Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = flame jet length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2673 KiB  
Article
Longitudinal Ceiling Temperature Profile in an Inclined Channel Induced by a Wall-Attached Fire
by Xubo Huang, Yongfeng Zhang, Wei Wang and Zhenxiang Tao
Fire 2025, 8(6), 222; https://doi.org/10.3390/fire8060222 - 31 May 2025
Viewed by 919
Abstract
Channel fire poses a great threat to personnel safety and structural strength, in which the temperature profile is worthy of attention. In this paper, the longitudinal temperature profile of a ceiling jet induced by a wall-attached fire with different channel slopes was experimentally [...] Read more.
Channel fire poses a great threat to personnel safety and structural strength, in which the temperature profile is worthy of attention. In this paper, the longitudinal temperature profile of a ceiling jet induced by a wall-attached fire with different channel slopes was experimentally investigated using a 1:8 reduced-scale channel. The results show the following: (1) For channel fire with a horizontal ceiling, the influence of the burner aspect ratio and source-ceiling height on the temperature profile is monotonous in the cases considered in this work. With a larger burner aspect ratio and larger source-ceiling distance, more ambient air could be entrained; hence, the longitudinal temperature under the ceiling decays faster. (2) For channel fire with an inclined ceiling, when the burner aspect ratio and source-ceiling distance remain constant, the asymmetric entrainment induced by the flame under larger channel slope leads to more hot smoke being transported upstream. Consequently, the temperature profile is not symmetric, with higher temperatures upstream and lower temperatures downstream. (3) Combining the influence of the burner aspect ratios, source-ceiling distance, and burner aspect ratio, the characteristic length scale was modified. Based on this, a model describing the ceiling temperature profile was proposed and then verified with previous data. Full article
(This article belongs to the Special Issue Advances in Fire Science and Fire Protection Engineering)
Show Figures

Figure 1

15 pages, 2665 KiB  
Article
Fluid Dynamics Analysis of Coherent Jet with a Mixed Shrouding H2-CO2/N2 for EAF Steelmaking
by Songtao Yan, Fuhai Liu, Rong Zhu, Guangsheng Wei and Kai Dong
Metals 2025, 15(3), 291; https://doi.org/10.3390/met15030291 - 7 Mar 2025
Viewed by 629
Abstract
In order to suppress the rapid combustion effect and consumption rate of pure hydrogen gas, N2 or CO2 at flow rates of 0, 80, and 240 Nm3/h was pre-mixed with shrouding H2 at flow rates of 800, 720, [...] Read more.
In order to suppress the rapid combustion effect and consumption rate of pure hydrogen gas, N2 or CO2 at flow rates of 0, 80, and 240 Nm3/h was pre-mixed with shrouding H2 at flow rates of 800, 720, and 560 Nm3/h at room temperature, and the behaviors of the main oxygen jet and shrouding flame were analyzed by both numerical simulation and combustion experiments. The results showed that, because of the participation of CO2 in the H2 combustion reaction, the length of the axial velocity potential core was reduced using the CO2 shrouding mixed injection method, compared to the same mixed rate of N2. This trend would be further enhanced as N2 and CO2 mixing ratio increased. Meanwhile, when the shrouding mixed rate is 30%, the maximum axial and radial expansion rate generated by N2-H2 shrouding method is 1.28 and 1.04 times longer than that by the CO2-H2 shrouding method. The Fo-a, theoretical impaction depth and area generated by the 10% N2 shrouding mixed rate was 84.0, 95.5 and 86.4% of those generated by the traditional coherent jet, respectively, which indicated that the 10% N2 shrouding mixed rate method might lead to comparable production indexes in the EAF steelmaking process. Full article
(This article belongs to the Special Issue Advanced Metal Smelting Technology and Prospects)
Show Figures

Figure 1

12 pages, 5447 KiB  
Article
Quantitative Risk Assessment of Steam Reforming Process by Hydrogen Generator, Using PHAST Model
by Jongseok Lee, Hyunjun Kwak and Seungho Jung
Energies 2024, 17(22), 5704; https://doi.org/10.3390/en17225704 - 14 Nov 2024
Cited by 2 | Viewed by 1351
Abstract
This study applied a risk assessment technique to the steam reforming process in hydrogen production facilities to generate baseline data for preparing safety protocols in related workplaces. To this end, consequence analysis (CA) was conducted using DNV-PHAST v.8.9., focusing on the reforming process, [...] Read more.
This study applied a risk assessment technique to the steam reforming process in hydrogen production facilities to generate baseline data for preparing safety protocols in related workplaces. To this end, consequence analysis (CA) was conducted using DNV-PHAST v.8.9., focusing on the reforming process, which operates at the highest temperature and pressure among related processes. This study predicted jet fire damage resulting from the total failure of a 65 mm syngas pipe at the rear end of the reformer, with a projected flame length of up to 23.6 m based on a radiant heat of 5 kW/m2. As per the assessment, a vapor cloud explosion (VCE) caused damage of up to 42.6 m at an overpressure of 0.07 bar (1 psi), while a flash fire had an impact range of approximately 12.7 m based on hydrogen’s LFL (lower flammable limit). This quantitative risk assessment of the general steam reforming process provides valuable basic data for the design and operation of related facilities. Full article
(This article belongs to the Special Issue Safety of Hydrogen Energy: Technologies and Applications)
Show Figures

Figure 1

12 pages, 3893 KiB  
Article
Experimental Study on Cryogenic Compressed Hydrogen Jet Flames
by Shishuai Nie, Peng Cai, Huan Liu, Yonghao Zhou, Yi Liu and Anfeng Yu
Fire 2024, 7(11), 406; https://doi.org/10.3390/fire7110406 - 5 Nov 2024
Cited by 1 | Viewed by 1259
Abstract
Cryogenic compressed hydrogen (CcH2) technology combines the advantages of high pressure and low temperature to achieve high hydrogen storage density without liquefying the hydrogen, which has broad application prospects. However, the safety concerns related to cryogenic hydrogen need to be carefully addressed beforehand. [...] Read more.
Cryogenic compressed hydrogen (CcH2) technology combines the advantages of high pressure and low temperature to achieve high hydrogen storage density without liquefying the hydrogen, which has broad application prospects. However, the safety concerns related to cryogenic hydrogen need to be carefully addressed beforehand. In the present work, cryogenic hydrogen jet flames are experimentally investigated for various release pressures and initial temperatures. The flame length and thermal radiation flux were measured for horizontally releasing with nozzle diameters of 0.5–2 mm, temperatures ranging from 93 to 298 K, and initial pressures of 2–10 MPa. The results show that the flame length is dependent on the nozzle diameter, stagnation pressure and temperature. At a given pressure, the flame length, size and total radiant power increase with decreasing temperature, which is attributed to the lower jet flow velocity and higher density of low-temperature hydrogen. The normalized flame length Lf/D is correlated with the pressure ratio and temperature ratio. The correlation can be used to predict the flame length at various hydrogen pressures and temperatures. The normalized flame length of the cryogenic hydrogen jet flame is greater than that of the room-temperature hydrogen jet flame. The radiative heat flux of the flame can be predicted by the mass flow rate of the jet flow. Full article
Show Figures

Figure 1

11 pages, 4587 KiB  
Article
Numerical Study of Hydrogen-Rich Fuel Coherent Jet in Blast Furnace Tuyere
by Jianchun Shi, Peng Xu, Peng Han, Zhijun He and Jiaying Wang
Processes 2024, 12(11), 2441; https://doi.org/10.3390/pr12112441 - 5 Nov 2024
Cited by 1 | Viewed by 1210
Abstract
Injecting hydrogen-rich fuel into blast furnaces is an effective strategy to reduce carbon dioxide (CO2) emissions. The present study established a three-dimensional (3D) model based on a coherent jet of hydrogen-rich fuel. The combustion characteristics and the flow, heat, and mass [...] Read more.
Injecting hydrogen-rich fuel into blast furnaces is an effective strategy to reduce carbon dioxide (CO2) emissions. The present study established a three-dimensional (3D) model based on a coherent jet of hydrogen-rich fuel. The combustion characteristics and the flow, heat, and mass transfer behaviors in the reaction region were simulated by the Computational Fluid Dynamics (CFD) method. The effects of fuel jet velocity on the distributions of gas velocity, temperature, and species in the reaction region were systematically analyzed. The results show that hydrogen-rich fuel burned around the main jet, generating a high-temperature, low-density flame. As flame length increased, the main jet experienced less decay. The outward expansion of the jet caused continuous diffusion of gas temperature and its components. As the fuel jet velocity increased, the temperature along the main jet centerline rose sharply, while the length of the high-concentration gas region extended. Doubling the jet velocity increased its centerline velocity by 11% and raised the average reaction region temperature by 4.12%. The obtained highlighted results are of paramount importance for optimizing hydrogen-rich smelting in blast furnaces. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

20 pages, 4975 KiB  
Article
Effect of Methane on Combustion of Glycerol and Methanol Blends Using a Novel Swirl Burst Injector in a Model Dual-Fuel Gas Turbine Combustor
by S. M. Rafiul Islam, Ishaan Patel and Lulin Jiang
Clean Technol. 2024, 6(4), 1445-1464; https://doi.org/10.3390/cleantechnol6040069 - 23 Oct 2024
Cited by 1 | Viewed by 1638
Abstract
Glycerol, a byproduct of biodiesel, has moderate energy but high viscosity, making clean combustion challenging. Quickly evaporating fine fuel sprays mix well with air and burn cleanly and efficiently. Unlike conventional air-blast atomizers discharging a jet core/film, a newly developed swirl burst (SB) [...] Read more.
Glycerol, a byproduct of biodiesel, has moderate energy but high viscosity, making clean combustion challenging. Quickly evaporating fine fuel sprays mix well with air and burn cleanly and efficiently. Unlike conventional air-blast atomizers discharging a jet core/film, a newly developed swirl burst (SB) injector generates fine sprays at the injector’s immediate exit, even for high-viscosity fuels, without preheating, using a unique two-phase atomization mechanism. It thus resulted in ultra-clean combustion for glycerol/methanol (G/M) blends, with complete combustion for G/M of 50/50 ratios by heat release rate (HRR). Lower combustion efficiencies were observed for G/M 60/40 and 70/30, representing crude glycerol. Hence, this study investigates the effect of premixed methane amount from 0–3 kW, and the effect of atomizing gas to liquid mass ratio (ALR) on the dual-fuel combustion efficiency of G/M 60/40-methane in a 7-kW lab-scale swirl-stabilized gas turbine combustor to facilitate crude glycerol use. Results show that more methane and increased ALR cause varying flame lift-off height, length, and gas product temperature. Regardless, mainly lean-premixed combustion, near-zero CO and NOx emissions (≤2 ppm), and ~100% combustion efficiency are enabled for all the cases by SB atomization with the assistance of a small amount of methane. Full article
Show Figures

Figure 1

15 pages, 3822 KiB  
Article
Soot and Flame Structures in Turbulent Partially Premixed Jet Flames of Pre-Evaporated Diesel Surrogates with Admixture of OMEn
by Steffen Walther, Tao Li, Dirk Geyer, Andreas Dreizler and Benjamin Böhm
Fluids 2024, 9(9), 210; https://doi.org/10.3390/fluids9090210 - 10 Sep 2024
Viewed by 1321
Abstract
In this study, the soot formation and oxidation processes in different turbulent, pre-evaporated and partially premixed diesel surrogate flames are experimentally investigated. For this purpose, a piloted jet flame surrounded by an air co-flow is used. Starting from a defined diesel surrogate mixture, [...] Read more.
In this study, the soot formation and oxidation processes in different turbulent, pre-evaporated and partially premixed diesel surrogate flames are experimentally investigated. For this purpose, a piloted jet flame surrounded by an air co-flow is used. Starting from a defined diesel surrogate mixture, different fuel blends with increasing blending ratios of poly(oxymethylene) dimethyl ether (OME) are studied. The Reynolds number, equivalence ratio, and vaporization temperature are kept constant to ensure the comparability of the different fuel mixtures. The effects of OME addition on flame structures, soot precursors, and soot are investigated, showing soot reduction when OME is added to the diesel surrogate. Using chemiluminescence images of C2 radicals (line of sight) and subsequent Abel-inversion, flame lengths and global flame structure are analyzed. The flame structure is visualized by means of planar laser-induced fluorescence (PLIF) of hydroxyl radicals (OH). The spatial distribution of soot precursors, such as polycyclic aromatic hydrocarbons (PAHs), is simultaneously measured by PLIF using the same excitation wavelength. In particular, aromatic compounds with several benzene rings (e.g., naphthalene or pyrene), which are known to be actively involved in soot formation and growth, have been visualized. Spatially distributed soot particles are detected by using laser-induced incandescence (LII), which allows us to study the onset of soot clouds and its structures qualitatively. Evident soot formation is observed in the pure diesel surrogate flame, whereas a significant soot reduction with changing PAH and soot structures can be identified with increasing OME addition. Full article
(This article belongs to the Special Issue Turbulence and Combustion)
Show Figures

Figure 1

23 pages, 17803 KiB  
Article
Numerical Study of the Effect of Primary Nozzle Geometry on Supersonic Gas-Solid Jet of Bypass Injected Dry Powder Fire Extinguishing Device
by Lite Zhang, Yang Feng, Sifan Wu and Huixia Jia
Fire 2024, 7(2), 45; https://doi.org/10.3390/fire7020045 - 31 Jan 2024
Cited by 4 | Viewed by 2299
Abstract
A two-way coupled model between polydisperse particle phases with compressible gases and a density-based coupling implicit solution method, combining the third-order MUSCL with QUICK spatial discretization scheme and the second-order temporal discretization scheme, are constructed based on the discrete-phase model (DPM) and the [...] Read more.
A two-way coupled model between polydisperse particle phases with compressible gases and a density-based coupling implicit solution method, combining the third-order MUSCL with QUICK spatial discretization scheme and the second-order temporal discretization scheme, are constructed based on the discrete-phase model (DPM) and the stochastic wander model (DRWM) in the Eulerian–Lagrangian framework in conjunction with a unitary particulate source (PSIC) approach and the SST k-ω turbulence model. The accuracy of the numerical prediction method is verified using previous supersonic nozzle gas-solid two-phase flow experiments. Numerical simulation of a two-phase jet of dry powder extinguishing agent gas with pilot-type supersonic nozzle was performed to analyze the influence of geometrical parameters, such as the length ratio rL and the area ratio rA of the main nozzle on the two-phase flow field, as well as on the jet performance indexes, such as the particle mean velocity vp,a, velocity inhomogeneity Φvp, particle dispersion Ψp, particle mean acceleration ap,a, etc. By analyzing the parameters, we indicate the requirements for the combination of jet performance metrics for different flame types such as penetrating, spreading, and dispersing. Full article
(This article belongs to the Special Issue Jet Fuel Combustion)
Show Figures

Figure 1

18 pages, 8361 KiB  
Article
Optimization of Oxygen Injection Conditions with Different Molten Steel Levels in the EAF Refining Process by CFD Simulation
by Perawat Thongjitr, Pruet Kowitwarangkul, Yotsakorn Pratumwal and Somboon Otarawanna
Metals 2023, 13(9), 1507; https://doi.org/10.3390/met13091507 - 22 Aug 2023
Cited by 6 | Viewed by 3163
Abstract
In electric arc furnace (EAF) steelmaking, oxygen jets play a crucial role in controlling stirring ability, chemical reactions, and energy consumption. During the EAF lifetime, refractory wear leads to a decrease in the molten steel level and an increase in the nozzle-to-steel distance, [...] Read more.
In electric arc furnace (EAF) steelmaking, oxygen jets play a crucial role in controlling stirring ability, chemical reactions, and energy consumption. During the EAF lifetime, refractory wear leads to a decrease in the molten steel level and an increase in the nozzle-to-steel distance, thereby negatively affecting the overall energy efficiency of the process. The objective of this study is to optimize the energy efficiency of the EAF refining process by adjusting the nozzle flow conditions and conducting an analysis of jet performance using computational fluid dynamics (CFD) simulation. Three types of injection jets were considered: the conventional jet, the CH4 coherent jet, and the CH4 + O2 coherent jet. The findings reveal that the shrouded flame of the coherent jet enhances jet performance by maintaining the maximum velocity, extending the potential core length, and increasing the penetration depth in the molten steel bath. To maintain the jet performance in response to an increased nozzle-to-steel distance resulting from refractory wear, transitions from the conventional jet to the CH4 coherent jet and the CH4 + O2 coherent jet are recommended once the nozzle-to-steel distance increases from its initial level of 1000 mm to 1500 mm and 2000 mm, respectively. Full article
(This article belongs to the Special Issue Process and Numerical Simulation of Oxygen Steelmaking)
Show Figures

Graphical abstract

17 pages, 8849 KiB  
Article
The Effects of Differential Diffusion on Turbulent Non-Premixed Flames LO2/CH4 under Transcritical Conditions Using Large-Eddy Simulation
by Siyuan Wang, Haiou Wang, Kun Luo and Jianren Fan
Energies 2023, 16(3), 1065; https://doi.org/10.3390/en16031065 - 18 Jan 2023
Cited by 5 | Viewed by 2477
Abstract
In this paper, a large-eddy simulation (LES) of turbulent non-premixed LO2/CH4 combustion under transcritical conditions is performed based on the Mascotte test rig from the Office National d’Etudes et de Recherches Ae´rospatiales (ONERA), and the aim is [...] Read more.
In this paper, a large-eddy simulation (LES) of turbulent non-premixed LO2/CH4 combustion under transcritical conditions is performed based on the Mascotte test rig from the Office National d’Etudes et de Recherches Ae´rospatiales (ONERA), and the aim is to understand the effects of differential diffusion on the flame behaviors. In the LES, oxygen was injected into the environment above the critical pressure while the temperature was below the critical temperature. The flamelet/progress variable (FPV) approach was used as the combustion model. Two LES cases with different species diffusion coefficient schemes—i.e., non-unity and unity Lewis numbers—for generating the flamelet tables were carried out to explore the effects of differential diffusion on the flame and flow structures. The results of the LES case with non-unity Lewis numbers were in good agreement with the experimental data. It was shown that differential diffusion had evident impacts on the flame structure and flow dynamics. In particular, when unity Lewis numbers were used to evaluate the species diffusion coefficient, the flame length was underestimated and the flame expansion was more significant. Compared to laminar counterflow flames, turbulence in jet flames allows chemical reactions to take place in a wider range of mixture fractions. The density distributions of the two LES cases in the mixture fraction space were very similar, indicating that differential diffusion had no significant effects on the phase transition under transcritical conditions. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Figure 1

19 pages, 5922 KiB  
Article
Effect of Microwave Power and Gas Flow Rate on the Combustion Characteristics of the ADN-based Liquid Propellant
by Sheng Pan, Chenghao Zhao, Dechao Zhang, Yangyang Hou, Gaoshi Su, Xuhui Liu, Yusong Yu and Jiannan Shen
Materials 2023, 16(1), 147; https://doi.org/10.3390/ma16010147 - 23 Dec 2022
Cited by 2 | Viewed by 2488
Abstract
As a new type of energy-containing material, Ammonium dinitramide based liquid propellant has the advantages of being green, having low toxicity, good stability, and high safety performance. Traditional catalytic combustion methods require preheating of the catalytic bed and deactivation of the catalytic particles [...] Read more.
As a new type of energy-containing material, Ammonium dinitramide based liquid propellant has the advantages of being green, having low toxicity, good stability, and high safety performance. Traditional catalytic combustion methods require preheating of the catalytic bed and deactivation of the catalytic particles at high temperatures, while microwave ignition methods can effectively solve these problems. To study the combustion characteristics of ADN-based liquid propellants during microwave ignition, the influence of microwave power and gas flow rates on the combustion process are analyzed using experimental methods. A high-speed camera was used to observe the enhanced effects of microwave power and gas flow on plasma and flame. Combined with temperature measurement, the combustion process of ADN-based liquid propellants under the action of plasma was analyzed. The combustion process in the presence of microwaves was observed by comparing parameters such as flame length, flame temperature, and radical intensity. Those results show that, with the increase in microwave power, the luminous burning area of the flame grows significantly. The microwave power is increased by 250 W each, and the flame jet length is increased by nearly 20%. The increase in microwave power also leads to an increase in propellant combustion temperature, however, this increase gradually slows down. At a gas flow rate of 20 L/min, the ADN-based liquid propellant showed the best combustion performance with a maximum jet length of 14.51 cm and an average jet length increase of approximately 85.9% compared to 14 L/min. Too much gas flow rate will hinder the development of the jet, while the high-velocity airflow will have a cooling effect on the flame temperature. The results provide a basis for the specific parameter design of microwave ignition and promote the application of ADN-based liquid propellants in the aerospace field. Full article
Show Figures

Figure 1

15 pages, 1589 KiB  
Article
Modelling a Turbulent Non-Premixed Combustion in a Full-Scale Rotary Cement Kiln Using reactingFoam
by Domenico Lahaye, Franjo Juretić and Marco Talice
Energies 2022, 15(24), 9618; https://doi.org/10.3390/en15249618 - 19 Dec 2022
Cited by 2 | Viewed by 2704
Abstract
No alternatives are currently available to operate industrial furnaces, except for hydrocarbon fuels. Plant managers, therefore, face at least two challenges. First, environmental legislation demands emission reduction. Second, changes in the origin of the fuel might cause unforeseen changes in the heat release. [...] Read more.
No alternatives are currently available to operate industrial furnaces, except for hydrocarbon fuels. Plant managers, therefore, face at least two challenges. First, environmental legislation demands emission reduction. Second, changes in the origin of the fuel might cause unforeseen changes in the heat release. This paper develops the hypothesis for the detailed control of the combustion process using computational fluid dynamic models. A full-scale mock-up of a rotary cement kiln is selected as a case study. The kiln is fired by the non-premixed combustion of Dutch natural gas. The gas is injected at Mach 0.6 via a multi-nozzle burner located at the outlet of an axially mounted fuel pipe. The preheated combustion air is fed in (co-flow) through a rectangular inlet situated above the attachment of the fuel pipe. The multi-jet nozzle burner enhances the entrainment of the air in the fuel jet. A diffusion flame is formed by thin reaction zones where the fuel and oxidizer meet. The heat formed is transported through the freeboard, mainly via radiation in a participating medium. This turbulent combustion process is modeled using unsteady Favre-averaged compressible Navier–Stokes equations. The standard k-ϵ equations and standard wall functions close the turbulent flow description. The eddy dissipation concept model is used to describe the combustion process. Here, only the presence of methane in the composition of the fuel is accounted for. Furthermore, the single-step reaction mechanism is chosen. The heat released radiates throughout the freeboard space. This process is described using a P1-radiation model with a constant thermal absorption coefficient. The flow, combustion, and radiative heat transfer are solved numerically using the OpenFoam simulation software. The equations for flow, combustion, and radiant heat transfer are discretized on a mesh locally refined near the burner outlet and solved numerically using the OpenFoam simulation software. The main results are as follows. The meticulously crafted mesh combined with the outlet condition that avoids pressure reflections cause the solver to converge in a stable manner. Predictions for velocity, pressure, temperature, and species distribution are now closer to manufacturing conditions. Computed temperate and species values are key to deducing the flame length and shape. The radiative heat flux to the wall peaks at the tip of the flame. This should allow us to measure the flame length indirectly from exterior wall temperature values. The amount of thermal nitric oxide formed in the flame is quantified. The main implication of this study is that the numerical model developed in this paper reveals valuable information on the combustion process in the kiln that otherwise would not be available. This information can be used to increase fuel efficiency, reduce spurious peak temperatures, and reduce pollutant emissions. The impact of the unsteady nature of the flow on the chemical species concentration and temperature distribution is illustrated in an accompanying video. Full article
(This article belongs to the Special Issue Experiments and Simulations of Combustion Process)
Show Figures

Graphical abstract

20 pages, 11003 KiB  
Article
Active Flow Control of a Flame-Holder Wake Using Nanosecond-Pulsed Surface-Dielectric-Barrier Discharge in a Low-Pressure Environment
by Wei Cui, Min Jia, Dong Lin and Mei Lin
Processes 2022, 10(8), 1519; https://doi.org/10.3390/pr10081519 - 2 Aug 2022
Cited by 1 | Viewed by 1911
Abstract
Flame holders are widely used in ramjet combustors. We propose using surface nanosecond-pulsed surface-dielectric-barrier-discharge (NS-DBD) to manipulate the flame-holder flow field experimentally. The electrical characteristics, induced flow performance, and temperature distribution of NS-DBD were investigated via the electrical and optical measurement system. In [...] Read more.
Flame holders are widely used in ramjet combustors. We propose using surface nanosecond-pulsed surface-dielectric-barrier-discharge (NS-DBD) to manipulate the flame-holder flow field experimentally. The electrical characteristics, induced flow performance, and temperature distribution of NS-DBD were investigated via the electrical and optical measurement system. In the filamentary discharge mode, the discharge energy rose with decrease of the ambient pressure. The discharge pattern of NS-DBD changed from filamentous to uniform around 5 kPa. Starting-vortex intensity and jet-flow angle relative to the wall increased at low pressure. The recirculation zone was asymmetrical at pressures above 60 kPa. The recirculation zone’s area and length were smaller at lower pressures, but when the actuator was operating, the recirculation zone was nearly 11.8% longer. The vorticity increased with pressure. When the pulse width was 300 ns, the actuator had the greatest effect, and the low velocity region (LVR) area and the fuel–air-mixture residence time (FMRT) could be increased by 31.8% and 20.5%, respectively. The actuator had a smaller widening effect on the LVR area at lower pressure. Rising-edge time should increase with pressure to optimize LVR increase; it should be above 300 ns to optimize FMRT increase. We conclude that NS-DBD is a viable method of controlling flame-holder airflow at low pressure. Full article
(This article belongs to the Special Issue Plasma Combustion and Flow Control Processes)
Show Figures

Figure 1

17 pages, 5937 KiB  
Article
Numerical Investigation of the Cleaning Flame Jet and Formation of the Molten Pool in the Corner Scarfing Process of the Casting Slab
by Cong Wang, Yongqiang Zhang, Aiyun Gao, Jieyu Zhang and Bo Wang
Processes 2022, 10(4), 798; https://doi.org/10.3390/pr10040798 - 18 Apr 2022
Cited by 2 | Viewed by 2786
Abstract
The corner defects in the casting slab greatly influence the product quality. These defects may extend during the heating and rolling process and even result in the discarding of the rolled plate as scrap. A corner cleaning equipment based on the scarfing machine [...] Read more.
The corner defects in the casting slab greatly influence the product quality. These defects may extend during the heating and rolling process and even result in the discarding of the rolled plate as scrap. A corner cleaning equipment based on the scarfing machine is proposed to eliminate the defects in slab corners for producing high-quality steel. Unlike the flat surface scarfing process, the flame jet and the shape of the molten pool have an essential impact on the effectiveness of the flame cleaning in the corner of the casting slab. A three-dimensional fully coupled model for the flame cleaning nozzle is developed to simulate the flow pattern of the flame jet, Oxygen concentration distribution, and temperature field in the corner of the slab. The simulated flame jet flow field and temperature results agreed well with the factory trial results. Additionally, a three-dimensional thermal model for simulation of the molten pool formed by flame cleaning in the corner of the casting slab has also been developed. For the sake of simplicity, the 2D elliptic and 3D Gauss heat source models are used to simulate the flame heating on the upper and right surfaces of the slab corner and the reaction heating between oxygen and heated iron along the corner, respectively. The simulation results show that the length is 58.1 mm and 57.9 mm on both sides and the corner melting depth is 29.9 mm. The error is 7.04%. The numerical simulation results showed good agreement with the factory trial results, indicating that the proposed models of the flame jet and the heat sources analysis are feasible to study the flame cleaning process of the slab corner, it provides the scientific theoretical basis for the design and practical application of corner scarfing machine. Full article
Show Figures

Figure 1

11 pages, 40291 KiB  
Article
Experimental Research on Microwave Ignition and Combustion Characteristics of ADN-Based Liquid Propellant
by Jiannan Shen, Yusong Yu, Xuhui Liu and Jie Cao
Micromachines 2022, 13(4), 510; https://doi.org/10.3390/mi13040510 - 25 Mar 2022
Cited by 15 | Viewed by 3060
Abstract
Microwave ignition has attracted much attention due to its advantages of reliable ignition, large ignition area and cold-start capability. In this paper, the experimental method is used to explore the ignition ability of the microwave device to ADN-based liquid propellant. Additionally, we discuss [...] Read more.
Microwave ignition has attracted much attention due to its advantages of reliable ignition, large ignition area and cold-start capability. In this paper, the experimental method is used to explore the ignition ability of the microwave device to ADN-based liquid propellant. Additionally, we discuss the influence of the inlet power and rate of propellant injected into the ignition system on the height of the combustion jet and the combustion temperature. In the experiment, a microwave-assisted ignition system was established based on a special microwave resonant cavity. The liquid propellant and working gas were sprayed into the resonator cavity through the hollow straight tube beneath the resonant cavity. The test results show that the device can ignite the propellant under the condition of 800 W input power, which proves the feasibility of the microwave ignition device for ADN-based liquid propellant. Microwave power has some influence on the flame spray height at the initial stage of combustion. The spray height at 2000 W is increased by 55.7% in comparison to 1000 W. In the stable combustion stage, the input power has a very significant increase in the average temperature of the flame, which is increased by 25%. The combustion is relatively better when the propellant flow rate is 30 mL/min, and the height of the flame spray increases by 25.2%. The increase in throughput did not have a significant impact on the flame temperature. Full article
(This article belongs to the Special Issue Ocean MEMS and Related Technology)
Show Figures

Figure 1

Back to TopTop