Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (698)

Search Parameters:
Keywords = flood-influencing factors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5063 KiB  
Article
Flood Susceptibility Assessment Based on the Analytical Hierarchy Process (AHP) and Geographic Information Systems (GIS): A Case Study of the Broader Area of Megala Kalyvia, Thessaly, Greece
by Nikolaos Alafostergios, Niki Evelpidou and Evangelos Spyrou
Information 2025, 16(8), 671; https://doi.org/10.3390/info16080671 - 6 Aug 2025
Abstract
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused [...] Read more.
Floods are considered one of the most devastating natural hazards, frequently resulting in substantial loss of lives and widespread damage to infrastructure. In the period of 4–7 September 2023, the region of Thessaly experienced unprecedented rainfall rates due to Storm Daniel, which caused significant flooding and many damages and fatalities. The southeastern areas of Trikala were among the many areas of Thessaly that suffered the effects of these rainfalls. In this research, a flood susceptibility assessment (FSA) of the broader area surrounding the settlement of Megala Kalyvia is carried out through the analytical hierarchy process (AHP) as a multicriteria analysis method, using Geographic Information Systems (GIS). The purpose of this study is to evaluate the prolonged flood susceptibility indicated within the area due to the past floods of 2018, 2020, and 2023. To determine the flood-prone areas, seven factors were used to determine the influence of flood susceptibility, namely distance from rivers and channels, drainage density, distance from confluences of rivers or channels, distance from intersections between channels and roads, land use–land cover, slope, and elevation. The flood susceptibility was classified as very high and high across most parts of the study area. Finally, a comparison was made between the modeled flood susceptibility and the maximum extent of past flood events, focusing on that of 2023. The results confirmed the effectiveness of the flood susceptibility assessment map and highlighted the need to adapt to the changing climate patterns observed in September 2023. Full article
(This article belongs to the Special Issue New Applications in Multiple Criteria Decision Analysis, 3rd Edition)
Show Figures

Figure 1

14 pages, 5448 KiB  
Article
A Study of Climate-Sensitive Diseases in Climate-Stressed Areas of Bangladesh
by Ahammadul Kabir, Shahidul Alam, Nusrat Jahan Tarin, Shila Sarkar, Anthony Eshofonie, Mohammad Ferdous Rahman Sarker, Abul Kashem Shafiqur Rahman and Tahmina Shirin
Climate 2025, 13(8), 166; https://doi.org/10.3390/cli13080166 - 5 Aug 2025
Abstract
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of [...] Read more.
The National Adaptation Plan of Bangladesh identifies eleven climate-stressed zones, placing nearly 100 million people at high risk of climate-related hazards. Vulnerable groups such as the poor, floating populations, daily laborers, and slum dwellers are particularly affected. However, there is a lack of data on climate-sensitive diseases and related hospital visits in these areas. This study explored the prevalence of such diseases using the Delphi method through focus group discussions with 493 healthcare professionals from 153 hospitals in 156 upazilas across 21 districts and ten zones. Participants were selected by district Civil Surgeons. Key climate-sensitive diseases identified included malnutrition, diarrhea, pneumonia, respiratory infections, typhoid, skin diseases, hypertension, cholera, mental health disorders, hepatitis, heat stroke, and dengue. Seasonal surges in hospital visits were noted, influenced by factors like extreme heat, air pollution, floods, water contamination, poor sanitation, salinity, and disease vectors. Some diseases were zone-specific, while others were widespread. Regions with fewer hospital visits often had higher disease burdens, indicating under-reporting or lack of access. The findings highlight the need for area-specific adaptation strategies and updates to the Health National Adaptation Plan. Strengthening resilience through targeted investment and preventive measures is crucial to reducing health risks from climate change. Full article
(This article belongs to the Section Climate and Environment)
Show Figures

Figure 1

18 pages, 3268 KiB  
Article
In Situ Emulsification Synergistic Self-Profile Control System on Offshore Oilfield: Key Influencing Factors and EOR Mechanism
by Liangliang Wang, Minghua Shi, Jiaxin Li, Baiqiang Shi, Xiaoming Su, Yande Zhao, Qing Guo and Yuan Yuan
Energies 2025, 18(14), 3879; https://doi.org/10.3390/en18143879 - 21 Jul 2025
Viewed by 277
Abstract
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development [...] Read more.
The in situ emulsification synergistic self-profile control system has wide application prospects for efficient development on offshore oil reservoirs. During water flooding in Bohai heavy oil reservoirs, random emulsification occurs with superimposed Jamin effects. Effectively utilizing this phenomenon can enhance the efficient development of offshore oilfields. This study addresses the challenges hindering water flooding development in offshore oilfields by investigating the emulsification mechanism and key influencing factors based on oil–water emulsion characteristics, thereby proposing a novel in situ emulsification flooding method. Based on a fundamental analysis of oil–water properties, key factors affecting emulsion stability were examined. Core flooding experiments clarified the impact of spontaneous oil–water emulsification on water flooding recovery. Two-dimensional T1–T2 NMR spectroscopy was employed to detect pure fluid components, innovating the method for distinguishing oil–water distribution during flooding and revealing the characteristics of in situ emulsification interactions. The results indicate that emulsions formed between crude oil and formation water under varying rheometer rotational speeds (500–2500 r/min), water cuts (30–80%), and emulsification temperatures (40–85 °C) are all water-in-oil (W/O) type. Emulsion viscosity exhibits a positive correlation with shear rate, with droplet sizes primarily ranging between 2 and 7 μm and a viscosity amplification factor up to 25.8. Emulsion stability deteriorates with increasing water cut and temperature. Prolonged shearing initially increases viscosity until stabilization. In low-permeability cores, spontaneous oil–water emulsification occurs, yielding a recovery factor of only 30%. For medium- and high-permeability cores (water cuts of 80% and 50%, respectively), recovery factors increased by 9.7% and 12%. The in situ generation of micron-scale emulsions in porous media achieved a recovery factor of approximately 50%, demonstrating significantly enhanced oil recovery (EOR) potential. During emulsification flooding, the system emulsifies oil at pore walls, intensifying water–wall interactions and stripping wall-adhered oil, leading to increased T2 signal intensity and reduced relaxation time. Oil–wall interactions and collision frequencies are lower than those of water, which appears in high-relaxation regions (T1/T2 > 5). The two-dimensional NMR spectrum clearly distinguishes oil and water distributions. Full article
Show Figures

Figure 1

23 pages, 5120 KiB  
Article
Diagnosis of Performance and Obstacles of Integrated Management of Three-Water in Chaohu Lake Basin
by Jiangtao Kong, Yongchao Liu, Jialin Li and Hongbo Gong
Water 2025, 17(14), 2135; https://doi.org/10.3390/w17142135 - 17 Jul 2025
Viewed by 227
Abstract
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower [...] Read more.
The integration of water resources, water environment, and water ecology (hereinafter “three-water”) is essential not only for addressing the current water crisis but also for achieving sustainable development. Chaohu Lake is an important water resource and ecological barrier in the middle and lower reaches of the Yangtze River, undertaking such functions as agricultural irrigation, urban water supply, and flood control and storage. Studying the performance of “three-water” in the Chaohu Lake Basin will help to understand the pollution mechanism and governance dilemma in the lake basin. It also provides practical experience and policy references for the ecological protection and high-quality development of the Yangtze River Basin. We used the DPSIR-TOPSIS model to analyze the performance of the river–lake system in the Chaohu Lake Basin and employed an obstacle model to identify factors influencing “three-water.” The results indicated that overall governance and performance of the “three-water” in the Chaohu Lake Basin exhibited an upward trend from 2011 to 2022. Specifically, the obstacle degree of driving force decreased by 19.6%, suggesting that economic development enhanced governance efforts. Conversely, the obstacle degree of pressure increased by 34.4%, indicating continued environmental stress. The obstacle degree of state fluctuated, showing a decrease of 13.2% followed by an increase of 3.8%, demonstrating variability in the effectiveness of water resource, environmental, and ecological management. Additionally, the obstacle degree of impact declined by 12.8%, implying the reduced efficacy of governmental measures in later stages. Response barriers decreased by 5.8%. Variations in the obstacle degree of response reflected differences in response capacities. Spatially, counties and districts at the origins of major rivers and their lake outlets showed lower performance levels in “three-water” management compared to other regions in the basin. Notably, Wuwei City and Feidong County exhibited better governance performance, while Feixi County and Chaohu City showed lower performance levels. Despite significant progress in water resource management, environmental improvement, and ecological restoration, further policy support and targeted countermeasures remain necessary. Counties and districts should pursue coordinated development, leverage the radiative influence of high-performing areas, deepen regional collaboration, and optimize, governance strategies to promote sustainable development. Full article
Show Figures

Figure 1

20 pages, 1137 KiB  
Review
Unveiling the Effects of Natural Disasters and Nuclear Energy on the Secondary Sex Ratio: A Comprehensive Review
by Iasonas Dermitzakis, Paschalis Theotokis, Efthymia Delilampou, Evangelos Axarloglou, Sofia Gargani, Dimosthenis Miliaras, Maria Eleni Manthou and Soultana Meditskou
Life 2025, 15(7), 1127; https://doi.org/10.3390/life15071127 - 17 Jul 2025
Viewed by 365
Abstract
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of [...] Read more.
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of male and female births presents a nuanced and compelling study area. Natural disasters, such as earthquakes, hurricanes, floods, and volcanic eruptions, have been known to disrupt ecosystems and human populations, leading to both short-term and long-term consequences. Studies have suggested a potential influence of these disasters on the SSR, with varying degrees of impact observed across different regions and disaster types. Similarly, nuclear accidents, such as the infamous Chernobyl disaster, have sparked interest in their potential effects on human health and development. The release of radioactive materials into the environment can have far-reaching consequences, including impacts on reproductive outcomes. Through a rigorous examination of the existing literature, the present review aims to synthesize current knowledge on the impacts of natural disasters and nuclear accidents on the SSR and unravel the mechanisms that explain SSR fluctuations. By shedding light on the diverse influences shaping the SSR, this narrative review contributes to a deeper appreciation of the intricate interplay between environmental, biological, and societal factors that determines the SSR, calling for targeted strategies to mitigate potential adverse effects on sex ratios in the aftermath of such events. Full article
(This article belongs to the Special Issue From Stem Cells to Embryos, Congenital Anomalies and Epidemiology)
Show Figures

Graphical abstract

24 pages, 3783 KiB  
Article
Morphodynamic Interactions Between Sandbar, Beach Profile, and Dune Under Variable Hydrodynamic and Morphological Conditions
by Alirio Sequeira, Carlos Coelho and Márcia Lima
Water 2025, 17(14), 2112; https://doi.org/10.3390/w17142112 - 16 Jul 2025
Viewed by 239
Abstract
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial [...] Read more.
Coastal areas are increasingly vulnerable to erosion, a process that can lead to severe consequences such as flooding and land loss. This study investigates strategies for preventing and mitigating coastal erosion, with a particular focus on nature-based solutions, notably artificial sand nourishment. Artificial nourishment has proven to be an effective method for erosion control. However, its success depends on factors such as the placement location, sediment volume, and frequency of operations. To optimize these interventions, simulations were conducted using both a numerical model (CS-Model) and a physical flume model, based on the same cross-section beach/dune profile, to compare cross-shore nourishment performance across different scenarios. The numerical modeling approach is presented first, including a description of the reference prototype-scale scenario. This is followed by an overview of the physical modeling, detailing the experimental 2D cross-section flume setup and tested scenarios. These scenarios simulate nourishment interventions with variations in beach profile, aiming to assess the influence of water level, berm width, bar volume, and bar geometry. The results from both numerical and physical simulations are presented, focusing on the cross-shore morphological response of the beach profile under wave action, particularly the effects on profile shape, water level, bar volume, and the position and depth of the bar crest. The main conclusion highlights that a wider initial berm leads to greater wave energy dissipation, thereby contributing to the mitigation of dune erosion. Full article
Show Figures

Figure 1

17 pages, 1939 KiB  
Article
Comprehensive Assessment of Water Quality of China’s Largest Freshwater Lake Under the Impact of Extreme Floods and Droughts
by Zhiyu Mao, Junxiang Cheng, Ligang Xu, Mingliang Jiang and Hailin You
Hydrology 2025, 12(7), 192; https://doi.org/10.3390/hydrology12070192 - 14 Jul 2025
Viewed by 776
Abstract
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This [...] Read more.
Poyang Lake, a large floodplain lake, plays a crucial role in the ecological safety and quality of life in surrounding areas. Over the past decade (2013–2022), amid economic development and environmental changes, the water environment of Poyang Lake has encountered complex challenges. This study evaluated the water quality of Poyang Lake in a recent 10-year span by the water quality index (WQI), trophic level index (TLI) and a newly constructed comprehensive evaluation index, and it analyzed the trend of water quality change under extreme events. Meanwhile, the main factors affecting the water quality of Poyang Lake were analyzed by partial least squares (PLS), a multivariate statistical method that accounts for multicollinearity. The results indicate that: (1) The water quality of Poyang Lake in summer and autumn is slightly worse than that in spring and winter. Each water quality index reflects the distinct states of the water environment in Poyang Lake. (2) Each water quality evaluation index responds differently to influencing factors. (3) Extreme flood and drought events have markedly different impacts on the water environment of Poyang Lake, exhibiting significant spatial heterogeneity. Domestic sewage discharge and total water resources have a relatively great impact on the water environment of Poyang Lake. The results of this study provide important insights for water quality management and policy formulation in Poyang Lake, supporting sustainable regional development. Full article
Show Figures

Figure 1

12 pages, 775 KiB  
Article
Assessment of the Immune Response to Coxiella burnetii in Rural Areas of the Thessaly Region Following the Daniel Floods
by Magdalini Christodoulou, Ourania S. Kotsiou, Konstantinos Tsaras, Charalambos Billinis, Konstantinos I. Gourgoulianis and Dimitrios Papagiannis
Hygiene 2025, 5(3), 30; https://doi.org/10.3390/hygiene5030030 - 13 Jul 2025
Viewed by 310
Abstract
Background: In September 2023, Storm Daniel triggered catastrophic flooding across Thessaly, in central Greece, leading to the deaths of approximately 483,476 animals and heightening concerns about zoonotic diseases, particularly Q fever caused by Coxiella burnetii. Sofades, a municipality in the Karditsa [...] Read more.
Background: In September 2023, Storm Daniel triggered catastrophic flooding across Thessaly, in central Greece, leading to the deaths of approximately 483,476 animals and heightening concerns about zoonotic diseases, particularly Q fever caused by Coxiella burnetii. Sofades, a municipality in the Karditsa region that is severely impacted by the floods, emerged as a critical area for evaluating the risk of zoonotic disease transmission. This study aimed to determine the seroprevalence status of Coxiella burnetii Phase 1 IgA antibodies among residents in the rural area of Sofades after the Daniel floods. Methods: Serum samples were obtained from a convenient sample of residents with livestock exposure between 1 March and 31 March 2024. Enzyme-linked immunosorbent assay (ELISA) was used to detect Coxiella burnetii Phase 1 IgA antibodies. Descriptive analyses summarized demographic data, and logistic regression was employed to examine the association between gender, age, and positive ELISA results. Results: The overall seroprevalence was 16.66%. Males had a significantly higher positivity rate (28.57%) than females (6.25%). Seropositivity was more frequent among individuals aged 41–80 years, with peak prevalence observed in the 61–80 age group. Conclusions: This cross-sectional study offers a snapshot of Coxiella burnetii exposure in a high-risk rural population post-flood. The slightly higher seroprevalence in Sofades (16.66%) compared to Karditsa (16.1%) suggests limited influence of environmental factors on transmission. Despite limitations in causal inference, the findings highlight the need for enhanced surveillance and targeted public health measures. Longitudinal studies are needed to assess the long-term impact of environmental disasters on Q fever dynamics. Full article
Show Figures

Figure 1

24 pages, 5886 KiB  
Article
GIS-Driven Multi-Criteria Assessment of Rural Settlement Patterns and Attributes in Rwanda’s Western Highlands (Central Africa)
by Athanase Niyogakiza and Qibo Liu
Sustainability 2025, 17(14), 6406; https://doi.org/10.3390/su17146406 - 13 Jul 2025
Viewed by 473
Abstract
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, [...] Read more.
This study investigates rural settlement patterns and land suitability in Rwanda’s Western Highlands, a mountainous region highly vulnerable to geohazards like landslides and flooding. Its primary aim is to inform sustainable, climate-resilient development planning in this fragile landscape. We employed high-resolution satellite imagery, a Digital Elevation Model (DEM), and comprehensive geospatial datasets to analyze settlement distribution, using Thiessen polygons for influence zones and Kernel Density Estimation (KDE) for spatial clustering. The Analytic Hierarchy Process (AHP) was integrated with the GeoDetector model to objectively weight criteria and analyze settlement pattern drivers, using population density as a proxy for human pressure. The analysis revealed significant spatial heterogeneity in settlement distribution, with both clustered and dispersed forms exhibiting distinct exposure levels to environmental hazards. Natural factors, particularly slope gradient and proximity to rivers, emerged as dominant determinants. Furthermore, significant synergistic interactions were observed between environmental attributes and infrastructure accessibility (roads and urban centers), collectively shaping settlement resilience. This integrative geospatial approach enhances understanding of complex rural settlement dynamics in ecologically sensitive mountainous regions. The empirically grounded insights offer a robust decision-support framework for climate adaptation and disaster risk reduction, contributing to more resilient rural planning strategies in Rwanda and similar Central African highland regions. Full article
Show Figures

Figure 1

17 pages, 3061 KiB  
Article
Entrance/Exit Characteristics-Driven Flood Risk Assessment of Urban Underground Garages Under Extreme Rainfall Scenarios
by Jialing Fang, Sisi Wang, Jiaxuan Chen, Jinming Ma and Ruobing Wu
Water 2025, 17(14), 2081; https://doi.org/10.3390/w17142081 - 11 Jul 2025
Viewed by 294
Abstract
Under the frequent occurrence of urban waterlogging disasters globally, underground spaces, due to their unique environmental conditions and structural vulnerabilities, are facing growing flood pressure, resulting in substantial economic losses that hinder sustainable urban development. This study focused on a high-density urban area [...] Read more.
Under the frequent occurrence of urban waterlogging disasters globally, underground spaces, due to their unique environmental conditions and structural vulnerabilities, are facing growing flood pressure, resulting in substantial economic losses that hinder sustainable urban development. This study focused on a high-density urban area in China, investigating surface waterlogging conditions under rainfall characteristics as the primary driver of flooding. Focusing on the main nodes—entrances and exits—within the waterlogging disaster chain of underground garages, a risk assessment framework was constructed that encompasses three key dimensions: the attributes of extreme rainfall, the structural characteristics of entrances/exits, and emergency response capacities. Subsequently, a waterlogging risk assessment was conducted for selected underground garages in the study area under a 100-year return period extreme rainfall scenario. The results revealed that the flood depth at entrances/exits and the structural height of entrances/exits are the primary factors influencing flood risk in urban underground garages. Under this simulation scenario, 37.5% of the entrances and exits exhibited varying degrees of flood risk. The assessment framework and indicator system developed in this study provide valuable insights for flood risk evaluation in underground garage systems and offer decision-makers a more scientific and robust foundation for formulating improvement measures. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

29 pages, 672 KiB  
Article
Configuring Supply Chain Resilience Under Natural Disaster Risk
by Jiaqi Cheng and Peng Shan
Sustainability 2025, 17(14), 6346; https://doi.org/10.3390/su17146346 - 10 Jul 2025
Viewed by 372
Abstract
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and [...] Read more.
In recent years, the intensifying frequency of natural disasters such as floods and typhoons has brought severe disruptions to the global supply chain system, making supply chain resilience an important academic research and practical application topic. This study explores the influencing factors and allocation effects of supply chain resilience under the risk of natural disasters, with a particular focus on its impact on sustainability. This paper conducts an empirical study on supply chain resilience in the context of natural disasters by using the Structural Equation Model (SEM) and Fuzzy Set Qualitative Comparative Analysis (fsQCA). Based on 407 valid questionnaires, the study found that supply chain flexibility, foresight, visibility, cooperation, and support significantly positively affected the enhancement of supply chain resilience. Furthermore, through the fsQCA method, this study identified a single configuration approach that leads to high supply chain resilience and clarified the complexity of resilience formation under different conditions. This research not only enriches the theoretical framework of supply chain resilience but also provides targeted strategies for enterprises and governments to enhance their resilience to natural disasters, thereby suggesting potential pathways to support economic stability, social well-being, and environmental protection, though further empirical validation is needed. Full article
Show Figures

Figure 1

24 pages, 4357 KiB  
Article
Attribution Analysis on Runoff Reduction in the Upper Han River Basin Based on Hydro-Meteorologic and Land Use/Cover Change Data Series
by Xiaoya Wang, Shenglian Guo, Menyue Wang, Xiaodong He and Wei Wang
Water 2025, 17(14), 2067; https://doi.org/10.3390/w17142067 - 10 Jul 2025
Viewed by 298
Abstract
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying [...] Read more.
Anthropogenic activities and climate change have significantly altered runoff generation in the upper Han River basin, posing a challenge to the water supply sustainability for the Middle Route of the South-to-North Water Diversion Project. Land use/cover changes (LUCCs) affect hydrological processes by modifying evapotranspiration, infiltration and soil moisture content. Based on hydro-meteorological data from 1961 to 2023 and LUCC data series from 1985 to 2023, this study aimed to identify the temporal trend in hydro-meteorological variables, to quantify the impacts of underlying land surface and climate factors at different time scales and to clarify the effects of LUCCs and basin greening on the runoff generation process. The results showed that (1) inflow runoff declined at a rate of −1.71 mm/year from 1961 to 2023, with a marked shift around 1985, while potential evapotranspiration increased at a rate of 2.06 mm/year within the same time frame. (2) Annual climate factors accounted for 61.01% of the runoff reduction, while underlying land surface contributed 38.99%. Effective precipitation was the dominant climatic factor during the flood season, whereas potential evapotranspiration had a greater influence during the dry season. (3) From 1985 to 2023, the LUCC changed significantly, mainly manifested by the increasing forest area and decreasing crop land area. The NDVI also showed an upward trend over the years; the actual evapotranspiration increased by 1.163 billion m3 due to the LUCC. This study addresses the climate-driven and human-induced hydrological changes in the Danjiangkou Reservoir and provides an important reference for water resource management. Full article
Show Figures

Figure 1

20 pages, 9728 KiB  
Article
The Response of the Functional Traits of Phragmites australis and Bolboschoenus planiculmis to Water and Saline–Alkaline Stresses
by Lili Yang, Yanjing Lou and Zhanhui Tang
Plants 2025, 14(14), 2112; https://doi.org/10.3390/plants14142112 - 9 Jul 2025
Viewed by 356
Abstract
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration [...] Read more.
Soil saline–alkaline stress and water stress, exacerbated by anthropogenic activities and climate change, are major drivers of wetland vegetation degradation, severely affecting the function of wetland ecosystems. In this study, we conducted a simulation experiment with three water levels and four saline–alkaline concentration levels as stress factors to assess eight key functional traits of Phragmites australis and Bolboschoenus planiculmis, dominant species in the salt marsh wetlands in the western region of Jilin province, China. The study aimed to evaluate how these factors influence the functional traits of P. australis and B. planiculmis. Our results showed that the leaf area, root biomass, and clonal biomass of P. australis significantly increased, and the leaf area of B. planiculmis significantly decreased under low and medium saline–alkaline concentration treatments, while the plant height, ramet number, and aboveground biomass of P. australis and the root biomass, clonal biomass, and clonal/belowground biomass ratio of B. planiculmis were significantly reduced and the ratio of belowground to aboveground biomass of B. planiculmis significantly increased under high saline–alkaline concentration treatment. The combination of drought conditions with medium and high saline–alkaline treatments significantly reduced leaf area, ramet number, and clonal biomass in both species. The interaction between flooding water level and medium and high saline–alkaline treatments significantly suppressed the plant height, root biomass, and aboveground biomass of both species, with the number of ramets having the greatest contribution. These findings suggest that the effects of water levels and saline–alkaline stress on the functional traits of P. australis and B. planiculmis are species-specific, and the ramet number–plant height–root biomass (RHR) strategy may serve as an adaptive mechanism for wetland clones to environmental changes. This strategy could be useful for predicting plant productivity in saline–alkaline wetlands. Full article
Show Figures

Figure 1

25 pages, 11278 KiB  
Article
Analysis of Droughts and Floods Evolution and Teleconnection Factors in the Yangtze River Basin Based on GRACE/GFO
by Ruqing Ren, Tatsuya Nemoto, Venkatesh Raghavan, Xianfeng Song and Zheng Duan
Remote Sens. 2025, 17(14), 2344; https://doi.org/10.3390/rs17142344 - 8 Jul 2025
Viewed by 402
Abstract
In recent years, under the influence of climate change and human activities, droughts and floods have occurred frequently in the Yangtze River Basin (YRB), seriously threatening socioeconomic development and ecological security. The topography and climate of the YRB are complex, so it is [...] Read more.
In recent years, under the influence of climate change and human activities, droughts and floods have occurred frequently in the Yangtze River Basin (YRB), seriously threatening socioeconomic development and ecological security. The topography and climate of the YRB are complex, so it is crucial to develop appropriate drought and flood policies based on the drought and flood characteristics of different sub-basins. This study calculated the water storage deficit index (WSDI) based on the Gravity Recovery and Climate Experiment (GRACE) and GRACE-Follow On (GFO) mascon model, extended WSDI to the bidirectional monitoring of droughts and floods in the YRB, and verified the reliability of WSDI in monitoring hydrological events through historical documented events. Combined with the wavelet method, it revealed the heterogeneity of climate responses in the three sub-basins of the upper, middle, and lower reaches. The results showed the following. (1) Compared and verified with the Standardized Precipitation Evapotranspiration Index (SPEI), self-calibrating Palmer Drought Severity Index (scPDSI), and documented events, WSDI overcame the limitations of traditional indices and had higher reliability. A total of 21 drought events and 18 flood events were identified in the three sub-basins, with the lowest frequency of drought and flood events in the upper reaches. (2) Most areas of the YRB showed different degrees of wetting on the monthly and seasonal scales, and the slowest trend of wetting was in the lower reaches of the YRB. (3) The degree of influence of teleconnection factors in the upper, middle, and lower reaches of the YRB had gradually increased over time, and, in particular, El Niño Southern Oscillation (ENSO) had a significant impact on the droughts and floods. This study provided a new basis for the early warning of droughts and floods in different sub-basins of the YRB. Full article
(This article belongs to the Special Issue Remote Sensing in Natural Resource and Water Environment II)
Show Figures

Figure 1

23 pages, 3316 KiB  
Article
Water–Climate Nexus: Exploring Water (In)security Risk and Climate Change Preparedness in Semi-Arid Northwestern Ghana
by Cornelius K. A. Pienaah, Mildred Naamwintome Molle, Kristonyo Blemayi-Honya, Yihan Wang and Isaac Luginaah
Water 2025, 17(13), 2014; https://doi.org/10.3390/w17132014 - 4 Jul 2025
Viewed by 457
Abstract
Water insecurity, intensified by climate change, presents a significant challenge globally, especially in arid and semi-arid regions of Africa. In northern Ghana, where agriculture heavily depends on seasonal rainfall, prolonged dry seasons exacerbate water and food insecurity. Despite efforts to improve water access, [...] Read more.
Water insecurity, intensified by climate change, presents a significant challenge globally, especially in arid and semi-arid regions of Africa. In northern Ghana, where agriculture heavily depends on seasonal rainfall, prolonged dry seasons exacerbate water and food insecurity. Despite efforts to improve water access, there is limited understanding of how climate change preparedness affects water insecurity risk in rural contexts. This study investigates the relationship between climate preparedness and water insecurity in semi-arid northwestern Ghana. Grounded in the Sustainable Livelihoods Framework, data was collected through a cross-sectional survey of 517 smallholder households. Nested ordered logistic regression was used to analyze how preparedness measures and related socio-environmental factors influence severe water insecurity. The findings reveal that higher levels of climate change preparedness significantly reduce water insecurity risk at individual [odds ratio (OR) = 0.35, p < 0.001], household (OR = 0.037, p < 0.001), and community (OR = 0.103, p < 0.01) levels. In contrast, longer round-trip water-fetching times (OR = 1.036, p < 0.001), water-fetching injuries (OR = 1.054, p < 0.01), reliance on water borrowing (OR = 1.310, p < 0.01), untreated water use (OR = 2.919, p < 0.001), and exposure to climatic stressors like droughts (OR = 1.086, p < 0.001) and floods (OR = 1.196, p < 0.01) significantly increase insecurity. Community interventions, such as early warning systems (OR = 0.218, p < 0.001) and access to climate knowledge (OR = 0.228, p < 0.001), and long-term residency further reduce water insecurity risk. These results underscore the importance of integrating climate preparedness into rural water management strategies to enhance resilience in climate-vulnerable regions. Full article
Show Figures

Figure 1

Back to TopTop