Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Wave Experiments
2.3. Steady-Flow Experiments
2.4. Limitations of Experiments and Analyses
3. Results and Discussion
3.1. Wave Experiments: Results
3.1.1. Hydrodynamic Coefficient Calculation
3.1.2. Wake Effect/Wave Attenuation
3.2. Steady-Flow Experiments: Results
3.2.1. Drag Coefficient Calculation
3.2.2. Wake Effect
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| OFPV | Offshore floating photovoltaic |
| PV | Photovoltaic |
| FPV | Floating photovoltaic |
| LCOE | Levelized cost of energy |
| CAPEX | Capital expenditure |
| OPEX | Operating expense |
| TRL | Technology readiness level |
| CFD | Computational fluid dynamics |
| KC | Keulegan–Carpenter |
| Re | Reynolds number |
| UPV/EHU | University of the Basque Country |
| Inertia coefficient | |
| Drag coefficient | |
| AI | Artificial intelligence |
| Water density | |
| H | Wave height |
| A | Wave amplitude |
| T | Wave period |
| h | Water depth |
| d | Draught |
| L | Distance between cylinders |
| D | Diameter of the cylinder |
| Wavelength | |
| c | Wave celerity |
| Wave angular frequency | |
| k | Wave number |
| g | Gravity acceleration (9.81 m/s2) |
| Horizontal force | |
| z | Vertical coordinate |
| t | Time |
| Wave particle velocity | |
| Wave particle acceleration | |
| Wave free surface height | |
| Wave phase | |
| Velocity potential | |
| Force ratio | |
| R2 | Coefficient of determination |
References
- Iglesias, G.; Taveira-Pinto, F.; Rosa-Santos, P.; Deng, Z.D. Preface to Special Topic: Marine Renewable Energy. J. Renew. Sustain. Energy 2015, 7, 061601. [Google Scholar] [CrossRef]
- Pillai, A.C.; Gordelier, T.J.; Thies, P.R.; Cuthill, D.; Johanning, L. Anchor loads for shallow water mooring of a 15 MW floating wind turbine—Part II: Synthetic and novel mooring systems. Ocean Eng. 2022, 266, 112619. [Google Scholar] [CrossRef]
- Kjeldstad, T.; Lindholm, D.; Marstein, E.; Selj, J. Cooling of floating photovoltaics and the importance of water temperature. Sol. Energy 2021, 218, 544–551. [Google Scholar] [CrossRef]
- Oliveira-Pinto, S.; Stokkermans, J. Assessment of the potential of different floating solar technologies—Overview and analysis of different case studies. Energy Convers. Manag. 2020, 211, 112747. [Google Scholar] [CrossRef]
- Pérez-Collazo, C.; Greaves, D.; Iglesias, G. A review of combined wave and offshore wind energy. Renew. Sustain. Energy Rev. 2015, 42, 141–153. [Google Scholar] [CrossRef]
- Wang, Z.; Carriveau, R.; Ting, D.S.-K.; Xiong, W.; Wang, Z. A review of marine renewable energy storage. Int. J. Energy Res. 2019, 43, 6108–6150. [Google Scholar] [CrossRef]
- Ministerio para la Transición Ecológica y el Reto Demográfico. Hoja de Ruta para el Desarrollo de la Eólica Marina y de las Energías del Mar. Available online: https://www.miteco.gob.es/eu/ministerio/planes-estrategias/desarrollo-eolica-marina-energias.html (accessed on 21 October 2025).
- Guo, C.; Sheng, W.; De Silva, D.G.; Aggidis, G. A Review of the Levelized Cost of Wave Energy Based on a Techno-Economic Model. Energies 2023, 16, 2144. [Google Scholar] [CrossRef]
- Stansby, P.; Draycott, S. M4 WEC development and wave basin Froude testing. Eur. J. Mech. B Fluids 2024, 104, 182–193. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Saboor, S.; Ghosh, A.; Sheikhnejad, Y. Floating PVs in Terms of Power Generation, Environmental Aspects, Market Potential, and Challenges. Sustainability 2022, 14, 2626. [Google Scholar] [CrossRef]
- Song, J.; Kim, J.; Lee, J.; Kim, S.; Chung, W. Dynamic Response of Multiconnected Floating Solar Panel Systems with Vertical Cylinders. J. Mar. Sci. Eng. 2022, 10, 189. [Google Scholar] [CrossRef]
- Turgut, S. In-Line and Transverse Forces on Smooth and Rough Cylinders in Oscillatory Flow at High Reynolds Numbers. Available online: https://apps.dtic.mil/sti/citations/ADA169562 (accessed on 21 October 2025).
- Yuan, Z.; Huang, Z. An experimental study of inertia and drag coefficients for a truncated circular cylinder in regular waves. J. Hydrodyn. Ser B 2010, 22, 318–323. [Google Scholar] [CrossRef]
- Towed Vertical Surface-Piercing Cylinders—UQ eSpace. Available online: https://espace.library.uq.edu.au/view/UQ:ea78e37 (accessed on 21 October 2025).
- Chaplin, J.R.; Teigen, P. Steady flow past a vertical surface-piercing circular cylinder. J. Fluids Struct. 2003, 18, 271–285. [Google Scholar] [CrossRef]
- Qiu, X.; Ji, X.; Zhou, J.; Li, J.; Tao, Y.; Liu, Y. Spacing Ratio Effects on the Evolution of the Flow Structure of Two Tandem Circular Cylinders in Proximity to a Wall. J. Mar. Sci. Eng. 2024, 12, 721. [Google Scholar] [CrossRef]
- Muddada, S.; Hariharan, K.; Sanapala, V.S.; Patnaik, B.S.V. Circular cylinder wakes and their control under the influence of oscillatory flows: A numerical study. J. Ocean Eng. Sci. 2021, 6, 389–399. [Google Scholar] [CrossRef]
- Wake Effects on Wave-Induced Loads Acting on Cylinders in a Tripod Configuration. Available online: https://www.mdpi.com/2077-1312/10/9/1211 (accessed on 21 October 2025).
- Wang, C.Z.; Wu, G.X. Interactions between fully nonlinear water waves and cylinder arrays in a wave tank. Ocean Eng. 2010, 37, 400–417. [Google Scholar] [CrossRef]
- Dhar, N.; Lloyd, C.J.; Walker, J.; Dorrell, R.M. The Influence of Structural Design on the Hydrodynamics of Floating Offshore Wind Turbine Platforms. J. Mar. Sci. Eng. 2025, 13, 248. [Google Scholar] [CrossRef]
- Lai, Y.; Cai, L.; Wu, X.; Wang, B.; Hu, Y.; Liang, Y.; Zhao, H.; Shi, W. Effect of Combined Wave and Current Loading on the Hydrodynamic Characteristics of Double-Pile Structures in Offshore Wind Turbine Foundations. Energies 2025, 18, 2573. [Google Scholar] [CrossRef]
- Ji, R.; Li, X.; Ye, Y.; Zhu, R.; Sun, K.; Wu, M.; Huang, F.; Reabroy, R. Hydrodynamic Characteristics of Offshore Wind Turbine Pile Foundations Under Combined Focusing Wave-Current Conditions. J. Mar. Sci. Eng. 2024, 12, 2068. [Google Scholar] [CrossRef]
- Gao, S.; Li, Z.; Liang, C.; Li, C.; Kong, X. Adaptive fault diagnosis method for offshore floating photovoltaic arrays considering wave-induced disturbances. Energy 2026, 342, 139714. [Google Scholar] [CrossRef]
- Li, Q.; Ke, S.; Cao, J.; Wang, W.; Cai, T.; Zhang, X. Nonlinear dynamic response analysis of offshore new floating pipe-type flexible photovoltaic arrays under wind-wave coupling effects. Ocean Eng. 2025, 340, 122222. [Google Scholar] [CrossRef]
- Verao Fernandez, G.; Stratigaki, V.; Vasarmidis, P.; Balitsky, P.; Troch, P. Wake Effect Assessment in Long- and Short-Crested Seas of Heaving-Point Absorber and Oscillating Wave Surge WEC Arrays. Water 2019, 11, 1126. [Google Scholar] [CrossRef]
- Zan, X.; Lin, Z.; Gou, Y. The Force Exerted by Surface Wave on Cylinder and Its Parameterization: Morison Equation Revisited. J. Mar. Sci. Eng. 2022, 10, 702. [Google Scholar] [CrossRef]
- Aalborg University. AwaSys Software. Available online: https://www.en.build.aau.dk/for-the-building-industry/hydrosoft/awasys (accessed on 25 November 2025).
- Izquierdo, U.; Galera-Calero, L.; Albaina, I.; Vázquez, A.; Esteban, G.A.; Blanco, J.M. Experimental and numerical determination of the optimum configuration of a parabolic wave extinction system for flumes. Ocean Eng. 2021, 238, 109748. [Google Scholar] [CrossRef]
- ATO. ATO S Type Load Cell ATO-LCS-DYLY-106. Available online: https://www.ato.com/Content/doc/Load-cell-catalog.pdf?srsltid=AfmBOoqhbwvmVLhhSg6iLiZ5vJ1atTjB2U9-qEnFzWg0vICdmn9NScXY (accessed on 21 October 2025).
- KineOptics Wind Tunnel Balance. Available online: https://www.kineoptics.com/WTB.html (accessed on 21 October 2025).
- Zhao, K.; Liu, P.L.-F. On Stokes wave solutions. Proc. R. Soc. Math. Phys. Eng. Sci. 2022, 478, 20210732. [Google Scholar] [CrossRef]
- Ruz, O.; Castillo, E.; Cruchaga, M.; Aguirre, A. Numerical study of the effect of blockage ratio on the flow past one and two cylinders in tandem for different power-law fluids. Appl. Math. Model. 2021, 89, 1640–1662. [Google Scholar] [CrossRef]
- Anagnostopoulos, P.; Minear, R. Blockage effect of oscillatory flow past a fixed cylinder. Appl. Ocean Res. 2004, 26, 147–153. [Google Scholar] [CrossRef]
- Yuan, Z.-M.; Zhang, X.; Ji, C.-Y.; Jia, L.; Wang, H.; Incecik, A. Side wall effects on ship model testing in a towing tank. Ocean Eng. 2018, 147, 447–457. [Google Scholar] [CrossRef]
- Cox, G.; Macfarlane, G. The Effects of Boat Waves on Sheltered Waterways—Thirty Years of Continuous Study. In Proceedings of the Australasian Coasts and Ports 2019, Hobart, Australia, 10–13 September 2019; Available online: https://www.researchgate.net/publication/336349691_The_Effects_of_Boat_Waves_on_Sheltered_Waterways_-Thirty_Years_of_Continuous_Study (accessed on 21 October 2025).
- Journée, J.M.J.; Massie, W.W. Offshore Hydromechanics; Delft Univeristy of Technology: Delft, The Netherlands, 2001. [Google Scholar]
- Introducción al ajuste por Mínimos Cuadrados—MATLAB & Simulink. Available online: https://es.mathworks.com/help/curvefit/least-squares-fitting.html (accessed on 21 October 2025).
- Raed, K.; Guedes Soares, C. Variability effect of the drag and inertia coefficients on the Morison wave force acting on a fixed vertical cylinder in irregular waves. Ocean Eng. 2018, 159, 66–75. [Google Scholar] [CrossRef]
- Dean, R.G.; Dalrymple, R.A. Water Wave Mechanics for Engineers and Scientists; World Scientific: Singapore, 1991. Volume 2. Available online: https://ambiental.ufpr.br/wp-content/uploads/2025/03/Water-wave-mechanics-for-engineers-and-scientists.pdf (accessed on 21 October 2025).
- Zhang, Z.; Ma, N.; Shi, Q.; Zhang, Y.; Wen, Y. Experimental study and uncertainty analysis on added resistance and pressure distribution of KVLCC2 in regular short waves. Ocean Eng. 2025, 317, 120093. [Google Scholar] [CrossRef]
- Chakrabarti, S.K. Handbook of Ofsshore Engineering; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Chang, W.-Y.; Constantinescu, G. Oscillatory flow around a vertical circular cylinder placed in an open channel: Coherent structures, sediment entrainment potential and drag forces. J. Fluid Mech. 2023, 964, A22. [Google Scholar] [CrossRef]
- Williamson, C.H.K. Sinusoidal flow relative to circular cylinders. J. Fluid Mech. 1985, 155, 141–174. [Google Scholar] [CrossRef]
- An, H.; Cheng, L.; Zhao, M. Two-dimensional and three-dimensional simulations of oscillatory flow around a circular cylinder. Ocean Eng. 2015, 109, 270–286. [Google Scholar] [CrossRef]














| D [mm] | d [mm] | L [cm] |
|---|---|---|
| 20 | 20, 40, 60, 80 | 5, 10, 15, 20 |
| 30 | 30, 45, 60, 90, 120 | 7.5, 15, 22.5, 30 |
| 40 | 20, 40, 60, 80, 120 | 10, 20, 30, 40 |
| 50 | 25, 50, 75, 100 | 12.5, 25, 37.5, 50 |
| h [m] | T [s] | H [cm] | λ [m] | h/λ [-] | c [m/s] |
|---|---|---|---|---|---|
| 0.5 | 0.6 | 2.5, 5 | 0.562 | 0.89 | 0.94 |
| 0.5 | 0.8 | 2.5, 5, 7.5, 10 | 0.996 | 0.50 | 1.24 |
| 0.5 | 0.9 | 2.5, 5, 7.5, 10 | 1.248 | 0.40 | 1.39 |
| 0.5 | 1.0 | 2.5, 5, 7.5, 10, 12.5, 15 | 1.513 | 0.33 | 1.51 |
| 0.5 | 1.2 | 2.5, 5, 7.5, 10, 12.5, 15 | 2.048 | 0.24 | 1.71 |
| 0.5 | 1.4 | 2.5, 5, 7.5, 10, 12.5, 15 | 2.571 | 0.19 | 1.84 |
| D [mm] | d [mm] | U [m/s] |
|---|---|---|
| 30 | 30, 45, 60 | 0.2, 0.3, 0.4, 0.5 |
| 40 | 40, 60, 80 | 0.2, 0.3, 0.4, 0.5 |
| 50 | 50, 100 | 0.2, 0.3, 0.4, 0.5 |
| Study | Type of Study | KC Range | Re Range | Cm | Cd |
|---|---|---|---|---|---|
| Sarpkaya [12] | Experimental | 5–100 | 104–105 | 1.6–2 | 0.6–1 |
| Chakrabarti [41] | Experimental | 2–30 | 105–106 | 1.22–1.9 | 0.7–1 |
| Yuan and Huang [13] | Experimental | 2–12 | 5 × 103–1.2 × 104 | 1.8–2.2 | 0.8–1.2 |
| Chang and Constantinescu [42] | Numerical | 1.5–30.8 | 3 × 104–6 × 105 | 1.2–2 | 0.9–1.1 |
| Anagnostopoulos [33] | Numerical | 1–6 | 2.2 | 1.5–2 | |
| Present study | Experimental | 1.5–33 | 2 × 103–2.5 × 104 | 1.6–2.2 | 0.8–1.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Peña Vega, O.; Izquierdo, U.; Albaina, I.; Esteban, G.A.; Bidaguren, I.; Blanco, J.M. Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions. J. Mar. Sci. Eng. 2026, 14, 129. https://doi.org/10.3390/jmse14020129
Peña Vega O, Izquierdo U, Albaina I, Esteban GA, Bidaguren I, Blanco JM. Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions. Journal of Marine Science and Engineering. 2026; 14(2):129. https://doi.org/10.3390/jmse14020129
Chicago/Turabian StylePeña Vega, Oier, Urko Izquierdo, Iñigo Albaina, Gustavo A. Esteban, Iñigo Bidaguren, and Jesús María Blanco. 2026. "Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions" Journal of Marine Science and Engineering 14, no. 2: 129. https://doi.org/10.3390/jmse14020129
APA StylePeña Vega, O., Izquierdo, U., Albaina, I., Esteban, G. A., Bidaguren, I., & Blanco, J. M. (2026). Experimental Determination of Forces and Hydrodynamic Coefficients on Vertical Cylinders Under Wave and Current Conditions. Journal of Marine Science and Engineering, 14(2), 129. https://doi.org/10.3390/jmse14020129

