Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (244)

Search Parameters:
Keywords = flame spraying

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4298 KiB  
Article
Investigation of Flame Structure and PAHs’ Evolution in a Swirl-Stabilized Spray Flame at Elevated Pressure
by Wenyu Wang, Runfan Zhu, Siyu Liu, Yong He, Wubin Weng, Shixing Wang, William L. Roberts and Zhihua Wang
Energies 2025, 18(15), 3923; https://doi.org/10.3390/en18153923 - 23 Jul 2025
Viewed by 282
Abstract
Swirl spray combustion has attracted significant attention due to its common usage in gas turbines. However, the high pressure in many practical applications remains a major obstacle to the deep understanding of flame stability and pollutant formation. To address this concern, this study [...] Read more.
Swirl spray combustion has attracted significant attention due to its common usage in gas turbines. However, the high pressure in many practical applications remains a major obstacle to the deep understanding of flame stability and pollutant formation. To address this concern, this study investigated a swirl spray flame fueled with n-decane at elevated pressure. Planar laser-induced fluorescence (PLIF) of OH and polycyclic aromatic hydrocarbons (PAHs) were used simultaneously, enabling the distinction of the locations of OH, PAHs, and mixtures of them, providing detailed information on flame structure and evolution of PAHs. The effects of swirl number and ambient pressure on reaction zone characteristics and PAHs’ formation were studied, with the swirl number ranging from 0.30 to 1.18 and the pressure ranging from 1 to 3 bar. The data suggest that the swirl number changes the flame structure from V-shaped to crown-shaped, as observed at both atmospheric and elevated pressures. Additionally, varying swirl numbers lead to the initiation of flame divergence at distinct pressure levels. Moreover, PAHs of different molecular sizes exhibit significant overlap, with larger PAHs able to further extend downstream. The relative concentration of PAH increased with pressure, and the promoting effect of pressure on producing larger PAHs was significant. Full article
(This article belongs to the Special Issue Challenges and Opportunities in the Global Clean Energy Transition)
Show Figures

Figure 1

17 pages, 1851 KiB  
Article
Fire Characteristics and Water Mist Cooling Measures in the Coal Transportation Process of a Heavy-Haul Railway Tunnel in Shanxi Province
by Wenjin He, Maohai Fu, Lv Xiong and Shiqi Zheng
Processes 2025, 13(6), 1789; https://doi.org/10.3390/pr13061789 - 5 Jun 2025
Viewed by 421
Abstract
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The [...] Read more.
This study investigates the spread patterns of tunnel fires and examines issues related to emergency response. It focuses on the temperature characteristics, spread patterns, conditions leading to multi-source fires, and the efficacy of water mist suppression methods in heavy-haul railway tunnel fires. The research employs theoretical derivations and numerical simulations to achieve its objectives. It was discovered that, during a fire in a heavy-haul railway tunnel, the temperature inside the tunnel can exceed 500 °C. Furthermore, depending on the nature of the goods transported by the train and under specific wind speed conditions, the fire source has the potential to spread to other carriages, resulting in a multi-source fire. Using the numerical simulation software Pyrosim 2022, various wind speed conditions were simulated. The results revealed that at lower wind speeds, the smoke demonstrates a reverse flow phenomenon. Concurrently, when the adjacent carriage on the leeward side of the fire is ignited, the high-temperature reverse flow smoke, along with the thermal radiation from the flames, ignites combustible materials in the adjacent carriage on the windward side of the burning carriage. Through theoretical derivation and numerical simulation, the critical wind speed for the working conditions was determined to be 2.14 m/s. It was found that while a higher wind speed can lead to a decrease in temperature, it also increases the flame deflection angle. When the wind speed exceeds 2.4 m/s, although the temperature significantly drops in a short period, the proximity of combustible materials on the leeward side of the carriage becomes a concern. At this wind speed, the flame deflection angle causes heat radiation on the leeward side, specifically between 0.5 m and 3 m, to ignite the combustible materials on the carriage surface, resulting in fire spread and multiple fire incidents. The relationship between wind speed and the angle of deflection from the fire source was determined using relevant physics principles. Additionally, the relationship between wind speed and the trajectory of water mist spraying was established. It was proposed to optimize the position of the water mist based on its deviation, and the results indicated that under critical wind speed conditions, when the water mist spraying is offset approximately 5 m towards the upwind side of the fire source, it can act more directly on the surface of the fire source. Numerical simulation results show a significant reduction in the maximum temperature and effective control of fire spread. Under critical wind speed conditions, the localized average temperature of the fire decreased by approximately 140 °C when spraying was applied, compared to the conditions without spraying, and the peak temperature decreased by about 190 °C. This modification scheme can effectively suppress the threat of fire to personnel evacuation under simulated working conditions, reflecting effective control over fires. Additionally, it provides theoretical support for the study of fire patterns in tunnels and emergency response measures. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

25 pages, 6204 KiB  
Article
Sustainable Antibacterial Chitin Nanofiber/ZnO Nanohybrid Materials: Ex Situ and In Situ Synthesis, Characterization and Evaluation
by Caroline Piffet, Jean-Michel Thomassin, Emilie Stierlin, Job Tchoumtchoua, Claudio Fernández, Marta Mateo, Leyre Hernández, Kyriaki Marina Lyra, Aggeliki Papavasiliou, Elias Sakellis, Fotios K. Katsaros, Zili Sideratou and Dimitris Tsiourvas
Nanomaterials 2025, 15(11), 809; https://doi.org/10.3390/nano15110809 - 28 May 2025
Viewed by 518
Abstract
Diseases caused by infection are a threat to human health and the world economy, with bacterial infections being responsible for a large portion of hospitalizations, morbidity, and mortality, which necessitates the quest for advanced medications and/or sustainable antibacterial strategies. This study aims to [...] Read more.
Diseases caused by infection are a threat to human health and the world economy, with bacterial infections being responsible for a large portion of hospitalizations, morbidity, and mortality, which necessitates the quest for advanced medications and/or sustainable antibacterial strategies. This study aims to develop bioderived chitin nanofibers (ChNFs) and ZnO nanoparticles to produce non-toxic nanohybrid materials with improved aqueous stability and enhanced antibacterial properties. These nanohybrids were formed via either (i) an ex situ route by mixing the ChNFs with ZnO nanoparticles prepared by flame spray pyrolysis or (ii) an in situ route resulting in ZnO nanoparticles being formed and embedded into ChNFs by a simple aqueous hydrothermal process, utilizing a low-cost Zn inorganic precursor. The ChNFs, the ZnO nanoparticles, and the nanohybrids were physicochemically characterized for their size, morphology, charge and stability. Their antibacterial activity was evaluated against Gram (−) E. coli and Gram (+) S. aureus bacteria, while their cytocompatibility was assessed against mammalian cell lines. The obtained results reveal a balance between antibacterial activity and cytocompatibility, as both nanohybrids exhibited satisfactory antibacterial activity (MIC 200–300 μg/mL) combined with low cytotoxicity against mammalian cell lines (cell viability 80–100%), indicating that their further application as safe and effective antibacterial agents is promising. Full article
Show Figures

Graphical abstract

21 pages, 4153 KiB  
Article
Study on Risk Mitigation Measures for Atmospheric Storage Tank of Acrylic Acid Due to Abnormal Weather Conditions
by Gabgi Jeong, Minseo Nam, Jaeyoung Kim and Byung-Tae Yoo
Processes 2025, 13(5), 1607; https://doi.org/10.3390/pr13051607 - 21 May 2025
Viewed by 423
Abstract
This study analyzes the risks posed by high-temperature summer conditions to atmospheric storage tanks containing acrylic acid and proposes mitigation measures. Recent increases in heat waves and tropical nights have led to an increase in the temperatures of acrylic acid storage tanks. This [...] Read more.
This study analyzes the risks posed by high-temperature summer conditions to atmospheric storage tanks containing acrylic acid and proposes mitigation measures. Recent increases in heat waves and tropical nights have led to an increase in the temperatures of acrylic acid storage tanks. This temperature increase results in higher vapor pressure and promotes spontaneous polymerization, thereby increasing the risk of explosions in atmospheric storage tanks. Hazard and operability (HAZOP) analysis identified explosions due to pressure buildup as a major risk scenario. To mitigate this risk, a spray-tower system was introduced through a layer of protection analysis (LOPA), which effectively reduced the hazards associated with atmospheric storage tanks. Additionally, the removal of flame-arrester replacement operations not only achieves economic benefits, such as reduced replacement costs and labor time, but also enhances safety by eliminating worker exposure to hazardous chemicals. These findings have significant implications for improving safety at industrial sites and highlight the potential economic benefits of preventing chemical accidents. Full article
(This article belongs to the Special Issue Risk Assessment and System Safety in the Process Industry)
Show Figures

Figure 1

21 pages, 6110 KiB  
Article
Thermoplasmonic Nano–Hybrid Core@Shell Ag@SiO2 Films Engineered via One–Step Flame Spray Pyrolysis
by Christos Dimitriou and Yiannis Deligiannakis
Nanomaterials 2025, 15(10), 743; https://doi.org/10.3390/nano15100743 - 15 May 2025
Viewed by 624
Abstract
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 [...] Read more.
Thermoplasmonic heat generation by silver (Ag) nanoparticles can harness visible light to efficiently produce localized heating. Flame spray pyrolysis (FSP) is a powerful one-step synthesis technology for fabricating plasmonic Ag-based nanostructures. In the present study, we employed FSP to engineer core@shell Ag@SiO2 nanoparticles coated with an ultrathin (1–2 nm) silica (SiO2) nanolayer in a single step in tandem with their deposition as films onto solid substrates. Accordingly, we engineered a library of Ag@SiO2 nanofilms with precisely controlled thicknesses in the range of 1–23 μm. A systematic study of the thermoplasmonic heat-generation efficiency (ΔT) of the films under visible-light irradiation (LED, λ = 405 nm) revealed that the films’ compactness and thickness are key parameters governing the heat-generation efficiency and thermal response rate. Moreover, we show that the substrate type can also play a key role; Ag@SiO2 films on glass-fiber filters (PGFFs) enabled faster temperature increase (dT/dt) and a higher maximum temperature gain (ΔTmax) compared with Ag@SiO2 films on glass substrates (PGSs). The photothermal conversion efficiencies were approximately 60%, with the highest efficiency (η = 65%) observed in the thinner impinged film. This study demonstrates that FSP-derived Ag@SiO2 nanofilms provide a versatile and scalable platform for thermoplasmonic heat generation applications with significant industrial potential. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Graphical abstract

18 pages, 2250 KiB  
Article
Combustion Characteristics of Liquid Ammonia Direct Injection Under High-Pressure Conditions Using DNS
by Ziwei Huang, Haiou Wang, Qian Meng, Kun Luo and Jianren Fan
Energies 2025, 18(9), 2228; https://doi.org/10.3390/en18092228 - 27 Apr 2025
Viewed by 521
Abstract
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet [...] Read more.
As a zero-carbon fuel, ammonia can be directly employed in its liquid form. However, its unique physical and chemical properties pose challenges to its application in engines. The direct injection of liquid ammonia is considered a promising technique for internal combustion engines, yet its combustion behavior is still not well understood. In this work, the combustion characteristics of liquid ammonia direct injection under high-pressure conditions were investigated using direct numerical simulation (DNS) in a Eulerian–Lagrangian framework. The ammonia spray was injected via a circular nozzle and underwent combustion under high-temperature and high-pressure conditions, resulting in complex turbulent spray combustion. It was found that the peaks of mass fraction of important species, heat release rate, and gaseous temperature increase with increasing axial distance, and the peaks shifted to richer mixtures. The distribution of scalar dissipation rate at various locations is nearly log-normal. The budget analysis of species transport equations shows that the reaction term is much larger than the diffusion term, suggesting that auto-ignition plays a predominant role in turbulent ammonia spray flame stabilization. It can be observed that both non-premixed and premixed combustion modes co-exist in the ammonia spray combustion. Moreover, the contribution of premixed combustion becomes more significant as the axial distance increases. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process II)
Show Figures

Figure 1

29 pages, 12981 KiB  
Article
Study on the Effect and Mechanism of Plasma-Activated Water to Improve the Wettability of Coal Dust
by Xu Zheng, Shaocheng Ge and Hongwei Liu
Sustainability 2025, 17(8), 3647; https://doi.org/10.3390/su17083647 - 17 Apr 2025
Viewed by 401
Abstract
Coal dust seriously affects the underground working environment. The current water-spray dust reduction technology uses a large amount of water and has a poor effect on coal dust with poor wettability. This study proposed a clean and sustainable technology using plasma-activated water (PAW) [...] Read more.
Coal dust seriously affects the underground working environment. The current water-spray dust reduction technology uses a large amount of water and has a poor effect on coal dust with poor wettability. This study proposed a clean and sustainable technology using plasma-activated water (PAW) to alter the wettability of coal dust and improve its dust control effect. The PAW was prepared and its physical and mathematical properties were tested by a device designed in-house. The influence of PAW on the wettability of coal dust was determined by the coal dust contact angle experiments. The effect of PAW on the surface morphology of coal dust was analyzed by a scanning electron microscope. The effect of PAW on the pore structure of coal dust was analyzed through the specific surface area and pore size experiments. The results showed that PAW contained a large number of active substances such as H2O2, NO3, and NO2, showing strong and stable oxidation. PAW could significantly reduce the instantaneous contact angle of coal dust, and the higher the degree of coal dust metamorphism, the more significant the reduction effect. The surface morphology, pore volume, specific surface area, and fractal dimension of the coal dust were significantly changed after PAW treatment. PAW could transform the non-uniform three-dimensional spatial distribution of the coal dust surface into an approximate two-dimensional planar distribution, thus enhancing the wettability of the coal dust. With the increase in PAW ionization intensity, the contact angle of long-flame coal was negatively correlated with the mesoporous pore volume. The contact angle of gas coal was negatively correlated with the micropore volume and micropore specific surface area, and was positively correlated with the mesopore volume. The contact angle of meager lean coal was positively correlated with the macropore specific surface area. The surface morphology, pore volume, specific surface area, and fractal dimension changes in coal dust treated with PAW can reveal the wettability enhancement mechanism to some extent. The results of the study can provide pre-theoretical guidance for the field application of PAW coal mine dust reduction technology. Full article
Show Figures

Figure 1

16 pages, 3060 KiB  
Article
High-Pressure CO2 Photoreduction, Flame Spray Pyrolysis and Type-II Heterojunctions: A Promising Synergy
by Matteo Tommasi, Alice Gramegna, Simge Naz Degerli, Federico Galli and Ilenia Rossetti
Catalysts 2025, 15(4), 383; https://doi.org/10.3390/catal15040383 - 16 Apr 2025
Viewed by 503
Abstract
In this work, three catalysts, TiO2, WO3 and TiO2/WO3, have been synthesized through flame spray pyrolysis synthesis (FSP) and have been tested for CO2 photoreduction. The catalysts were fully characterized by XRD, DRS UV–Vis, N [...] Read more.
In this work, three catalysts, TiO2, WO3 and TiO2/WO3, have been synthesized through flame spray pyrolysis synthesis (FSP) and have been tested for CO2 photoreduction. The catalysts were fully characterized by XRD, DRS UV–Vis, N2 physisorption and SEM. Experimental tests were performed in a one-of-a-kind high-pressure reactor at 18 bar. TiO2 P25 was used as a benchmark to compare the productivities of the newly synthetized catalysts. The two single oxides showed comparable productivities, both slightly lower than the P25 reference value (ca. 17 mol/kgcat·h). The mixed oxide, TiO2/WO3, instead showed an impressive productivity of formic acid with 36 mol/kgcat·h, which is around 2.5 times higher than both of the single oxides alone. The formation of a type-II heterojunction has been confirmed through DRS analysis. The remarkable productivity demonstrates how FSP synthesis can be a crucial tool to obtain highly active and stable photocatalysts. This approach has already been successfully scaled up for the industrial production of various catalysts, showcasing its versatility and efficiency. Full article
(This article belongs to the Special Issue Advances in Catalysis for a Sustainable Future)
Show Figures

Figure 1

13 pages, 8038 KiB  
Article
Investigation of In Vitro Corrosion and Wear Properties of Biomedical Coatings Applied to Ti6Al4V Alloy Manufactured by Selective Laser Melting
by Ali İhsan Bahçepinar and İbrahim Aydin
Crystals 2025, 15(4), 316; https://doi.org/10.3390/cryst15040316 - 27 Mar 2025
Viewed by 533
Abstract
This study focuses on enhancing the biomedical performance of PBF-LB Ti6Al4V, produced using Selective Laser Melting (SLM), an advanced manufacturing technology widely used for patient-specific medical devices and implants. Hydroxyapatite (HA), titanium (Ti), and bilayer Ti/HA coatings were applied, using the powder flame [...] Read more.
This study focuses on enhancing the biomedical performance of PBF-LB Ti6Al4V, produced using Selective Laser Melting (SLM), an advanced manufacturing technology widely used for patient-specific medical devices and implants. Hydroxyapatite (HA), titanium (Ti), and bilayer Ti/HA coatings were applied, using the powder flame spray coating technique. A comprehensive analysis was conducted to examine the microstructural, chemical, and mechanical properties of the coatings. Surface analysis was performed using a scanning electron microscope (SEM), chemical composition was determined by energy-dispersive spectroscopy (EDS), crystal structure was analyzed via X-ray diffraction (XRD), and surface roughness was evaluated through topographic analyses. Additionally, in vitro wear and corrosion resistance tests, crucial for biomedical applications, were conducted. In wear tests, HA coatings exhibited the lowest wear resistance with the highest wear rate (73.83 × 10−3 mm3/N·m), while Ti coatings showed the highest wear resistance (6.32 × 10−3 mm3/N·m), and Ti/HA coatings demonstrated an intermediate performance (34.22 × 10−3 mm3/N·m). Corrosion tests revealed that bilayer Ti/HA coatings provided the best protection (0.00009 mm/year), followed by Ti coatings (0.0002 mm/year) and HA coatings (0.003 mm/year). The results indicate that Ti/HA coatings offer the most suitable biomedical performance. Full article
Show Figures

Figure 1

15 pages, 8841 KiB  
Article
Preparation of Superhydrophobic Flame-Retardant UHMWPE Fabrics with Excellent Mechanical Stability by Simple Coating Method
by Xiakeer Saitaer, Jianing Wang, Qiang Gao, Ying Li, Jiahao Sun, Jiqiang Cao, Ying Wang, Zengying Liu and Xiang Liu
Coatings 2025, 15(4), 366; https://doi.org/10.3390/coatings15040366 - 21 Mar 2025
Cited by 1 | Viewed by 484
Abstract
Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is widely used in many fields due to its excellent properties such as high modulus, high strength, and impact resistance. However, its high flammability prevents its application in high-temperature environments. Therefore, it is important to develop multifunctional UHMWPE fabric [...] Read more.
Ultra-high-molecular-weight polyethylene (UHMWPE) fabric is widely used in many fields due to its excellent properties such as high modulus, high strength, and impact resistance. However, its high flammability prevents its application in high-temperature environments. Therefore, it is important to develop multifunctional UHMWPE fabric to meet its different requirements in firefighting, military, and other scenarios. Here, we have prepared a durable flame-retardant superhydrophobic UHMWPE fabric by a simple coating method. A polyurethane solution mixed with decabromodiphenylethane and antimony trioxide is scraped on the surface of the fabric to form a coating, which endows the fabric with flame retardancy. The sprayed fluorinated hydrophobic agent provides superhydrophobic properties to the fabric. It is worth mentioning that plasma pretreatment greatly improves the adhesion properties of the coating by stimulating the active groups on the surface of the fabric. Tests have shown that the adhesion between the coating and the surface of the plasma-treated UHMWPE fabric has been greatly improved. The limiting oxygen index value of the coating UHMWPE fabric has increased by 90%, and it immediately extinguishes after leaving the flame, demonstrating excellent flame retardancy. The contact angle between its surface and water reaches 156°, exhibiting excellent superhydrophobicity and self-cleaning properties. This study provides a simple, convenient, and effective method for the development of multifunctional UHMWPE fabric, greatly expanding its application scenarios and providing ideas for future development. Full article
(This article belongs to the Special Issue Functional Coatings for Flexible Materials)
Show Figures

Figure 1

15 pages, 2025 KiB  
Article
Advanced Evaluation of Fire Resistance in Spruce Wood (Picea abies spp.) Treated with Innovative Surface Coatings
by Redžo Hasanagić, Selma Mujanić, Eli Keržič, Leila Fathi, Mohsen Bahmani, Mohammad Dahmardeh Ghalehno, Boštjan Lesar and Miha Humar
Fire 2025, 8(4), 120; https://doi.org/10.3390/fire8040120 - 21 Mar 2025
Viewed by 705
Abstract
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame [...] Read more.
This study investigates innovative surface coatings’ effectiveness in enhancing spruce wood’s fire resistance (Picea abies spp.). Spruce wood samples were treated with various agents, including oils, waxes, boric acid, commercial coatings, and fire-retardant agents. The evaluation was conducted using the small flame method (EN ISO 11925-2:2020), surface roughness analysis, hyperspectral imaging (HSI), and contact angle measurements. The results demonstrated significant improvements in fire resistance for samples treated with specific coatings, particularly the Burn Block spray and Caparol coating, which effectively prevented flame spread. The analysis revealed that the Burn Block spray reduced the average flame height to 6.57 cm, while the Caparol coating achieved a similar effect with an average flame height of 6.95 cm. In contrast, untreated samples exhibited a flame height of 9.34 cm, with boric acid-treated samples reaching up to 12.18 cm. Char depth measurements and the surface roughness analysis revealed a clear correlation between the type of treatment and the thermal stability of the wood. Hyperspectral imaging enabled a detailed visualisation of surface degradation, while contact angle measurements highlighted the impact of hydrophobicity on flammability. This research provides in-depth insights into the fire-retardant mechanisms of spruce wood and offers practical guidelines for developing safer and more sustainable wood materials for the construction industry. Full article
Show Figures

Figure 1

21 pages, 8010 KiB  
Article
On the Formation of Carbonaceous By-Product Species in Spray Flame Synthesis of Maghemite Nanoparticles
by Ricardo Tischendorf, Kristina Duschik, Fabian Fröde, Manuel Reddemann, Reinhold Kneer, Heinz Pitsch, Mirko Schaper and Hans-Joachim Schmid
Appl. Sci. 2025, 15(6), 3294; https://doi.org/10.3390/app15063294 - 18 Mar 2025
Viewed by 421
Abstract
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration [...] Read more.
This study investigates the formation of by-product species during flame spray synthesis (SFS) of superparamagnetic maghemite (γ-Fe2O3) nanoparticles. Four samples are synthesized by utilizing two standardized burner types (SpraySyn1 and SpraySyn2) and varying the iron (III) nonahydrate (INN) concentration (0.1 M and 0.2 M) in the precursor feed while using ethanol and 2-ethylhexanoic acid as solvent. Conducting complementary powder analysis revealed a predominant presence of carboxylates and carbonates as by-product species (~14–18 wt.%), while no strong indications for elemental carbon and precursor/solvent residues can be found. Carbonates/carboxylates are located on particle surfaces, and the particles’ surface loadings by these species are independent of the precursor concentration but depend on burner type, with SpraySyn2 exhibiting lower values, indicating a more complete combustion for this burner. Through time-resolved thermophoretic sampling, we further demonstrate that carbon forms temporally in the visible flame center when using SpraySyn1. Since carbon solely forms momentarily within large flame pulses and decomposes further downstream, its temporal formation is of minor relevance for the final particle purity. However, its local co-existence aside from γ-Fe2O3 in the flame has potential to bias in situ diagnostics. Full article
Show Figures

Figure 1

22 pages, 5343 KiB  
Article
Mechanisms and Management Strategies for Satsuma Mandarin Fruit Cracking
by Yongjie Li, Guoqiang Jin, Mingxia Wen, Xiaoting Zhu and Yongqiang Zheng
Agronomy 2025, 15(3), 698; https://doi.org/10.3390/agronomy15030698 - 13 Mar 2025
Cited by 1 | Viewed by 904
Abstract
The Satsuma mandarin, a prominent fresh citrus variety cultivated in Asia, is susceptible to fruit cracking, a physiological disorder that significantly impacts yield and economic efficiency. This phenomenon occurs during the fruit expansion phase. The present study sought to further elucidate the correlation [...] Read more.
The Satsuma mandarin, a prominent fresh citrus variety cultivated in Asia, is susceptible to fruit cracking, a physiological disorder that significantly impacts yield and economic efficiency. This phenomenon occurs during the fruit expansion phase. The present study sought to further elucidate the correlation between citrus fruit cracking and fruit peel development or mineral elements, as well as to propose efficacious management measures. The present experiment was conducted on Citrus unshiu Marc. cv. ‘Miyagawa Wase’ over two successive seasons—2022 and 2023. The dynamic changes in fruit morphology were recorded using calipers, and the peel strength was assessed via a Plus Texture Analyzer. Paraffin sectioning technology was used to observe the morphological structure of peel cells. At 10 days after full bloom (DAFB), the peel cells exhibited vigorous proliferation, and the fruit and peel thicknesses underwent rapid expansion. At 50–60 d after full bloom, the longitudinal and transverse diameters of the fruit exhibited a marked increase in the growth rate of the former over the latter. At 80 d after full bloom, both the peel thickness change and the fruit growth rate exhibited a marked deceleration, and the albedo layer cells began to show signs of perforation. The following two time points were preliminarily proposed as the key points for the control of citrus fruit cracking: key point one was 50–60 days after full bloom; and key point two was 80–90 days after full bloom. The nitrogen (N), phosphorus (P), and potassium (K) contents in the different orchards were measured via the semi-micro Kjeldahl nitrogen method, the molybdenum–antimony colorimetric method, and flame photometry, respectively. The determination of other mineral elements was conducted by means of inductively coupled plasma spectroscopy. Principal component analysis was employed to analyze the 21-parameter indices of mineral elements in soil and leaf samples from the three orchards with different levels of fruit cracking. The study found that high concentrations of leaf Fe, P, and soil Cu, as well as organic matter content, contributed negatively to the extent of fruit cracking. The impact of diverse control measures on the incidence of fruit cracking was subsequently observed, following the implementation of tree crown spray treatments. The application of 0.5% calcium superphosphate and 0.006% EDTA-Fe, in combination with 10 ppm GA3 sprayed during two critical periods, significantly reduced fruit cracking and did not adversely affect the internal or external quality of the fruits. The study emphasises the necessity of customising management measures according to the developmental characteristics of citrus fruits, given the observed varietal and regional distinctions in susceptibility to cracking. These findings are pivotal for advancing research in the field of fruit cracking and promoting the healthy development of the industry. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

24 pages, 31658 KiB  
Article
Cr-Doped Nanocrystalline TiO2-Cr2O3 Nanocomposites with p-p Heterojunction as a Stable Gas-Sensitive Material
by Dmitriy Kuranov, Elizaveta Konstantinova, Anastasia Grebenkina, Alina Sagitova, Vadim Platonov, Sergei Polomoshnov, Marina Rumyantseva and Valeriy Krivetskiy
Int. J. Mol. Sci. 2025, 26(2), 499; https://doi.org/10.3390/ijms26020499 - 9 Jan 2025
Cited by 2 | Viewed by 1079
Abstract
Nanocrystalline TiO2 is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped [...] Read more.
Nanocrystalline TiO2 is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO2 in combination with p-conducting Cr2O3. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy. Gas sensor performance in direct current (DC) mode was studied toward a number of gasses (H2, CO, CH4, NO2, H2S, NH3) as well as volatile organic compounds (VOCs) (acetone, methanol, and formaldehyde) in dry and humid conditions. The long-term stability of the obtained materials’ gas sensor performance was evaluated alongside with an ex situ study of structural evolution. High sensitivity toward oxygenated VOCs and a lower detection limit below ppm level with a limited influence of humidity were shown. The long-term gas sensor performance stability of the obtained materials and its connection to the defect structure of doped TiO2 is demonstrated. Full article
(This article belongs to the Special Issue Applications of Nanocomposites in Gas Sensors)
Show Figures

Figure 1

20 pages, 9746 KiB  
Article
Computational Analysis of an Ammonia Combustion System for Future Two-Stroke Low-Speed Marine Engines
by Jose R. Serrano, Ricardo Novella, Héctor Climent, Francisco José Arnau, Alejandro Calvo and Lauge Thorsen
J. Mar. Sci. Eng. 2025, 13(1), 39; https://doi.org/10.3390/jmse13010039 - 30 Dec 2024
Cited by 1 | Viewed by 1583
Abstract
Ammonia, being 17.6% hydrogen by mass, is regarded as a hydrogen carrier and carbon-free fuel as long as its production methods rely on renewable energy sources. The production and combustion of green ammonia do not generate carbon dioxide, offering a promising avenue for [...] Read more.
Ammonia, being 17.6% hydrogen by mass, is regarded as a hydrogen carrier and carbon-free fuel as long as its production methods rely on renewable energy sources. The production and combustion of green ammonia do not generate carbon dioxide, offering a promising avenue for substantial reductions in greenhouse gas (GHG) emissions from a well-to-wake perspective. This paper presents a comprehensive methodology for the development and validation of a thermodynamic model for a two-stroke low-speed marine engine incorporating a hybrid ammonia-diesel diffusion combustion system. The simulation tools are rigorously validated using experimental data obtained during diesel operation. Subsequently, the study explores various aspects of the novel ammonia-diesel combustion system, addressing combustion and emissions characteristics. The investigation incorporates diverse simulation scenarios involving direct fuel injection through dedicated valves into the cylinder head of a six-cylinder, turbocharged compression-ignition engine. The engine features two diesel injection valves, employed to initiate the combustion process, and two ammonia injection valves. Simulation scenarios include variations in the injection timing of the pilot diesel injector and the relative orientation of diesel and ammonia sprays. Case C emerges as the preferred configuration, demonstrating superior metrics in terms of combustion stability, air-fuel mixing, and emissions profile compared to other cases. The results indicate a reduction of CO2 emissions of approximately 95% in mass compared to the baseline diesel operation. Furthermore, notable reductions in NOx emissions are observed, preliminarily attributed to the lower flame temperature of ammonia. Despite the appearance of N2O emissions as a result of ammonia oxidation, the overall potential reduction in GHG emissions, in CO2-equivalent terms, exceeds 85% at selected operating points. This work contributes valuable insights into the optimization of cleaner propulsion systems for maritime applications, facilitating the industry’s transition toward more sustainable and environmentally friendly practices. Full article
Show Figures

Figure 1

Back to TopTop