Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = flat car

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4199 KiB  
Article
Research on Wheel Flat Recognition Based on Wayside Wheel–Rail Force
by Xinyu Peng, Jing Zeng, Longfei Yue, Qunsheng Wang, Yixuan Shi, Chaokun Ma and Long Zhang
Appl. Sci. 2025, 15(14), 7962; https://doi.org/10.3390/app15147962 - 17 Jul 2025
Viewed by 192
Abstract
A wheel flat is the most common fault of a railway freight car, a type of complex transport equipment. A wheel flat will cause continuous regular impact on the rail, damage the rail and the railway structure, affecting the safety and stability of [...] Read more.
A wheel flat is the most common fault of a railway freight car, a type of complex transport equipment. A wheel flat will cause continuous regular impact on the rail, damage the rail and the railway structure, affecting the safety and stability of rail transport. This article studied the relationship between wheel flats and wheel–rail impacts using multi-body dynamics simulation through SIMPACK and, through a field test, validates the detection of a flat wheel. The results show that using the simulation method can obtain similar data to the measured wheel–rail force in the wayside detection device. The simulation data show that the data collected by 14 shear vertical force acquisition channels can completely cover the wheel surface of the heavy-duty railway 840 mm diameter wheel. According to the flat length-speed-impact diagram, the mapping relationship can be fitted using polynomial regression. Based on the measured wheel–rail impact forces, the size of wheel flats can then be deduced from this established mapping relationship. Through a field test, the detection method has been validated. Full article
Show Figures

Figure 1

11 pages, 4438 KiB  
Proceeding Paper
Application of a Convolutional Neural Network in a Terrain-Based Tire Pressure Management System
by Carl Luis C. Ledesma, Charlothe John I. Tablizo, Emmanuel A. Salcedo, Marites B. Tabanao, Emmy Grace T. Requillo and John Paul T. Cruz
Eng. Proc. 2025, 92(1), 75; https://doi.org/10.3390/engproc2025092075 - 20 May 2025
Viewed by 340
Abstract
Improper car tire pressure affects dynamics, fuel economy, and driver safety. Current central tire inflation systems (CTISs) regulate tire pressure relative to its reference value. However, the current CTIS is limited in its automation, as the system requires the loading of present conditions [...] Read more.
Improper car tire pressure affects dynamics, fuel economy, and driver safety. Current central tire inflation systems (CTISs) regulate tire pressure relative to its reference value. However, the current CTIS is limited in its automation, as the system requires the loading of present conditions and the manual input of terrain conditions. Therefore, the system lacks intelligent components which would increase its efficiency. Adding a terrain recognition feature to the current CTIS technology, the tire pressure management system (TPMS) described in this paper enhances the capability to adjust to the ideal tire pressure according to the terrain condition. In this study, we integrate a terrain recognition component which uses a convolutional neural network (CNN), specifically, ResNet-18, into the TPMS to classify and detect terrain conditions and apply the correct pressure level. A one-tire terrain-based TPMS model was developed through system integration. The system was tested under flat, uneven, and soft terrain conditions. The CNN model demonstrated 95% accuracy in classifying the chosen terrains, with demonstrated adaptability to nighttime environments. Inflation and deflation tests were conducted at varying speeds and terrains, and the results showed longer inflation times at higher pressure ranges, while deflation times remained consistent regardless of pressure range. A negligible impact on inflation and deflation speed was observed at speeds below 15 km/h. Instantaneous response time between the microcontrollers increases efficiency in the overall CTIS process. Full article
(This article belongs to the Proceedings of 2024 IEEE 6th Eurasia Conference on IoT, Communication and Engineering)
Show Figures

Figure 1

24 pages, 2970 KiB  
Article
Real Energy Efficiency of Road Vehicles
by Óscar S. Serrano-Guevara, José I. Huertas and Michael Giraldo
Energies 2025, 18(8), 1933; https://doi.org/10.3390/en18081933 - 10 Apr 2025
Viewed by 701
Abstract
There is an urgent need for a method of evaluating the real energy performance of vehicles that eliminates the effects of external conditions (topography, altitude, and road conditions) and human factors (driving styles), especially in the case of heavy-duty vehicles. Governmental authorities require [...] Read more.
There is an urgent need for a method of evaluating the real energy performance of vehicles that eliminates the effects of external conditions (topography, altitude, and road conditions) and human factors (driving styles), especially in the case of heavy-duty vehicles. Governmental authorities require results on the energy performance of vehicles to develop strategies that result in reductions in greenhouse gas emissions, while fleet managers require results regarding the energy efficiency of existing vehicle technologies to select the technologies that minimize energy consumption and, therefore, operational costs. Aiming to address this need, we propose a method for evaluating the global energy efficiency of road vehicles by monitoring at 1 Hz the operational variables of a vehicle under normal conditions of use for a long time. The variables monitored are engine RPM and vehicle location, speed, payload, and energy consumption. This method was verified using 49 vehicles, representing 23 vehicle technologies. These vehicles varied in size (light duty and heavy duty), application (cars, buses, and freight), energy sources (gasoline, diesel, and electric), and operational conditions (Chile, Ecuador, Colombia, and México). Testing was conducted across various altitudes (0–3600 masl) and topographies (flat and mountainous regions). The results showed that the energy efficiencies for gasoline-fueled light-duty vehicles ranged from 17 to 30%, those for diesel-fueled heavy-duty vehicles ranged from 25 to 42%, and those for electric heavy-duty vehicles (HDVs) ranged from 70 to 80%. Full article
(This article belongs to the Section B1: Energy and Climate Change)
Show Figures

Figure 1

16 pages, 6259 KiB  
Article
Research into the Longitudinal Loading of an Improved Load-Bearing Structure of a Flat Car for Container Transportation
by Juraj Gerlici, Alyona Lovska and Kristína Kozáková
Designs 2025, 9(1), 12; https://doi.org/10.3390/designs9010012 - 15 Jan 2025
Cited by 3 | Viewed by 916
Abstract
Container transport is one of the most promising modes of international freight transport. Railway container transport is mainly carried out using flat cars. Container cars can be damaged under the most unfavorable operating load conditions of a 1520 mm track gauge, i.e., shunting [...] Read more.
Container transport is one of the most promising modes of international freight transport. Railway container transport is mainly carried out using flat cars. Container cars can be damaged under the most unfavorable operating load conditions of a 1520 mm track gauge, i.e., shunting collisions. In this context, an improvement to the supporting structure of flat cars is proposed to ensure their strength, involving the installation of special superstructures in their cantilever parts to limit the movement of the containers. The choice of the superstructure profiles was made on the basis of the section modulus of their components. Mathematical modeling of the dynamic loading of a flat car with containers in the event of a shunting collision was carried out. The determined value of acceleration was taken into account in the calculation of the strength of the load-bearing structure of the flat car. It was found that the maximum stresses were 24% lower than the allowable stresses. Therefore, the strength condition of the flat car was met. The results of this study will contribute to reducing damage to container transport vehicles in service, to the formulation of recommendations for their construction and to an increase in their profitability, including in international transport. Full article
Show Figures

Figure 1

19 pages, 7111 KiB  
Article
Numerical and Experimental Analysis of Roller Hemming on Door Panel’s Curved and Straight-Edge of Flat Plane
by Chaohai Liu and Weimin Lin
Appl. Sci. 2024, 14(21), 10066; https://doi.org/10.3390/app142110066 - 4 Nov 2024
Cited by 2 | Viewed by 1450
Abstract
Owing to its enhanced production efficiency, roller hemming has become the mainstream process for forming and joining metal sheets in the automotive industry. This study investigates the roller hemming process of a specific car door panel through a combination of experimental analysis and [...] Read more.
Owing to its enhanced production efficiency, roller hemming has become the mainstream process for forming and joining metal sheets in the automotive industry. This study investigates the roller hemming process of a specific car door panel through a combination of experimental analysis and finite element analysis (FEA) on both straight-edge and curved-edge flat surfaces. Consequently, the mechanical properties of the door panel, including tensile strength, yield strength, modulus of elasticity, and Poisson’s ratio, were estimated through tensile testing and then underwent finite element modeling. The simulation results demonstrated the varying distribution of stress during the rolling hemming process, with the highest stress concentration observed in the bending area. Additionally, creepage and growing results were acquired from both simulation and experimental data to validate the precision of the numerical model. A comparison was made between the experimental and simulation results of the external forces exerted by the roller on the panel. In both straight- and curved-edge sections, the external force during final hemming exceeded that during pre-hemming, as revealed by experimental measurements of both normal and tangential external forces, surpassing their corresponding simulated values. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

21 pages, 2201 KiB  
Article
A Green Laboratory Approach to Medical Sample Transportation: Assessing the Carbon Dioxide (CO2) Footprint of Medical Sample Transportation by Drone, Combustion Car, and Electric Car
by Noel Stierlin, Fabian Loertscher, Harald Renz, Lorenz Risch and Martin Risch
Drones 2024, 8(9), 489; https://doi.org/10.3390/drones8090489 - 14 Sep 2024
Cited by 6 | Viewed by 2750
Abstract
In response to escalating climate change concerns, this study evaluates the ecological impact and efficiency of medical sample transportation using drones, combustion cars, and electric cars across various terrains and weather conditions in Liechtenstein and Switzerland. Through a comparative analysis, we found that [...] Read more.
In response to escalating climate change concerns, this study evaluates the ecological impact and efficiency of medical sample transportation using drones, combustion cars, and electric cars across various terrains and weather conditions in Liechtenstein and Switzerland. Through a comparative analysis, we found that combustion cars emit the highest average CO2 at 159.5 g per kilometer (g/km), while electric cars significantly reduce emissions to an average of 3.43 g/km, representing just 2.15% of the emissions from combustion vehicles. Drones emerged as the most environmentally sustainable option, with an average CO2 emission of 0.09 g/km, which is only 0.07% of combustion car emissions and 2.6% of electric car emissions. Drones also demonstrated superior transport efficiency, covering routes that were, on average, 17% shorter in flat terrain and 24% shorter in mountainous regions compared to cars. Additionally, drones achieved substantial time savings, ranging from 13% to 80% faster delivery times depending on the terrain and traffic conditions. These findings highlight the potential of drone technology to revolutionize healthcare logistics by significantly reducing carbon footprints, optimizing transport routes, and improving delivery efficiency. Integrating drones into healthcare transportation networks offers a promising pathway toward a more sustainable and resilient healthcare system. Full article
Show Figures

Figure 1

15 pages, 5573 KiB  
Article
A Study on Power Transmission Control for Applying MR Fluid Multi-Plate Clutch to Automobile Power Distribution Device
by Jin-Young Park, Jae-Hoon Jeon and Young-Choon Kim
Appl. Sci. 2024, 14(9), 3871; https://doi.org/10.3390/app14093871 - 30 Apr 2024
Cited by 4 | Viewed by 1643
Abstract
The aim of this study is to design and manufacture a multi-plate clutch system that uses magnetorheological (MR) fluid control to allow for a variable power transmission ratio in power distribution systems. MR fluid is a smart material that enables presenting a solution [...] Read more.
The aim of this study is to design and manufacture a multi-plate clutch system that uses magnetorheological (MR) fluid control to allow for a variable power transmission ratio in power distribution systems. MR fluid is a smart material that enables presenting a solution to the shocks and power loss that occur due to mechanical problems in power distribution systems. As such, the longitudinal and lateral dynamic properties of 4WD (four-wheel drive) vehicles were examined and analyzed to develop an algorithm to control the front/rear power distribution according to the road surface state and driving conditions. To verify the algorithm, the CarSim vehicle dynamics simulation program was adopted to perform experiments to understand the vehicle’s dynamic performance improvements and turning stability via a HILS (Hardware in the Loop) system. In this study, an MR fluid, multi-plate clutch was used that combines a dry clutch and a wet clutch using the characteristics of the MR fluid. Such a clutch was designed to enable continuous and smooth torque transmission by utilizing the strengths of each of the dry and wet clutches. The CarSim vehicle dynamics program was used to conduct the experiments, which were conducted by linking to the manufactured MR fluid clutch experimental device. The experiments investigated the dynamic performance based on the power distribution ratio by performing longitudinal flat, inclined driving and lateral DLC (double lane change) driving. In summary, this study found that it is possible to perform power transmission by applying a current to an MR fluid and forming a magnetic field to change the flow properties of the fluid to control the torque transmission ratio that occurs in an MR fluid clutch. Full article
(This article belongs to the Section Fluid Science and Technology)
Show Figures

Figure 1

16 pages, 4355 KiB  
Article
Study of the Dynamics and Strength of the Detachable Module for Long Cargoes under Asymmetric Loading Diagrams
by Juraj Gerlici, Alyona Lovska and Mykhailo Pavliuchenkov
Appl. Sci. 2024, 14(8), 3211; https://doi.org/10.3390/app14083211 - 11 Apr 2024
Cited by 9 | Viewed by 1113
Abstract
This article highlights the structural features of the detachable module for the transportation of long cargoes. The choice of profiles for the detachable module was based on the resistance moments of its components. The detachable module was considered a rod structure on four [...] Read more.
This article highlights the structural features of the detachable module for the transportation of long cargoes. The choice of profiles for the detachable module was based on the resistance moments of its components. The detachable module was considered a rod structure on four supports. To determine the longitudinal loads acting on the detachable module, mathematical modeling of its longitudinal dynamics was carried out, provided they were placed on a flat car during a shunting impact. The accelerations obtained were used for the calculations of the detachable module. This article presents the results of the strength calculation of the detachable module under asymmetric loading diagrams, i.e., the action of longitudinal and lateral forces on the detachable module structure. The results of the calculations show that the maximum stresses in the structure of the detachable module when it receives longitudinal loads are 7.7% lower than the permissible ones, and when it receives lateral loads, they are 5.8% lower. Thus, the strength of the detachable module is maintained under the loading diagrams considered. This study also included a modal analysis of the detachable module structure. The first natural frequency of oscillations is found to be 20 Hz. Thus, the safety of the detachable module movement in terms of frequency analysis is ensured. This research will help to create recommendations for the design of modern modular vehicles and improve the efficiency of the transport industry. Full article
(This article belongs to the Special Issue Simulations and Experiments in Design of Transport Vehicles)
Show Figures

Figure 1

14 pages, 6833 KiB  
Article
Reducing Automotive Cooling System Complexity through an Adaptive Biomimetic Air Control Valve
by Thomas Thuilot, Moses-Gereon Wullweber, Matthias Fischer, Michael Bennemann and Tobias Seidl
Biomimetics 2024, 9(4), 207; https://doi.org/10.3390/biomimetics9040207 - 29 Mar 2024
Viewed by 1732
Abstract
Future automotive mobility is predominantly electric. Compared to existing systems, the requirements of subsystems change. Air flow for cooling components is needed predominantly when the car is in rest (i.e., charging) or at slow speeds. So far, actively driven fans consuming power and [...] Read more.
Future automotive mobility is predominantly electric. Compared to existing systems, the requirements of subsystems change. Air flow for cooling components is needed predominantly when the car is in rest (i.e., charging) or at slow speeds. So far, actively driven fans consuming power and generating noise are used in this case. Here we propose a passive adaptive system allowing for convection-driven cooling. The developed system is a highly adaptive flat valve derived from the bordered pit. It was developed through an iterative design process including simulations, both structural and thermodynamic. In hardwoods and conifers, bordered pits enable the challenging transport of vertical fluids by locally limiting damage. Depending on the structure, these can close at sudden pressure changes and take the function of valves. The result of the biomimetic abstraction process is a system-integrative, low-profile valve that is cheap to produce, long-lasting, lightweight, maintenance-free, and noise-free. It allows for the passive switching of air flow generation at the heat exchanger of the cooling between natural convection or an active airstream without the need for complex sensing and control systems. The geometric and material design factors allow for the simple tuning of the valve to the desired switching conditions during the design process. Full article
(This article belongs to the Special Issue Biological and Bioinspired Smart Adaptive Structures)
Show Figures

Figure 1

21 pages, 3158 KiB  
Article
Improving Sustainability in Urban and Road Transportation: Dual Battery Block and Fuel Cell Hybrid Power System for Electric Vehicles
by Carlos Armenta-Déu
Sustainability 2024, 16(5), 2110; https://doi.org/10.3390/su16052110 - 3 Mar 2024
Cited by 1 | Viewed by 3194
Abstract
This work aims to study and analyze sustainability improvement in urban and road transportation by using a hybrid power system for electric vehicles consisting of a dual low- and high-rate operation lithium battery block and a fuel cell. The proposed power system reduces [...] Read more.
This work aims to study and analyze sustainability improvement in urban and road transportation by using a hybrid power system for electric vehicles consisting of a dual low- and high-rate operation lithium battery block and a fuel cell. The proposed power system reduces the energy consumption in electric vehicles, thus helping to enhance a sustainable process of environmental urban pollution and reducing or eliminating fossil fuel dependence, enhancing global sustainability. In this configuration, the high-rate lithium battery powers the electric vehicle in high-power-demand processes like acceleration mode or on an uphill road; the low-rate battery operates at a low output power range, servicing the auxiliary systems and low power loads, and the fuel cell supplies energy in intermediate-power-demand conditions, normal driving mode, constant velocity, or flat and downhill terrain. The dual power system improves global efficiency, since every power unit operates optimally, depending on the driving conditions. Power sharing optimizes the lithium battery performance and fuel cell capacity, minimizing the size and weight of each energy system and enlarging the driving range. A comparative study between different lithium battery configurations and fuel cells shows an efficiency improvement of 31.4% for the hybrid dual-battery block and fuel cell operating in low, high, and intermediate output power ranges, respectively. The study is based on a simulation process recreating current driving conditions for electric cars in urban, peripheral, and intercity routes. An alternative solution consisting of a hybrid system, fuel cell, and high-rate lithium battery produces a 29% power gain. Full article
(This article belongs to the Special Issue Hybrid Energy System in Electric Vehicles)
Show Figures

Figure 1

19 pages, 3523 KiB  
Article
Modeling and Validation of a Passenger Car Tire Using Finite Element Analysis
by Haniyeh Fathi, Zeinab El-Sayegh, Jing Ren and Moustafa El-Gindy
Vehicles 2024, 6(1), 384-402; https://doi.org/10.3390/vehicles6010016 - 9 Feb 2024
Cited by 15 | Viewed by 4723
Abstract
This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim [...] Read more.
This paper focuses on the modeling and analysis of a four-groove passenger car tire, size 235/55R19, using finite element analysis. The Mooney–Rivlin material model is employed to define the hyperelastic behavior of the tire rubber compounds for all solid elements. The tire rim is modeled as a rigid body using aluminum alloy material, and the beads are modeled as beam elements using steel material. The tire model is validated in both static and dynamic domains through several simulations and is compared to published measured data. The tire is validated using footprint and vertical stiffness tests in the static domain. In the static footprint test, a steady-state vertical load is applied, and the tire–road contact area is computed. In the vertical stiffness test, a ramp vertical load is applied, and the tire’s vertical displacement is measured to calculate the tire’s vertical stiffness. In the dynamic domain, the tire is validated using drum-cleat and cornering tests. In the drum-cleat test, a drum with a 2.5 m diameter and a cleat with a 15 mm radius is used to excite the tire structure and obtain the frequency of the vertical and longitudinal first modes of vibration, that is, by applying the fast Fourier transformation (FFT) of the vertical and longitudinal reaction forces at the tire center. In addition to this test, the tire model is pre-steered on a flat surface with a two-degree slip angle and subjected to a steady state linear speed of 10 km/h to predict the cornering force and compute the cornering stiffness. In addition, the effect of tire longitudinal speed on the rolling resistance coefficient is then predicted at zero slip angle using the ISO 28580 rolling resistance test. The findings of this research work provide insights into passenger car tire–road interaction analysis and will be further used to perform tire rubber compound material model sensitivity analysis. Full article
(This article belongs to the Topic Vehicle Dynamics and Control)
Show Figures

Figure 1

16 pages, 2603 KiB  
Article
Modeling the Environmental Impact of Passenger Cars Driven on Hilly Roads in Austria: A More Accurate Valuation of Greenhouse Gas Emissions and Further Environmental Indicators for Integral Life Cycle Assessments of Road Infrastructures
by Lukas Hausberger, Jounes Lutterbach and Florian Gschösser
Buildings 2024, 14(1), 263; https://doi.org/10.3390/buildings14010263 - 18 Jan 2024
Cited by 3 | Viewed by 2095
Abstract
Previous studies of road or railway infrastructures have shown that traffic emissions outweigh the environmental impacts of the product stage and construction stage over the entire life cycle. Traffic usage is therefore the main emitter over the life cycle (A1–C4). Due to the [...] Read more.
Previous studies of road or railway infrastructures have shown that traffic emissions outweigh the environmental impacts of the product stage and construction stage over the entire life cycle. Traffic usage is therefore the main emitter over the life cycle (A1–C4). Due to the small number of sustainability assessment systems, the question of how to consider traffic emissions in detail in an integral life cycle assessment has arisen. This study examines Austrian car traffic and investigates environmental impacts beyond the scope of carbon dioxide and particulate matter. The results were determined for a selection of common impact indicators. In addition to driving in flat terrain, an approach is presented that enables the evaluation of emissions due uphill and downhill driving. Thus, route options and route closures/detours due to maintenance work can be evaluated in a simple way. During the analyses, a traffic calculator was developed, which can currently assess different cars depending on the route specifics (flat/hill). The tool can be expanded to include other road vehicles (buses, trucks, motorcycles) and trains as well. This will simplify evaluations and decision-making processes and provide optimal support for a future-proof sustainable built environment. Full article
(This article belongs to the Special Issue Sustainable Buildings, Resilient Cities and Infrastructure Systems)
Show Figures

Figure 1

16 pages, 6260 KiB  
Article
Functional Model of an Automatic Vehicle Hold Based on an Electro-Hydraulic Braking System
by Yufeng Zhou, Bo Huang, Jiahao Liu and Tianjun Zhou
World Electr. Veh. J. 2023, 14(10), 277; https://doi.org/10.3390/wevj14100277 - 2 Oct 2023
Viewed by 2562
Abstract
The algorithm function designed in this paper can make a car maintain stability during automatic vehicle hold through the model input of multi-level target fluid pressure combined with slope judgment modules of different levels after the automatic vehicle hold software works. At the [...] Read more.
The algorithm function designed in this paper can make a car maintain stability during automatic vehicle hold through the model input of multi-level target fluid pressure combined with slope judgment modules of different levels after the automatic vehicle hold software works. At the same time, a complete parking function module is designed, which can monitor the whole parking process in real time. Through the design of this function, the functional diversity of the electro-hydraulic braking system can be increased. When judging that the driver intends to start, the automatic vehicle hold system will automatically release the fluid pressure according to the opening of the accelerator pedal pressed by the driver so that the vehicle does not happen to brake when the vehicle starts in the slippery slope condition. Finally, real vehicle verification proves that the function can effectively meet the parking requirements and start on the flat and on a ramp. Also, it can effectively control the vehicle according to the driver’s driving intention. Full article
Show Figures

Figure 1

4 pages, 887 KiB  
Proceeding Paper
Heat Transfer Enhancement in Louvered Fin Flat Tube Radiator Using Hybrid Nanofluids
by Waqar Ali, Abid Hussain, Ahmed Usman, Khalid Mahmood, Muhammad Mubashir Iqbal and Haris Khan
Eng. Proc. 2023, 45(1), 51; https://doi.org/10.3390/engproc2023045051 - 19 Sep 2023
Cited by 1 | Viewed by 1472
Abstract
This research explores the potential of hybrid nanofluids to improve the thermal efficiency of a car’s louvered fin flat-tube radiator. Hybrid nanofluids were prepared by combining distilled water with a 0.1% vol. concentration of SiO2 and MWCNT nanoparticles, using different ratios [...] Read more.
This research explores the potential of hybrid nanofluids to improve the thermal efficiency of a car’s louvered fin flat-tube radiator. Hybrid nanofluids were prepared by combining distilled water with a 0.1% vol. concentration of SiO2 and MWCNT nanoparticles, using different ratios of nanoparticles: 80:20, 50:50, and 20:80. The experimental analysis focused on examining the heat-transfer performance of the radiator. The results clearly demonstrated a significant improvement in the radiator’s thermal performance when using hybrid nanofluids. These nanofluids effectively enhanced the rate and coefficient of heat transfer. Notably, an increase of 15.6% in the Nusselt number was observed with the SiO2–MWCNT 20:80 water containing a 0.1% volumetric concentration of nanoparticles. Overall, the findings highlight the promising application of hybrid nanofluids in boosting the thermal efficacy of car radiators. Full article
Show Figures

Figure 1

19 pages, 3517 KiB  
Article
Quadrotor UAV Dynamic Visual Servoing Based on Differential Flatness Theory
by Ahmed Alshahir, Mohammed Albekairi, Kamel Berriri, Hassen Mekki, Khaled Kaaniche, Shahr Alshahr, Bassam A. Alshammari and Anis Sahbani
Appl. Sci. 2023, 13(12), 7005; https://doi.org/10.3390/app13127005 - 10 Jun 2023
Cited by 1 | Viewed by 2102
Abstract
In this paper, we propose 2D dynamic visual servoing (Dynamic IBVS), where a quadrotor UAV tries to track a moving target using a single facing-down perspective camera. As an application, we propose the tracking of a car-type vehicle. In this case, data related [...] Read more.
In this paper, we propose 2D dynamic visual servoing (Dynamic IBVS), where a quadrotor UAV tries to track a moving target using a single facing-down perspective camera. As an application, we propose the tracking of a car-type vehicle. In this case, data related to the altitude and the lateral angles have no importance for the visual system. Indeed, to perform the tracking, we only need to know the longitudinal displacements (along the x and y axes) and the orientation along the z-axis. However, those data are necessary for the quadrotor’s guidance problem. Thanks to the concept of differential flatness, we demonstrate that if we manage to extract the displacements according to the three axes and the orientation according to the yaw angle (the vertical axis) of the quadrotor, we can control all the other variables of the system. For this, we consider a camera equipped with a vertical stabilizer that keeps it in a vertical position during its movement (a gimbaled camera). Other specialized sensors measure information regarding altitude and lateral angles. In the case of classic 2D visual servoing, the elaboration of the kinematic torsor of the quadrotor in no way guarantees the physical realization of instructions, given that the quadrotor is an under-actuated system. Indeed, the setpoint has a dimension equal to six, while the quadrotor is controlled only by four inputs. In addition, the dynamics of a quadrotor are generally very fast, which requires a high-frequency control law. Furthermore, the complexity of the image processing stage can cause delays in motion control, which can lead to target loss. A new dynamic 2D visual servoing method (Dynamic IBVS) is proposed. This method makes it possible to generate in real time the necessary movements for the quadrotor in order to carry out the tracking of the target (vehicle) using a single point of this target as visual information. This point can represent the center of gravity of the target or any other part of it. A control by flatness has been proposed, which guarantees the controllability of the system and ensures the asymptotic convergence of the generated trajectory in the image plane. Numerical simulations are presented to show the effectiveness of the proposed control strategy. Full article
(This article belongs to the Special Issue Control and Position Tracking for UAVs)
Show Figures

Figure 1

Back to TopTop