without organic solvents or post-treatment, enabling the construction of ultra-thin, free-standing hydrogels through spontaneous interfacial self-assembly. The resulting structure exhibits high surface-area geometry and excellent biocompatibility, providing a versatile platform for localized enzyme loading. This method offers a simple and scalable route for engineering soft materials with complex morphologies, and expands the design space for bioinspired hydrogel systems. Full article
(This article belongs to the Special Issue Surface Science: Polymer Thin Films, Coatings and Adhesives)
Show Figures

Graphical abstract

28 pages, 16395 KB  
Article
Dolomitization Facilitated by Clay Minerals on Mixed Siliciclastic-Carbonate Shoals of Carboniferous Age in the Tarim Basin, China: Constraints on Element Mobility and Isotope Geochemistry
by Xuan Liu, Meiyan Fu, Jon Gluyas, Rongcai Song, Haoxiang Lan, Yunjie Fan and Dong Wu
Minerals 2025, 15(4), 419; https://doi.org/10.3390/min15040419 - 17 Apr 2025
Cited by 3 | Viewed by 971
Abstract
In the western Tarim Basin, Carboniferous granular dolostones deposited on a carbonate platform contain a small amount of terrigenous materials of sand-size fraction, agglomerated clay minerals, or similar phases. However, the role of terrigenous materials on dolomitization is still unclear. The aim of [...] Read more.
In the western Tarim Basin, Carboniferous granular dolostones deposited on a carbonate platform contain a small amount of terrigenous materials of sand-size fraction, agglomerated clay minerals, or similar phases. However, the role of terrigenous materials on dolomitization is still unclear. The aim of this study was to reveal the dolomitization mechanism. The granular dolomites have small crystal size, earthy yellow color, and fabric-retentive texture, with relatively good order. These features indicate dolomites precipitated during early diagenesis. The ratio of rare earth elements (RREs) abundance of the stable isotopes 87Sr/86Sr relative to Post-Archean Australian Shale (PAAS) normalized patterns was used to study the source of the dolomitizing fluids. The composition of REEs is characterized by heavy rare earth (HREE) enrichment (average NdSN/YbSN = 0.83). There is a positive (La/La*)SN anomaly and slightly positive (Gd/Gd*)SN and (Y/Y*)SN anomaly; δ18O of seawater in fractionation equilibrium with granular dolostones was from −2.8‰ to 1.7‰ PDB, implying the dolomitizing fluid was contemporary, slightly evaporated seawater. The granular dolostones on the relatively thick shoals were subject to subaerial exposure before pervasive dolomitization, with evidence that the input of detrital kaolinite predated the formation of dolomites. Higher 87Sr/86Sr values and ∑REE in granular dolostones than the values in equivalent limestones indicate that dolomitization was related to terrigenous materials. Within the terrigenous materials, the negative-charged clay minerals may have catalyzed the dolomitization, resulting in dramatically decreased induction time for precipitation of proto-dolomites. A greater amount of terrigenous materials occurred on the shoals at the sea level fall, resulting from enhanced river entrenchment and downcutting. As a result, after subaerial exposure, the penesaline water flow through the limy allochems sediments lead to dolomitization, with the catalysis of illite on relatively thick shoals. Full article
(This article belongs to the Section Clays and Engineered Mineral Materials)
Show Figures

Figure 1

19 pages, 7332 KB  
Article
Synthesis of Curcumin Derivatives via Knoevenagel Reaction Within a Continuously Driven Microfluidic Reactor Using Polymeric Networks Containing Piperidine as a Catalyst
by Naresh Killi, Katja Rumpke and Dirk Kuckling
Gels 2025, 11(4), 278; https://doi.org/10.3390/gels11040278 - 8 Apr 2025
Viewed by 2127
Abstract
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as [...] Read more.
The use of organo-catalysis in continuous-flow reactor systems is gaining attention in medicinal chemistry due to its cost-effectiveness and reduced chemical waste. In this study, bioactive curcumin (CUM) derivatives were synthesized in a continuously operated microfluidic reactor (MFR), using piperidine-based polymeric networks as catalysts. Piperidine methacrylate and piperidine acrylate were synthesized and subsequently copolymerized with complementary monomers (MMA or DMAA) and crosslinkers (EGDMA or MBAM) via photopolymerization, yielding different polymeric networks. Initially, batch reactions were optimized for the organo-catalytic Knoevenagel condensation between CUM and 4-nitrobenzaldehyde, under various conditions, in the presence of polymer networks. Conversion was assessed using offline 1H NMR spectroscopy, revealing an increase in conversion with enhanced swelling properties of the polymer networks, which facilitated greater accessibility of catalytic sites. In continuous-flow MFR experiments, optimized polymer gel dots exhibited superior catalytic performance, achieving a conversion of up to 72%, compared to other compositions. This improvement was attributed to the enhanced swelling in the reaction mixture (DMSO/methanol, 7:3 v/v) at 40 °C over 72 h. Furthermore, the MFR system enabled the efficient synthesis of a series of CUM derivatives, demonstrating significantly higher conversion rates than traditional batch reactions. Notably, while batch reactions required 90% catalyst loading in the gel, the MFR system achieved a comparable or superior performance with only 50% catalyst, resulting in a higher turnover number. These findings underscore the advantages of continuous-flow organo-catalysis in enhancing catalytic efficiency and sustainability in organic synthesis. Full article
(This article belongs to the Special Issue Gels: 10th Anniversary)
Show Figures

Graphical abstract

17 pages, 7810 KB  
Article
Two-Step Tandem Synthesis of Coumarin Derivatives Containing Bioamide Skeleton Catalyzed by Lipozyme TL IM from Thermomyces lanuginosus in Sustainable Continuous-Flow Microreactors
by Li-Hua Du, Hang Lin, Guo-Neng Fu, Zong-Hao Huang, Yi-Min Chen, Han-Jia Xie, Bing-Lin Yan, Miao-Miao Xue, Ao-Ying Zhang, Lin Wang and Xi-Ping Luo
Catalysts 2025, 15(3), 268; https://doi.org/10.3390/catal15030268 - 12 Mar 2025
Viewed by 1291
Abstract
Due to their remarkable biological and pharmacological activities such as antibacterial, antifungal, anticoagulant, antioxidant, anticancer, and anti-inflammatory properties, synthesis of coumarins and their derivatives has attracted considerable attention in research and development among both organic and medicinal chemists. In this paper, we demonstrated [...] Read more.
Due to their remarkable biological and pharmacological activities such as antibacterial, antifungal, anticoagulant, antioxidant, anticancer, and anti-inflammatory properties, synthesis of coumarins and their derivatives has attracted considerable attention in research and development among both organic and medicinal chemists. In this paper, we demonstrated for the first time a two-step tandem enzymatic synthesis of coumarin bioamide derivatives through sustainable continuous-flow technology. Salicylaldehyde and dimethyl malonate were firstly reacted to obtain coumarin carboxylate methyl derivatives, which were then reacted with various biogenic amines at 50 °C for about 40 min under the catalysis of lipase TL IM from Thermomyces lanuginosus to obtain coumarin bioamide derivatives in continuous-flow reactors. Reaction parameters such as reaction solvent, reaction catalyst type, reactant ratio, residence time, reaction temperature and comparative experiments with traditional batch process were studied. Ideal product yields (62.7–87.1%) were obtained. Environmentally friendly methanol was applied as the reaction medium. Substantially shorter reaction times as well as a significant increase in the product yield were obtained as compared to the batch process. This innovative approach provides a promising green, efficient and rapid synthesis strategy for pharmaceutical synthesis and further research on novel coumarin bioamide derivatives. Full article
(This article belongs to the Section Biocatalysis)
Show Figures

Figure 1

18 pages, 5237 KB  
Article
Insights on Morphology and Thermal Stability of Hollow Pt Nanospheres by In Situ Environmental TEM
by Josephine Rezkallah, Xavier Sauvage, Bernhard Witulski and Simona Moldovan
Molecules 2025, 30(4), 792; https://doi.org/10.3390/molecules30040792 - 8 Feb 2025
Cited by 1 | Viewed by 1401
Abstract
The fields of catalysis and energy storage nowadays quote the use of nanomaterials with well-defined size, morphology, chemical composition, and thermal stability in the high-temperature range and under harsh conditions of reactions. We present herein an approach based on in situ environmental scanning [...] Read more.
The fields of catalysis and energy storage nowadays quote the use of nanomaterials with well-defined size, morphology, chemical composition, and thermal stability in the high-temperature range and under harsh conditions of reactions. We present herein an approach based on in situ environmental scanning transmission electron microscopy (STEM), combined with analytical STEM and electron tomography (ET), for the evaluation of the thermal stability of hollow Pt nanospheres under vacuum and high-pressure hydrogen environments. Spherical Pt hollow nanospheres (HNSs) with an average diameter of 15 and 34 nm were synthesized by a galvanic replacement-based procedure using either steep or continuous addition of Pt salts during synthesis. The as-synthesized HNSs exhibit complex 3D structures with shells of a few nm constituted by small Pt nanoparticles and marked by the presence of open channels. The thermal stability of Pt-based HNSs under TEM vacuum and 1 bar of hydrogen flow is reported by considering microstructural changes, e.g., the build-up of a continuous shell and its evolution until HNSs collapse at elevated temperatures (>500 °C). Experimental findings are discussed considering fundamental phenomenological issues, i.e., NP faceting, NP diffusion, and subsequent NP sintering, with respect to the behavior of the systems investigated. Full article
(This article belongs to the Special Issue Catalysts: New Materials for Green Chemistry)
Show Figures

Graphical abstract

7 pages, 166 KB  
Perspective
Reshaping Chemical Manufacturing Towards Green Process Intensification: Recent Findings and Perspectives
by Giancarlo Cravotto
Processes 2025, 13(2), 459; https://doi.org/10.3390/pr13020459 - 8 Feb 2025
Cited by 7 | Viewed by 3159
Abstract
The chemical industry faces major challenges despite recent progress in the transition to more environmentally friendly processes. Sustainable industrial chemistry relies on the optimization of protocols and downstream processes such as extraction, purification, and drying. Process intensification, which includes non-conventional techniques and continuous [...] Read more.
The chemical industry faces major challenges despite recent progress in the transition to more environmentally friendly processes. Sustainable industrial chemistry relies on the optimization of protocols and downstream processes such as extraction, purification, and drying. Process intensification, which includes non-conventional techniques and continuous manufacturing, has emerged as a key strategy to improve efficiency and environmental impact. Technologies such as ultrasound, microwaves, mechanochemistry, and reactive extrusion offer improved performance but face scalability and proprietary barriers. Flow chemistry offers additional benefits, including smaller reactors, lower energy consumption (from 40 to 90%), and increased safety through continuous, automated reactions. However, implementing these methods requires overcoming engineering, economic, and regulatory hurdles. Biphasic catalysis and sonochemical activation in liquid–liquid systems are promising approaches for scalable reactions under mild conditions. The pharmaceutical industry, a major source of waste, has shown resistance due to high validation costs and complex regulations. Fortunately, international regulatory institutions have introduced programs to facilitate the introduction of advanced technologies. Future perspectives emphasize the integration of modular, intensified processes with digitalization and smart manufacturing. Collaborative, transdisciplinary research will be crucial for accelerating commercialization and addressing sustainability challenges in chemical production. Full article
Show Figures

Graphical abstract

20 pages, 4201 KB  
Article
Enhancing Sustainability in Advanced Oxidation Processes: CoFe2O4 as a Catalyst Reinforcement for Tartrazine Dye Degradation
by Matheus Londero da Costa, Dison Stracke Pfingsten Franco, William Leonardo da Silva, Jordana Georgin and Jivago Schumacher de Oliveira
Sustainability 2025, 17(1), 225; https://doi.org/10.3390/su17010225 - 31 Dec 2024
Viewed by 1604
Abstract
Globalization has increased production in various industries, including textiles, food, and pharmaceuticals. These industries employ different dyes in production, leading to undesired discharge, which conventional treatment fails to remove from the water. The present study aims to synthesize, characterize, and use different pure [...] Read more.
Globalization has increased production in various industries, including textiles, food, and pharmaceuticals. These industries employ different dyes in production, leading to undesired discharge, which conventional treatment fails to remove from the water. The present study aims to synthesize, characterize, and use different pure catalysts (TiO2 and Zn2SnO4) and their compounds doped with CoFe2O4 together with ozone (O3) for the degradation of the azo dye yellow tartrazine (TZ), evaluating the process. For this characterization, N2 porosimeter, zeta potential, X-ray diffraction, SEM-EDS, and diffuse reflectance spectra were used. Specific surface areas (m2 g−1) of 109, 106, 65, and 83 were used for TiO2, CoFe2O4/TiO2, Zn2SnO4, and CoFe2O4/Zn2SnO4, respectively. Both compounds are characterized as nanocatalysts as they have a band gap of 2.75 and 2.83 eV and average particle size of 98 and 85 nm for CoFe2O4/TiO2 and Zn2SnO4, respectively. We employed a reactional model, which was able to describe the catalytic ozonation for all cases, with a low R2 of 0.9731. The combination of processes increased TZ degradation from 57% to 74% compared to O3 alone, achieving a maximum degradation of 98.5% within 50 min of catalysis at a low ozone flow rate. This highlights the potential of the produced catalysts for energy-efficient effluent treatment. Full article
Show Figures

Graphical abstract

23 pages, 3203 KB  
Article
Ultrasensitive Lateral Flow Immunoassay of Fluoroquinolone Antibiotic Gatifloxacin Using Au@Ag Nanoparticles as a Signal-Enhancing Label
by Olga D. Hendrickson, Nadezhda A. Byzova, Vasily G. Panferov, Elena A. Zvereva, Shen Xing, Anatoly V. Zherdev, Juewen Liu, Hongtao Lei and Boris B. Dzantiev
Biosensors 2024, 14(12), 598; https://doi.org/10.3390/bios14120598 - 6 Dec 2024
Cited by 6 | Viewed by 1825
Abstract
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay [...] Read more.
Gatifloxacin (GAT), an antibiotic belonging to the fluoroquinolone (FQ) class, is a toxicant that may contaminate food products. In this study, a method of ultrasensitive immunochromatographic detection of GAT was developed for the first time. An indirect format of the lateral flow immunoassay (LFIA) was performed. GAT-specific monoclonal antibodies and labeled anti-species antibodies were used in the LFIA. Bimetallic core@shell Au@Ag nanoparticles (Au@Ag NPs) were synthesized as a new label. Peroxidase-mimic properties of Au@Ag NPs allowed for the catalytic enhancement of the signal on test strips, increasing the assay sensitivity. A mechanism of Au@Ag NPs-mediated catalysis was deduced. Signal amplification was achieved through the oxidative etching of Au@Ag NPs by hydrogen peroxide. This resulted in the formation of gold nanoparticles and Ag+ ions, which catalyzed the oxidation of the peroxidase substrate. Such “chemical enhancement” allowed for reaching the instrumental limit of detection (LOD, calculated by Three Sigma approach) and cutoff of 0.8 and 20 pg/mL, respectively. The enhanced assay procedure can be completed in 21 min. The enhanced LFIA was tested for GAT detection in raw meat samples, and the recoveries from meat were 78.1–114.8%. This method can be recommended as a promising instrument for the sensitive detection of various toxicants. Full article
(This article belongs to the Special Issue Nanoparticle-Based Biosensors for Detection)
Show Figures

Figure 1

Back to TopTop