Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (764)

Search Parameters:
Keywords = floating offshore

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6785 KB  
Article
Corrosion-Induced Degradation Mechanisms and Bond–Slip Relationship of CFRP–Steel-Bonded Interfaces
by Yangzhe Yu, Da Li, Li He, Lik-Ho Tam, Zhenzhou Wang and Chao Wu
Materials 2026, 19(3), 511; https://doi.org/10.3390/ma19030511 - 27 Jan 2026
Abstract
Carbon fibre-reinforced polymer (CFRP) bonded steel structures are increasingly adopted in offshore floating structures, yet their interfacial performance is highly susceptible to corrosion in marine environments. Corrosion-induced degradation of the CFRP–steel interface can significantly affect load transfer mechanisms and long-term structural reliability. This [...] Read more.
Carbon fibre-reinforced polymer (CFRP) bonded steel structures are increasingly adopted in offshore floating structures, yet their interfacial performance is highly susceptible to corrosion in marine environments. Corrosion-induced degradation of the CFRP–steel interface can significantly affect load transfer mechanisms and long-term structural reliability. This paper reports an experimental study on corrosion-induced degradation mechanisms and bond–slip behaviour of CFRP–steel double-strap joints. Controlled corrosion damage was generated using an accelerated electrochemical technique calibrated to ISO 9223 corrosivity categories. Tension tests were performed to examine the effects of corrosion degree, CFRP bond length, and the inclusion of glass fibre sheets (GFS) in the adhesive layer on failure modes, ultimate load capacity, and effective bond length. Digital image correlation (DIC) was employed to obtain strain distributions along the CFRP plates and to establish a bond–slip model for corroded interfaces. The results indicate that corrosion promotes a transition from CFRP delamination to steel–adhesive interface debonding, reduces interfacial shear strength to 17.52 MPa and fracture energy to 5.49 N/mm, and increases the effective bond length to 130 mm. Incorporating GFS mitigates corrosion-induced bond degradation and enhances joint performance. The proposed bond–slip model provides a basis for more reliable durability assessment and design of bonded joints in corrosive environments. Full article
(This article belongs to the Section Corrosion)
Show Figures

Graphical abstract

22 pages, 5363 KB  
Article
Mechanical Response Analysis of the Overhead Cable for Offshore Floating Photovoltaic Systems
by Qiang Fu, Hao Zhang, Liqian Zhang, Peng Chen, Lin Cui, Chunjie Wang and Bin Wang
J. Mar. Sci. Eng. 2026, 14(3), 258; https://doi.org/10.3390/jmse14030258 - 26 Jan 2026
Viewed by 102
Abstract
To address the issues of insulation layer damage and conductor exposure in offshore floating photovoltaic systems occurring in shallow marine regions characterized by significant tidal ranges under multi-field coupling effects, an overhead cable laying scheme based on the hybrid pile–floater structure is proposed, [...] Read more.
To address the issues of insulation layer damage and conductor exposure in offshore floating photovoltaic systems occurring in shallow marine regions characterized by significant tidal ranges under multi-field coupling effects, an overhead cable laying scheme based on the hybrid pile–floater structure is proposed, while its mechanical response is investigated in this paper. The motion response model of the floating platform, considering wind load, wave load, current load, and mooring load, as well as the equivalent density and mathematical model of the overhead cable are established. The mechanical response characteristics of the overhead cable are analyzed through finite element analysis software. The results indicate that the overhead cable’s mechanical response is influenced by the span length and coupled wind–ice loads. Specifically, the tension exhibits a nonlinear increasing trend, while the deflection shows differential variations driven by the antagonistic interaction between wind and ice loads. The influence of ice loads on the configuration of overhead cables is significantly weaker than that of wind loads. This study provides crucial theoretical support for enhancing the lifespan of the overhead cable. Full article
(This article belongs to the Section Ocean Engineering)
8 pages, 3672 KB  
Proceeding Paper
Diffraction Analysis of Two Semi-Submersible Platforms for Floating Offshore Wind Turbine Applications Using OrcaWave
by Olena Videnova, Nikita Dobin, Nick Markov, Silvia Kirilova and Rumen Kishev
Eng. Proc. 2026, 122(1), 29; https://doi.org/10.3390/engproc2026122029 - 26 Jan 2026
Viewed by 107
Abstract
This study presents a diffraction analysis of two semi-submersible platform configurations intended for floating offshore wind turbine applications. The first investigated configuration corresponds to a semi-submersible barge with a central moonpool, while the second configuration is a cross-shaped semi-submersible. Both hydrodynamic models were [...] Read more.
This study presents a diffraction analysis of two semi-submersible platform configurations intended for floating offshore wind turbine applications. The first investigated configuration corresponds to a semi-submersible barge with a central moonpool, while the second configuration is a cross-shaped semi-submersible. Both hydrodynamic models were developed and analyzed in OrcaWave. Simulations were performed for wave incidence directions ranging from 0° to 360°. The obtained hydrodynamic coefficients provide insights into the added mass, radiation damping, load response amplitude operators (RAOs) and two types of mean drift loads RAO of both platform types. The results highlight the influence of geometry and displacement on the diffraction performance, which is critical for the design of floating wind turbine support structures. Full article
Show Figures

Figure 1

31 pages, 23835 KB  
Article
Simulation-Based Structural Optimization of Composite Hulls Under Slamming Loads: A Transferable Methodology for Resilient Offshore Applications
by Giovanni Maria Grasso, Ludovica Maria Oliveri and Ferdinando Chiacchio
J. Mar. Sci. Eng. 2026, 14(3), 254; https://doi.org/10.3390/jmse14030254 - 26 Jan 2026
Viewed by 182
Abstract
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves [...] Read more.
The growing demand for floating offshore structures calls for lightweight, impact-resilient, and sustainable design approaches. This study explores the optimization of composite fibree layup in a 30 m hull subjected to slamming-type hydrodynamic loads. Although based on a recreational vessel, the model serves as a transferable case for offshore applications such as wave energy devices, offshore wind platforms, and floating PV systems. A finite element method (FEM) model was developed using shell elements and a sinusoidal time-dependent pressure to simulate slamming events on the wet surface of the hull. The response was evaluated under different fiber orientation schemes, aiming to reduce structural mass while maintaining stress levels within safety margins. Results showed that strategic layup optimization led to a measurable reduction in total material usage, without compromising structural integrity. These outcomes suggest multiple advantages, including an approximately 14% reduction in raw material demand, which in turn facilitates for potential downsizing of propulsion systems and transportation energy due to lighter structures. Such improvements contribute indirectly to reduced emissions and operational costs. The methodology presented offers a replicable approach to composite optimization under transient marine loads, with relevance for sustainable offshore structural design. Full article
Show Figures

Figure 1

31 pages, 13508 KB  
Article
Dynamic Analysis of the Mooring System Installation Process for Floating Offshore Wind Turbines
by Yao Zhong, Jinguang Wang, Yingjie Chen, Ning Yu, Mingsheng Chen and Yichang Tang
Sustainability 2026, 18(3), 1199; https://doi.org/10.3390/su18031199 - 24 Jan 2026
Viewed by 205
Abstract
Floating offshore wind turbines (FOWTs) constitute a pivotal offshore renewable energy technology, offering a sustainable and eco-friendly solution for large-scale marine power generation. Their low-carbon emission characteristics are highly aligned with global sustainable development goals, playing a crucial role in promoting energy structure [...] Read more.
Floating offshore wind turbines (FOWTs) constitute a pivotal offshore renewable energy technology, offering a sustainable and eco-friendly solution for large-scale marine power generation. Their low-carbon emission characteristics are highly aligned with global sustainable development goals, playing a crucial role in promoting energy structure transformation and reducing reliance on fossil fuels. This paper presents a numerical study on the coupled dynamic behavior of a semi-submersible FOWT during its mooring system installation. The proposed methodology incorporates environmental loads from incident waves, wind, and currents. Those forces act on not only the floating platform but also on the three tugboats employed throughout the installation procedure. Detailed evaluations of forces and motion responses are conducted across successive stages of the operation. The findings demonstrated the feasibility of the proposed mooring installation process for FOWTs while offering critical insights into suitable installation weather windows and motion responses of both the platform and tugboats. Furthermore, the novel installation scheme presented herein offers practical guidance for future engineering applications. Full article
(This article belongs to the Special Issue Renewable Energy and Sustainable Energy Systems—2nd Edition)
Show Figures

Figure 1

17 pages, 3990 KB  
Article
Analysis of Fatigue Behavior of 66 kV Dry-Type Submarine Cable for a Flexible Pull-In Installation System
by Yun-Jae Kim and Sungwoong Choi
J. Mar. Sci. Eng. 2026, 14(3), 243; https://doi.org/10.3390/jmse14030243 - 23 Jan 2026
Viewed by 246
Abstract
Submarine power cables for offshore wind farms experience continuous cyclic loading from environmental forces and floating-platform motions, making fatigue performance a critical design factor. This study combined global and local analyses to investigate the fatigue behavior of a 66 kV dry-type submarine cable [...] Read more.
Submarine power cables for offshore wind farms experience continuous cyclic loading from environmental forces and floating-platform motions, making fatigue performance a critical design factor. This study combined global and local analyses to investigate the fatigue behavior of a 66 kV dry-type submarine cable installed using a flexible pull-in installation system. A global dynamic analysis using site-specific meteorological and oceanographic data provided time-series displacement responses that were used to evaluate the fatigue damage to the metallic components of the cable. The results indicated that the minimum fatigue life of 8.71 × 104 cycles occurred at the upper metallic sheath near the fixed end, with a corresponding cumulative damage of 1.147 × 10−5. Fatigue accumulation was predominantly governed by lateral (y-direction) displacement, while axial and vertical displacement components contributed minimally. Furthermore, the predicted fatigue life of the metallic sheath varied by a factor of up to 3.6 depending on the selected curve, comparing the cyclic stress amplitude and number of cycles to failure (S–N curve), highlighting the importance of accurate material fatigue data. These findings emphasize the need for careful evaluation of the environmental loading and sheath fatigue properties in flexible pull-in installation system-based submarine cable system designs. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 911 KB  
Review
Offshore Wind in the Energy Transition: A Comparative Analysis of Floating and Bottom-Fixed Technologies
by Lorenzo Villani, Domiziana Vespasiano, Antonio Sgaramella, Lorenzo Mario Pastore, Davide Astiaso Garcia and Livio de Santoli
Energies 2026, 19(2), 487; https://doi.org/10.3390/en19020487 - 19 Jan 2026
Viewed by 183
Abstract
Offshore wind energy is a strategic pillar for achieving European climate neutrality targets, yet its deployment faces geographical and technological constraints. Fixed-bottom offshore wind (FBOW) has reached industrial maturity in shallow waters but is limited by depth. Floating offshore wind (FOW) emerges as [...] Read more.
Offshore wind energy is a strategic pillar for achieving European climate neutrality targets, yet its deployment faces geographical and technological constraints. Fixed-bottom offshore wind (FBOW) has reached industrial maturity in shallow waters but is limited by depth. Floating offshore wind (FOW) emerges as a solution for deep-water contexts, unlocking vast resources and enabling integration with advanced energy systems such as power-to-X. This analysis conducts a systematic comparative analysis of FBOW and FOW technologies through a techno-economic framework based on six key parameters: installation depth, turbine power, capacity factor (CF), CAPEX, OPEX, and levelized cost of energy (LCOE). A review of 313 sources, reduced to 61 after applying selection criteria, reveals that FOW operates at depths up to 1550 m, with higher average turbine capacities (16 MW vs. 11 MW for FBOW) and superior CF (38% vs. 22%). Economic results show combined averages CAPEX of 2.43 M$/MW, OPEX of 22.7 k$/MW/year, and LCOE around 120 $/MWh, with significant variability. While FOW currently exhibits higher initial costs, its scalability and operational advantages, such as tow-to-shore maintenance, suggest strong potential for cost reduction. These findings highlight FOW as essential for exploiting deep-water wind resources and achieving long-term decarbonization goals in regions like the Mediterranean. Full article
(This article belongs to the Special Issue Latest Challenges in Wind Turbine Maintenance, Operation, and Safety)
Show Figures

Figure 1

37 pages, 4125 KB  
Review
Pipeline Systems in Floating Offshore Production Systems: Hydrodynamics, Corrosion, Design and Maintenance
by Jin Yan, Yining Zhang, Zehan Chen, Pengji Li, Yuting Li, Zeyu Cao, Jiaming Wu, Kefan Yang and Dapeng Zhang
J. Mar. Sci. Eng. 2026, 14(2), 176; https://doi.org/10.3390/jmse14020176 - 14 Jan 2026
Viewed by 415
Abstract
Floating offshore production systems play a critical role in offshore resource development, where the structural integrity and operational safety of risers, umbilical cables, and mooring cables are of paramount importance. Focusing on the failure risks of these key components under harsh marine environments, [...] Read more.
Floating offshore production systems play a critical role in offshore resource development, where the structural integrity and operational safety of risers, umbilical cables, and mooring cables are of paramount importance. Focusing on the failure risks of these key components under harsh marine environments, this paper systematically reviews the coupled mechanisms of wave-induced loading, electrochemical corrosion, and material fatigue. Unlike traditional reviews on offshore pipelines and cables, this study not only examines the mechanical performance of deepwater pipelines and cables along with representative research cases but also discusses corrosion mechanisms in marine environments and corresponding repair and mitigation strategies. In addition, recent advances in machine learning-based digital twin frameworks and real-time monitoring technologies are reviewed, with an analysis of representative application cases. The findings indicate that interdisciplinary material innovations combined with data-driven predictive models are essential for addressing maintenance challenges under extreme ocean conditions. Furthermore, this review identifies existing research gaps in data fusion for monitoring technologies and outlines clear directions for the intelligent operation and maintenance of future deep-sea infrastructure. Full article
Show Figures

Figure 1

23 pages, 5168 KB  
Article
The Economic and Environmental Impacts of Floating Offshore Wind Power Generation in a Leading Emerging Market: The Case of Taiwan
by Yun-Hsun Huang and Yi-Shan Chan
Sustainability 2026, 18(2), 804; https://doi.org/10.3390/su18020804 - 13 Jan 2026
Viewed by 208
Abstract
Taiwan has set an ambitious target of net-zero carbon emissions by 2050, relying heavily on offshore wind capacity of 13.1 GW by 2030 and 40–55 GW by 2050. Floating offshore wind (FOW) is expected to play a central role in meeting these targets, [...] Read more.
Taiwan has set an ambitious target of net-zero carbon emissions by 2050, relying heavily on offshore wind capacity of 13.1 GW by 2030 and 40–55 GW by 2050. Floating offshore wind (FOW) is expected to play a central role in meeting these targets, particularly in deep-water areas where fixed-bottom technology is technically constrained. This study combined S-curve modeling for capacity projections, learning curves for cost estimation, and input–output analysis to quantify economic and environmental impacts under three deployment scenarios. Our findings indicate that FOW development provides substantial economic benefits, particularly under the high-growth scenario. During the construction phase through 2040, total output is projected to exceed NTD 1.97 trillion, generating more than NTD 1 trillion in gross value added (GVA) and over 470,000 full-time equivalent (FTE) jobs. By 2050, operations and maintenance (O&M) output is expected to reach approximately NTD 50 billion, supporting roughly 14,200 jobs and about NTD 13.8 billion in income. Annual CO2 reduction could reach up to 10.4 Mt by 2050 under the high-growth scenario, or about 6.86 Mt under the low-growth case, demonstrating the potential of FOW to drive industrial development while advancing national decarbonization. Full article
(This article belongs to the Special Issue Environmental Economics and Sustainability)
Show Figures

Figure 1

34 pages, 7344 KB  
Article
Fitness-Driven Assessment of Mooring-System Designs for 15-MW FOWT in Shallow Waters
by Shun-Wen Cheng, Nai-Chi Chen, Cheng-Hsien Chung and Ray-Yeng Yang
J. Mar. Sci. Eng. 2026, 14(2), 142; https://doi.org/10.3390/jmse14020142 - 9 Jan 2026
Viewed by 176
Abstract
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is [...] Read more.
Offshore wind energy is a key enabler of the global net-zero transition. As nearshore fixed-bottom projects reach maturity, floating offshore wind turbines (FOWTs) are becoming the next major focus for large scale deployment. To accelerate this development and reduce construction costs, it is essential to optimize mooring systems through a systematic and performance driven framework. This study focuses on the mooring assessment of the Taiwan-developed DeltaFloat semi-submersible platform supporting a 15 MW turbine at a 70 m water depth offshore Hsinchu, Taiwan. A full-chain catenary mooring system was designed based on site specific metocean conditions. The proposed framework integrates ANSYS AQWA (version 2024 R1) and Orcina OrcaFlex (version 11.5) simulations with sensitivity analyses and performance-based fitness metrics including offset, inclination, and line tension to identify key parameters governing mooring behavior. Additionally, an analysis of variance (ANOVA) was conducted to quantitatively evaluate the statistical significance of each design parameter. Results indicate that mooring line length is the most influential factor affecting system performance, followed by line angle and diameter. Optimizing these parameters significantly improves platform stability and reduces tension loads without excessive material use. Building on the optimized symmetric configuration, an asymmetric mooring concept with unequal line lengths is proposed. The asymmetric layout achieves performance comparable to traditional 3 × 1 and 3 × 2 systems under extreme environmental conditions while demonstrating potential reductions in material use and overall cost. Nevertheless, the unbalanced load distribution highlights the need for multi-scenario validation and fatigue assessment to ensure long-term reliability. Overall, the study establishes a comprehensive and sensitivity-based evaluation framework for floating wind mooring systems. The findings provide a balanced and practical reference for the cost-efficient design of floating offshore wind farms in the Taiwan Strait and other shallow-water regions. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 2708 KB  
Article
Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions
by Oier Peña Vega, Urko Izquierdo, Iñigo Albaina, Gustavo A. Esteban, Iñigo Bidaguren and Jesús María Blanco
J. Mar. Sci. Eng. 2026, 14(2), 129; https://doi.org/10.3390/jmse14020129 - 8 Jan 2026
Viewed by 203
Abstract
This paper presents an extensive experimental study on the hydrodynamic behavior of vertical cylinders representative of the structural elements of offshore floating photovoltaic (OFPV) platforms under both wave and steady-current conditions. The objectives are to determine reliable hydrodynamic coefficients for Morison-type formulations and [...] Read more.
This paper presents an extensive experimental study on the hydrodynamic behavior of vertical cylinders representative of the structural elements of offshore floating photovoltaic (OFPV) platforms under both wave and steady-current conditions. The objectives are to determine reliable hydrodynamic coefficients for Morison-type formulations and to analyze the wake effects between cylinders for modular floating configurations. Tests under regular waves are conducted in a 25 m long wave flume at the Energy Engineering Department of the Bilbao School of Engineering. The obtained inertia and drag coefficients follow the expected trends for a wide range of Keulegan–Carpenter (KC) numbers, aligning well with classical experimental studies. Steady-current experiments are conducted in the same flume using a towing tank method. Again, the obtained drag coefficients align well with previous studies. As for the wake provoked by the first cylinder on the second cylinder located downstream at one of four different distances, in the wave cases, the wake attenuation is minimal and rapid recovery of the flow is observed for a wide range of KC values, while in the steady-current cases, the wake is stronger and affects the forces acting on the second cylinder. Full article
(This article belongs to the Special Issue Advancements in Marine Hydrodynamics and Structural Optimization)
Show Figures

Figure 1

28 pages, 4241 KB  
Article
Coupled Responses and Performance Assessment of Mooring-Connection Systems for Floating Photovoltaic Arrays in Shallow Waters
by Xiao Wang, Shuqing Wang, Xiancang Song and Bingtao Song
J. Mar. Sci. Eng. 2026, 14(2), 117; https://doi.org/10.3390/jmse14020117 - 7 Jan 2026
Viewed by 198
Abstract
Offshore floating photovoltaic (FPV) platforms are usually deployed in shallow waters with large tidal variations, where the modules of FPV are connected with each other via the connectors to form an array and mounted to the seabed via the mooring system. Therefore, the [...] Read more.
Offshore floating photovoltaic (FPV) platforms are usually deployed in shallow waters with large tidal variations, where the modules of FPV are connected with each other via the connectors to form an array and mounted to the seabed via the mooring system. Therefore, the mooring system and module connectors have significant influence on the dynamic response characteristics of FPV. In targeting such shallow waters with large tidal ranges, this paper proposes four integrated mooring-connection schemes based on configuration and parameter customization guided by adaptability optimization, including two kinds of mooring systems, named as horizontal mooring system and catenary mooring system with clumps, and two kinds of connection schemes, named as cross-cable connection and hybrid connection, are proposed. The feasibility of the mooring systems to adhere to the tidal range and the influence of the connection schemes on the dynamic response of the FPV are numerically investigated in detail. Results indicate the two mooring systems have comparable positioning performance; horizontal mooring offers slightly better tidal adaptability but much higher mooring tension, compromising system safety. Hybrid connection yields smaller surge amplitudes than cross-cable connection but generates excessively large connection forces, also posing safety risks. Comprehensive comparison indicates that catenary mooring with clumps combined with cross-cable connection imposes lower requirements on platform structural safety factors, while horizontal mooring with cross-cable connection exhibits stronger adaptability to water level and environmental load direction changes in shallow waters. Full article
(This article belongs to the Special Issue Advanced Analysis of Ship and Offshore Structures)
Show Figures

Figure 1

29 pages, 12284 KB  
Article
Analysis of Temporal Cumulative, Lagging Effects and Driving Mechanisms of Environmental Factors on Green Tide Outbreaks: A Case Study of the Ulva Prolifera Disaster in the South Yellow Sea, China
by Zhen Tian, Jianhua Zhu, Huimin Zou, Zeen Lu, Yating Zhan, Weiwei Li, Bangping Deng, Lijia Liu and Xiucheng Yu
Remote Sens. 2026, 18(2), 194; https://doi.org/10.3390/rs18020194 - 6 Jan 2026
Viewed by 250
Abstract
The Ulva prolifera green tide in the South Yellow Sea has erupted annually for many years, posing significant threats to coastal ecology, the economy, and society. While environmental factors are widely acknowledged as prerequisites for these outbreaks, the asynchrony and complex coupling between [...] Read more.
The Ulva prolifera green tide in the South Yellow Sea has erupted annually for many years, posing significant threats to coastal ecology, the economy, and society. While environmental factors are widely acknowledged as prerequisites for these outbreaks, the asynchrony and complex coupling between their variations and disaster events have challenged traditional studies that rely on instantaneous correlations to uncover the underlying dynamic mechanisms. This study focuses on the Ulva prolifera disaster in the South Yellow Sea, systematically analyzing its spatiotemporal distribution patterns, the temporal accumulation and lag effects of environmental factors, and the coupled driving mechanisms using the Floating Algae Index (FAI). The results indicate that: (1) The disaster shows significant interannual variability, with 2019 experiencing the most severe outbreak. Monthly, the disaster begins offshore of Jiangsu in May, moves northward and peaks in June, expands northward with reduced scale in July, and largely dissipates in August. Years with large-scale outbreaks exhibit higher distribution frequency and broader spatial extent. (2) Environmental factors demonstrate significant accumulation and lag effects on Ulva prolifera disasters, with a mixed temporal mode of both accumulation and lag effects being dominant. Temporal parameters vary across different factors—nutrients generally have longer lag times, while light and temperature factors show longer accumulation times. These parameters change dynamically across disaster stages and display a clear inshore–offshore gradient, with shorter effects in coastal areas and longer durations in offshore waters, revealing significant spatiotemporal heterogeneity in temporal response patterns. (3) The driving mechanism of Ulva prolifera disasters follows a “nutrient-dominated, temporally relayed” pattern. Nutrient accumulation (PO4, NO3, SI) from the previous autumn and winter serves as the decisive factor, explaining 86.8% of interannual variation in disaster scale and 56.1% of the variation in first outbreak timing. Light and heat conditions play a secondary modulating role. A clear temporal relay occurs through three distinct stages: the initial outbreak triggered by nutrients, the peak outbreak governed by light–temperature–nutrient synergy, and the system decline characterized by the dissipation of all driving forces. These findings provide a mechanistic basis for developing predictive models and targeted control strategies. Full article
(This article belongs to the Special Issue Remote Sensing for Marine Environmental Disaster Response)
Show Figures

Figure 1

33 pages, 21972 KB  
Article
Wave Attenuation Performance of a Floating Breakwater Integrated with Flexible Wave-Dissipating Structures
by Xianlin Jia, Su Guo, Kangjie Wang, Sai Fu, Xintong Yu and Wei Peng
J. Mar. Sci. Eng. 2026, 14(1), 97; https://doi.org/10.3390/jmse14010097 - 4 Jan 2026
Viewed by 311
Abstract
This study develops a two-dimensional numerical model to investigate the hydrodynamic performance of a floating breakwater coupled with flexible wave-dissipating structures (FWDS). The model integrates the immersed boundary method with a finite element structural solver, enabling accurate simulation of fluid–structure interactions under wave [...] Read more.
This study develops a two-dimensional numerical model to investigate the hydrodynamic performance of a floating breakwater coupled with flexible wave-dissipating structures (FWDS). The model integrates the immersed boundary method with a finite element structural solver, enabling accurate simulation of fluid–structure interactions under wave excitation. Validation against benchmark cases, including cantilever beam deflection and flexible vegetation under waves, confirms the model’s reliability. Parametric analyses were conducted to examine the influence of the elastic modulus and height of the FWDS on wave attenuation efficiency. Results show that structural flexibility plays a crucial role in modifying wave reflection, transmission, and dissipation characteristics. A lower elastic modulus enhances energy dissipation through large deformation and vortex generation, while higher stiffness promotes reflection with reduced dissipation. Increasing the height of the FWDS improves overall wave attenuation but exhibits diminishing returns for long-period waves. The findings highlight that optimized flexibility and geometry can effectively enhance the energy-dissipating capacity of floating breakwaters. This study provides a theoretical basis for the design and optimization of hybrid floating breakwaters integrating flexible elements for coastal and offshore wave energy mitigation. Full article
(This article belongs to the Special Issue Numerical Analysis and Modeling of Floating Structures)
Show Figures

Figure 1

35 pages, 4569 KB  
Review
Review of Coupled Dynamic Modeling Methods for Floating Offshore Wind Turbines
by Jiahao Chen
Energies 2026, 19(1), 205; https://doi.org/10.3390/en19010205 - 30 Dec 2025
Viewed by 372
Abstract
Floating offshore wind turbines (FOWTs) are subjected to multiple environmental loads that induce complex coupled dynamic responses. The development of coupled dynamic methods is therefore essential for FOWT analysis and design and has long attracted significant research attention. This paper presents a comprehensive [...] Read more.
Floating offshore wind turbines (FOWTs) are subjected to multiple environmental loads that induce complex coupled dynamic responses. The development of coupled dynamic methods is therefore essential for FOWT analysis and design and has long attracted significant research attention. This paper presents a comprehensive review of the recent advances in coupled dynamic modeling methods and associated numerical tools for FOWTs. First, the fundamental dynamic components are introduced, including aerodynamics, hydrodynamics, elastodynamics, mooring dynamics, and servodynamics. Next, coupled modeling approaches, such as fully coupled, semi-coupled, and frequency-domain methods, are reviewed and compared in terms of their applicability. The paper then outlines the software tools developed based on these methodologies, along with major international code comparison and validation campaigns. Finally, emerging trends in FOWT coupled dynamics are briefly discussed, including integrated marine energy systems, advanced wake modeling, and the incorporation of artificial intelligence techniques in prediction. This paper systematically synthesizes current knowledge on coupled dynamic methods for FOWTs, providing a foundation for future research while also serving as a practical reference for advancing this area of study. Full article
(This article belongs to the Special Issue Computation Modelling for Offshore Wind Turbines and Wind Farms)
Show Figures

Figure 1

Back to TopTop