Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (42)

Search Parameters:
Keywords = fire insulating capacity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1010 KB  
Proceeding Paper
Evaluation of Innovative and Sustainable Fire Protection Systems for Reinforced Concrete Structures
by Louai Wafa, Ayman Mosallam and Ashraf Abed-Elkhalek Mostafa
Eng. Proc. 2025, 112(1), 62; https://doi.org/10.3390/engproc2025112062 - 4 Nov 2025
Viewed by 219
Abstract
This study presents a comprehensive overview of recent advancements in fire protection technologies for reinforced concrete (RC) structures, with a focus on sustainable and high-performance solutions. As climate change and urban densification continue to shape modern construction, the need for fire-resilient and environmentally [...] Read more.
This study presents a comprehensive overview of recent advancements in fire protection technologies for reinforced concrete (RC) structures, with a focus on sustainable and high-performance solutions. As climate change and urban densification continue to shape modern construction, the need for fire-resilient and environmentally responsible building systems has never been more urgent. This study examines traditional fire protection practices and contrasts them with emerging innovations. Emphasis is placed on their thermal performance, structural integrity post-exposure, and long-term durability. Case studies and laboratory findings highlight the effectiveness of these systems under standard and severe fire scenarios. This paper will present the results of a research study on the assessment of different fire protection systems for RC columns retrofitted with fiber-reinforced polymer (FRP) jacketing. To quantify how insulation can preserve confinement, three commercial fire protection schemes were tested on small-scale CFRP- and GFRP-confined concrete cylinders: (i) a thin high-temperature cloth + blanket (DYMAT™-RS/Dymatherm), (ii) an intumescent epoxy-based coating (DCF-D + FireFree 88), and (iii) cementitious mortar (Sikacrete™ 213F, 15 mm and 30 mm). Specimens were exposed to either 60 min of soaking at 200 °C and 400 °C or to a 30 min and 240 min ASTM E119 standard fire; thermocouples recorded interface temperatures and post-cooling uniaxial compression quantified residual capacity. All systems reduced FRP–interface temperatures by up to 150 °C and preserved 65–90% of the original confinement capacity under moderate fire conditions (400 °C and 30 min ASTM E119) compared to 40–55% for unprotected controls under the same conditions. The results provide practical guidance on selecting insulation types and thicknesses for fire-resilient FRP retrofits. Full article
Show Figures

Figure 1

23 pages, 7965 KB  
Article
Rational Approach for Evaluating Fire Resistance of Prestressed Concrete Beams Strengthened with Fiber-Reinforced Polymers
by Venkatesh Kodur, Tejeswar Rayala and Hee Sun Kim
Polymers 2025, 17(20), 2773; https://doi.org/10.3390/polym17202773 - 16 Oct 2025
Viewed by 332
Abstract
A rational approach is proposed for evaluating the fire resistance of fiber-reinforced polymers (FRP)-strengthened prestressed concrete (PC) beams. This approach expands on conventional fire design principles for PC beams, while incorporating the effects of FRP reinforcement and fire insulation into strength calculations under [...] Read more.
A rational approach is proposed for evaluating the fire resistance of fiber-reinforced polymers (FRP)-strengthened prestressed concrete (PC) beams. This approach expands on conventional fire design principles for PC beams, while incorporating the effects of FRP reinforcement and fire insulation into strength calculations under fire exposure. Simplified equations are utilized to evaluate the cross-sectional temperature distribution in fire-exposed FRP-strengthened PC beams, considering both insulated and uninsulated scenarios. These cross-sectional temperature profiles are then utilized to evaluate the reductions in the strengths of concrete, steel, and FRP based on their temperature-dependent mechanical properties. The moment capacity of the FRP-strengthened PC beams is determined at various fire exposure durations by applying force equilibrium and strain compatibility principles, assuming a full bond with no relative slip between the FRP and the concrete interface under fire exposure. The critical strength limit state is applied at each time interval to determine the failure state of the FRP-strengthened PC beam, with the final time to failure considered to be the fire resistance of the beam. The proposed approach is validated by comparing its results with available test data from FRP-strengthened reinforced concrete (RC) beams. The validated model is applied to evaluate critical parameters governing the fire resistance of FRP-strengthened PC beam. The results show that, without fire insulation, FRP-strengthened PC beams undergo a significant reduction in moment capacity early into fire exposure and fail within 75 min due to the rapid strength degradation of both the CFRP and the prestressing steel. In contrast, the application of 25 mm thick fire insulation allows these beams to retain a substantial portion of their load-bearing capacity for up to 3 h of fire exposure. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

26 pages, 5613 KB  
Article
Insulation Strategies to Enhance Fire Resistance in Composite Slabs with Reduced Carbon Emissions
by Otavio G. N. Ribeiro, Paulo A. G. Piloto and Gustavo de M. S. Gidrão
J. Compos. Sci. 2025, 9(9), 497; https://doi.org/10.3390/jcs9090497 - 12 Sep 2025
Viewed by 902
Abstract
Composite slabs have gained popularity in modern high-rise construction due to their superior load-bearing capacity and reduced self-weight. The vulnerability of the unprotected steel deck under fire conditions poses serious challenges, as the rapid reduction in steel strength and stiffness can compromise structural [...] Read more.
Composite slabs have gained popularity in modern high-rise construction due to their superior load-bearing capacity and reduced self-weight. The vulnerability of the unprotected steel deck under fire conditions poses serious challenges, as the rapid reduction in steel strength and stiffness can compromise structural resistance and accelerate fire spread. This study presents a comprehensive numerical simulation to assess the fire behaviour of a novel composite slab and a new proposal for a simplified method. Three insulation techniques are investigated: a steel shield for the thinner part, a steel shield with the cavity filled with mineral wool, and a mineral wool plate applied from below. The simplified method is proposed to evaluate the fire resistance using new empirical coefficients, recalibrated within the framework of the prEN 1994-1-2 to allow for precise temperature predictions in steel components under standard fire. The numerical model, validated against experimental results, shows that the steel shield insulation extends the time to reach critical temperatures by approximately 25%. In contrast, mineral wool insulation proved to be substantially more effective by reducing temperatures in the UPPER 2 region by up to 89% compared to uninsulated slabs, after 60 min of fire exposure. This significant temperature reduction increases the load-bearing capacity during 60 min of fire exposure by 29%, also resulting in a potential reduction of approximately 22% in carbon emissions. The findings underscore and highlight the potential of these insulation systems to enhance the overall safety and resilience of composite slabs under fire, offering valuable insights for structural fire design. Full article
Show Figures

Figure 1

29 pages, 13314 KB  
Article
Development of Unfired Clay Bricks with Alumina Waste from Liquid Nitrogen Production: A Sustainable Alternative for Construction Materials
by Noppadol Sangiamsak, Nopanom Kaewhanam, Meesakthana Puapitthayathorn, Seksan Numsong, Kowit Suwannahong, Sukanya Hongthong, Torpong Kreetachat, Sompop Sanongraj and Surachai Wongcharee
Sustainability 2025, 17(14), 6424; https://doi.org/10.3390/su17146424 - 14 Jul 2025
Viewed by 1624
Abstract
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and [...] Read more.
A major breakthrough in environmentally friendly building materials is the development of sustainable unfired clay bricks including alumina waste produced during liquid nitrogen generation. Though used extensively, conventional fired clay bricks require energy-intensive manufacturing techniques that produce significant amounts of CO2 and aggravate environmental damage. By removing the need for high-temperature firing and allowing for the valorization of industrial byproducts including alumina waste and lateritic soil, unfired clay bricks offer a reasonable low-carbon alternative. High silica and alumina contents define the alumina waste, which shows pozzolanic reactivity, thus improving the physicomechanical performance of the bricks. With alumina waste substituting 0–8.57% of the cement content, seven different formulations showed improvements in compressive strength, reduced water absorption, and optimal thermal conductivity. Especially, the mechanical performance was much enhanced with alumina waste inclusion up to 30%, without sacrificing thermal insulation capacity or moisture resistance. Further supporting the environmental and financial sustainability of the suggested brick compositions is the economic viability of using industrial waste and regionally derived soils. A comparative analysis of the conventional fired bricks shows that the unfired substitutes have a much lower environmental impact and show better mechanical properties, including greater compressive strength and modulus of rupture. These results support the more general goals of circular economy systems and low-carbon urban development by highlighting the feasibility of including alumina waste and lateritic soil into sustainable building materials. Using such waste-derived inputs in building fits world initiatives to lower resource consumption, lower greenhouse gas emissions, and build strong infrastructure systems. Full article
(This article belongs to the Special Issue Solid Waste Management and Sustainable Environmental Remediation)
Show Figures

Figure 1

25 pages, 10258 KB  
Article
Full-Scale Experimental Investigation of Temperature Distribution and Smoke Flow in a Road Tunnel with a Novel Water Mist Fire Fighting System
by Shouzhong Feng, Deyuan Kan and Chao Guo
Fire 2025, 8(6), 216; https://doi.org/10.3390/fire8060216 - 28 May 2025
Viewed by 1318
Abstract
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in [...] Read more.
This study presents a novel water mist fire fighting system that integrates water mist sprays and water mist curtains, designed to achieve simultaneous fire suppression, thermal insulation, and smoke control. Three full-scale experiments were conducted under various fire scenarios, and the changes in fire behavior and heat release rate were examined to evaluate the effectiveness of the water mist system in extinguishing fires. Additionally, the spatiotemporal changes in ceiling temperature were monitored to assess the cooling and protective effects of the water mist. The thermal insulation capability of the system was also investigated by detecting the temperature distribution inside the tunnel. Moreover, the smoke conditions upstream and downstream of the tunnel were analyzed to evaluate the smoke-blocking performance of the water mist system. The findings demonstrate that the water mist fire fighting system is highly efficient in attenuating the fire and restricting its progression. Within the water mist spray section, the average ceiling temperature decreased exponentially during both the initial and steady burning phases across all tested fire scenarios. Nonetheless, the smoke-carrying capacity of the water mist spray is limited. Fortunately, the dispersed smoke was diluted by water mist, markedly enhancing visibility and mitigating the impact of smoke on tunnel illumination. Full article
Show Figures

Figure 1

29 pages, 9212 KB  
Article
Physical Structural Mechanical and Thermal Insulation Properties of Hemp Fiber-Substituted Geopolymer Composites
by Ahmet Filazi, Reyhan Akat, Muharrem Pul, Songül Tortuk and Ali Özdin
Materials 2025, 18(11), 2536; https://doi.org/10.3390/ma18112536 - 28 May 2025
Cited by 3 | Viewed by 1928
Abstract
This study examines the thermal insulation capacity, mechanical performance, and high-temperature resistance of geopolymer composites reinforced with 5%, 10%, and 20% hemp fiber. This research aims to develop sustainable, high-performance construction materials with enhanced thermal efficiency and structural integrity. Thermal conductivity, compressive strength, [...] Read more.
This study examines the thermal insulation capacity, mechanical performance, and high-temperature resistance of geopolymer composites reinforced with 5%, 10%, and 20% hemp fiber. This research aims to develop sustainable, high-performance construction materials with enhanced thermal efficiency and structural integrity. Thermal conductivity, compressive strength, and flexural strength tests were conducted on geopolymer mortar specimens to evaluate their performance. The results indicate that increasing hemp fiber content improves thermal insulation, with the 20% hemp fiber mixture achieving the lowest thermal conductivity. However, hemp fiber reinforcement leads to reductions in both compressive and flexural strength while maintaining structural stability. These findings highlight the potential of hemp fiber-reinforced geopolymers as eco-friendly alternatives to conventional insulation materials, particularly for applications requiring fire resistance and thermal efficiency, despite the observed decrease in mechanical properties. This research contributes to the advancement of sustainable construction materials and underscores the viability of hemp fiber-reinforced geopolymer mortars for industrial applications. Further studies are recommended to optimize mix designs and assess long-term durability under various environmental conditions. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

25 pages, 12978 KB  
Article
Simplified Design Procedure for RC Ribbed Slabs in Fire Based on Experimental and Numerical Thermal Analysis
by Fabrício Longhi Bolina, Arthur S. Henn and Bruno Dal Lago
Buildings 2025, 15(10), 1631; https://doi.org/10.3390/buildings15101631 - 13 May 2025
Cited by 2 | Viewed by 1331
Abstract
Ribbed slabs are a solution for increasing the bending capacity while reducing the total concrete consumption and the dead weight compared to conventional reinforced concrete slabs. The EN 1992-1.2 standard contains a tabulated method (TM) for the fire design of these structures, which [...] Read more.
Ribbed slabs are a solution for increasing the bending capacity while reducing the total concrete consumption and the dead weight compared to conventional reinforced concrete slabs. The EN 1992-1.2 standard contains a tabulated method (TM) for the fire design of these structures, which suggests combinations of cross-sectional dimensions and concrete cover thickness to determine the fire resistance. Using a finite element (FE) model solved with Abaqus software, a transient thermal analysis of these slabs was performed, correlating the results with the standardized TM. Cross-sections with different concrete widths and concrete covers were numerically tested to define a new TM based on the same criteria proposed by the EN. To validate the FE models, the results were compared with the experimental data of two full-scale specimens of ribbed slabs. It was found that the current TM is not consistent in all cases, and the concrete cover needs to be improved by between 20 and 50%. A fire design of ribbed slabs based on EN 1992-1.2 shows that the reinforcement is heated beyond its critical temperature, but the flange thickness can be reduced. A new tabular procedure is proposed based on the critical temperature of the reinforcement, the concrete cross-section, and the thermal insulation criteria. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 10441 KB  
Article
Optimization and Analysis of Electrical Heating Ice-Melting Asphalt Pavement Models
by Jiguo Liu, Kai Xu, Zhi Chen, Wenbo Peng and Longhai Wei
Energies 2025, 18(9), 2207; https://doi.org/10.3390/en18092207 - 26 Apr 2025
Viewed by 746
Abstract
Electrical heating ice removal pavement represents a promising technology for pavement ice melting. Existing studies primarily focus on optimizing cable-heated asphalt pavement through indoor model tests or finite element results. To obtain more accurate and reasonable temperature rise processes and heat transfer results, [...] Read more.
Electrical heating ice removal pavement represents a promising technology for pavement ice melting. Existing studies primarily focus on optimizing cable-heated asphalt pavement through indoor model tests or finite element results. To obtain more accurate and reasonable temperature rise processes and heat transfer results, we propose a new evaluation metric for heat transfer capability and optimization in electric heating asphalt pavement. Firstly, a three-dimensional heat transfer model considering environmental heat exchange is established, and the accuracy of the model is verified by outdoor measured data. A dual-variable control experiment was carried out between the cable buried depth and insulation layer configuration to specifically analyze their influence on the temperature field of the asphalt layer. We further investigated heat transfer performance metrics (entransy dissipation and entransy dissipation thermal resistance), with results indicating that shallower cable burial depths reduce environmental interference on pavement heat transfer; the thermal insulation layer most significantly enhances pavement surface temperature (35.66% improvement) when cables are embedded in the lower asphalt layer. Placing cables within corresponding pavement layers according to burial depth reduces heat transfer loss capacity and thermal resistance, and positioning cables in the lower asphalt layer with a thermal insulation layer significantly decreases thermal resistance in both concrete and lower asphalt layers while reducing heat transfer capacity loss, demonstrating that installing thermal insulation layers under this structure improves heat transfer efficiency. The combined experimental and simulation verification method and fire dissipation evaluation system proposed in this study provide a new theoretical tool and design criterion for the optimization of electric heating road systems. Full article
Show Figures

Figure 1

19 pages, 3949 KB  
Article
A Coupled Thermochemical Model for Predicting Fire-Induced Thermal Responses and Decomposition Behavior
by Bin Wu, Wenguo Weng, Tai Zeng, Zuxi Xia, Zhengliang Su and Fei Xie
Polymers 2025, 17(7), 939; https://doi.org/10.3390/polym17070939 - 30 Mar 2025
Viewed by 595
Abstract
Composite materials are increasingly used in aerospace applications due to their high strength-to-weight ratio, but their fire safety remains a critical concern. This study develops a coupled thermochemical model to predict the thermal response and decomposition behavior of composite materials under high-temperature fire [...] Read more.
Composite materials are increasingly used in aerospace applications due to their high strength-to-weight ratio, but their fire safety remains a critical concern. This study develops a coupled thermochemical model to predict the thermal response and decomposition behavior of composite materials under high-temperature fire conditions. The framework integrates heat transfer, resin pyrolysis kinetics, and gas generation dynamics, employing the Rule of Mixtures to dynamically update temperature-dependent thermophysical properties (thermal conductivity, specific heat capacity, and density). Decomposition kinetics are governed by an n-th-order Arrhenius equation, explicitly resolving the gas convection effects on energy transport. The governing equations are solved numerically using a hybrid explicit/implicit finite element scheme, ensuring stability under severe thermal gradients. Experimental validation compliant with the 14 CFR Part 25 and ISO 2685 standards demonstrates high predictive accuracy. The model successfully captures key phenomena, including the char layer insulation effects, transient heat flux attenuation, and decomposition-induced property transition. This work establishes a computational foundation for optimizing fire-resistant composites in aerospace applications, addressing critical gaps in the existing models through coupled multiphysics representation. Full article
(This article belongs to the Special Issue Advanced Analytical Methods for Applied Polymeric Science)
Show Figures

Figure 1

27 pages, 2338 KB  
Review
Strengthening of Masonry and Concrete Members with Textile-Reinforced Alkali-Activated Mortars: A Review on the Mechanical Performance
by Paraskevi D. Askouni, Panagiotis Kapsalis, Catherine G. Papanicolaou and Thanasis C. Triantafillou
Materials 2025, 18(7), 1517; https://doi.org/10.3390/ma18071517 - 28 Mar 2025
Cited by 2 | Viewed by 880
Abstract
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared [...] Read more.
Textile-reinforced alkali-activated mortar (TRAAM) is a composite material that is characterized by a strain- or deflection-hardening response under tension or flexure, respectively, as well as by a good bond with concrete and masonry substrates. Owing to comparable or even superior mechanical performance compared to “conventional” cement- or lime-based textile-reinforced mortar (TRM) systems and its potentially eco-friendly energy and environmental performance, TRAAM has been incorporated to retrofitting schemes. The current article reviews the studies that investigate TRAAM as a strengthening overlay for masonry and concrete members. This article focuses on the mechanical performance of the strengthened members, which, where possible, is also compared with that of members strengthened with conventional TRM systems. It is concluded that TRAAM can enhance the flexural and shear capacity of masonry and concrete members, while it can also upgrade the compression strength and seismic response of concrete members. In addition, it is concluded that the effectiveness of TRAAM can be comparable with that of “conventional” TRM systems. The combination of TRAAM with thermal insulation boards has also been proposed for structural and energy upgrading of masonry walls. Furthermore, TRAAM can be a promising solution for increasing the fire resistance of strengthened masonry members. However, research on the long-term performance of TRAAM, including durability, creep, and shrinkage, is still limited. Finally, the lack of established standards for TRM retrofitting is more evident for TRAAM applications. Full article
Show Figures

Figure 1

21 pages, 4638 KB  
Article
Properties and Optimization Process Using Machine Learning for Recycling of Fly and Bottom Ashes in Fire-Resistant Materials
by Elena Guirado, Jaime Delfino Ruiz Martinez, Manuel Campoy and Carlos Leiva
Processes 2025, 13(4), 933; https://doi.org/10.3390/pr13040933 - 21 Mar 2025
Cited by 2 | Viewed by 770
Abstract
Significant amounts of coal fly and bottom ash are generated globally each year, with especially large quantities of bottom ash accumulating in landfills. In this study, fly ash and bottom ash were used to create fire-resistant materials. A mix of 30 wt% gypsum, [...] Read more.
Significant amounts of coal fly and bottom ash are generated globally each year, with especially large quantities of bottom ash accumulating in landfills. In this study, fly ash and bottom ash were used to create fire-resistant materials. A mix of 30 wt% gypsum, 9.5 wt% vermiculite, and 0.5 wt% polypropylene fibers was used, maintaining a constant water-to-solid ratio, with varying fly ash/bottom ash ratios (40/20, 30/30, and 20/40). The density, as well as various mechanical properties (compressive strength, flexural strength, and surface hardness), fire insulation capacity, and leaching behavior of both ashes were evaluated. When comparing the 40/20 and 20/40 compositions, a slight decrease in density was observed; however, compressive strength dropped drastically by 80%, while flexural strength decreased slightly due to the action of the polypropylene fibers, and fire resistance dropped by 8%. Neither of the ashes presented any environmental concerns from a leaching standpoint. Additionally, historical data from various materials with different wastes in previous works were used to train different machine learning models (random forest, gradient boosting, artificial neural networks, etc.). Compressive strength and fire resistance were predicted. Simple parameters (density, water/solid ratio and composition for compressive strength and thickness and the composition for fire resistance) were used as input in the models. Both regression and classification algorithms were applied to evaluate the models’ ability to predict compressive strength. Regression models for fire resistance reached r2 up to about 0.85. The classification results for the fire resistance rating (FRR) showed high accuracy (96%). The prediction of compressive strength is not as good as the fire resistance prediction, but compressive strength classification reached up to 99% accuracy for some models. Full article
Show Figures

Figure 1

20 pages, 4270 KB  
Article
Lignin-Furanic Rigid Foams: Enhanced Methylene Blue Removal Capacity, Recyclability, and Flame Retardancy
by Hugo Duarte, João Brás, El Mokhtar Saoudi Hassani, María José Aliaño-Gonzalez, Solange Magalhães, Luís Alves, Artur J. M. Valente, Alireza Eivazi, Magnus Norgren, Anabela Romano and Bruno Medronho
Polymers 2024, 16(23), 3315; https://doi.org/10.3390/polym16233315 - 27 Nov 2024
Cited by 2 | Viewed by 1479
Abstract
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of [...] Read more.
Worldwide, populations face issues related to water and energy consumption. Water scarcity has intensified globally, particularly in arid and semiarid regions. Projections indicate that by 2030, global water demand will rise by 50%, leading to critical shortages, further intensified by the impacts of climate change. Moreover, wastewater treatment needs further development, given the presence of persistent organic pollutants, such as dyes and pharmaceuticals. In addition, the continuous increase in energy demand and rising prices directly impact households and businesses, highlighting the importance of energy savings through effective building insulation. In this regard, tannin-furanic foams are recognized as promising sustainable foams due to their fire resistance, low thermal conductivity, and high water and chemical stability. In this study, tannin and lignin rigid foams were explored not only for their traditional applications but also as versatile materials suitable for wastewater treatment. Furthermore, a systematic approach demonstrates the complete replacement of the tannin-furan foam phenol source with two lignins that mainly differ in molecular weight and pH, as well as how these parameters affect the rigid foam structure and methylene blue (MB) removal capacity. Alkali-lignin-based foams exhibited notable MB adsorption capacity (220 mg g−1), with kinetic and equilibrium data analysis suggesting a multilayer adsorption process. The prepared foams demonstrated the ability to be recycled for at least five adsorption-desorption cycles and exhibited effective flame retardant properties. When exposed to a butane flame for 5 min, the foams did not release smoke or ignite, nor did they contribute to flame propagation, with the red glow dissipating only 20 s after flame exposure. Full article
(This article belongs to the Special Issue Advances in Sustainable Polymeric Materials, 3rd Edition)
Show Figures

Figure 1

27 pages, 14919 KB  
Review
Expanded Properties and Applications of Porous Flame-Retardant Polymers Containing Graphene and Its Derivatives
by Shan Liu, Min He, Qingdong Qin, Wei Liu, Longfeng Liao and Shuhao Qin
Polymers 2024, 16(14), 2053; https://doi.org/10.3390/polym16142053 - 18 Jul 2024
Cited by 9 | Viewed by 2268
Abstract
With the integration and miniaturization of modern equipment and devices, porous polymers, containing graphene and its derivatives, with flame-retardancy have become a research hotspot. In this paper, the expanded properties and high-end applications of flame-retardant porous materials containing graphene and its derivatives were [...] Read more.
With the integration and miniaturization of modern equipment and devices, porous polymers, containing graphene and its derivatives, with flame-retardancy have become a research hotspot. In this paper, the expanded properties and high-end applications of flame-retardant porous materials containing graphene and its derivatives were discussed. The research progress regarding graphene-based porous materials with multiple energy conversion, thermal insulation, an electromagnetic shielding property, and a high adsorption capacity were elucidated in detail. The potential applications of materials with the above-mentioned properties in firefighter clothing, fire alarm sensors, flexible electronic skin, solar energy storage, energy-saving buildings, stealth materials, and separation were summarized. The construction strategies, preparation methods, comprehensive properties, and functionalization mechanisms of these materials were analyzed. The main challenges and prospects of flame-retardant porous materials containing graphene and its derivatives with expanded properties were also proposed. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Graphical abstract

23 pages, 28825 KB  
Article
Performance Evaluation of Cable Shaft Fireproof Sealing System in High-Rise Buildings: A Comparative Test Method
by Bizhen Zhang, Shengwen Shu, Zhicong Zheng, Bo Qu, Xin Li, Xingyao Xiang and Shuai Xia
Fire 2024, 7(3), 102; https://doi.org/10.3390/fire7030102 - 21 Mar 2024
Viewed by 2549
Abstract
The effectiveness of fireproof sealing systems in preventing the spread of fire in high-rise building cable shafts relies on the properties of various sealing materials and the construction process. Therefore, a comprehensive evaluation is necessary. The authors of this paper propose a comparative [...] Read more.
The effectiveness of fireproof sealing systems in preventing the spread of fire in high-rise building cable shafts relies on the properties of various sealing materials and the construction process. Therefore, a comprehensive evaluation is necessary. The authors of this paper propose a comparative test method based on an entity test platform for a performance evaluation of cable shaft fireproof sealing systems in high-rise buildings. The test platform measures changes in temperature, humidity, and smoke mass during fire tests to compare the performance of four sets of fireproof sealing systems in terms of thermal insulation, smoke sealing capacity, and overall integrity. In addition, a fire dynamics simulation (FDS) of fireproof sealing systems was carried out on the entity test platform, and the sealing failure process in the case of cracking in the fireproof sealing system was revealed. The simulation results for the temperature trends in the lower space align with the fire test results. Furthermore, as the gap size increases, the diffusion of smoke and flame accelerates. Consequently, the performance of cable shaft fireproof sealing systems depends not only on the sealing material but also on the construction process. Full article
(This article belongs to the Special Issue Advances in Fire Prevention and Control for Power Grids)
Show Figures

Figure 1

13 pages, 8557 KB  
Article
Analysis of Paint Properties According to Expandable Graphite and Fire Simulation Research on Firewall Penetration Part
by Seonghun Yu, Jonghyuk Lee, Donghyun Yeo, Junhee Lee, Jinseok Bae and Jeehyun Sim
Polymers 2024, 16(1), 98; https://doi.org/10.3390/polym16010098 - 28 Dec 2023
Cited by 1 | Viewed by 2080
Abstract
In this research, we attempted to develop paints that can be applied to various fields such as high-rise building structures and electric vehicle batteries. To minimize damage to life and property in the event of a fire, we attempted to manufacture a highly [...] Read more.
In this research, we attempted to develop paints that can be applied to various fields such as high-rise building structures and electric vehicle batteries. To minimize damage to life and property in the event of a fire, we attempted to manufacture a highly elastic paint material that can block flames and control smoke spread, and that has additional sound insulation and waterproofing functions. A high-elasticity paint was manufactured by mixing a flame-retardant polyurethane dispersion (PUD) with an acrylic emulsion binder and adding different mass fractions of expandable graphite (EG). The thermal, physical, and morphological properties of the prepared mixed paint were analyzed. The thermal properties of the mixed paint were analyzed and intended to be used as input data (heat transfer coefficient, specific heat capacity) for fire simulation. Output data were used to predict how much the temperature would change depending on the time of fire occurrence. The reason for conducting simulations on the fire stability of paint materials is that the fire stability of paints can be predicted without conducting fire tests. Two hours after the fire broke out, the thermal temperature distribution was analyzed. The temperature distribution was compared with and without mixed paint. Two hours after a fire broke out in a virtual space, it was found that when the mixed paint was applied, the surrounding temperature of the penetration area was lower than when the mixed paint was not applied. Development costs for developing excellent paints can be reduced. Since fire safety can be predicted without actually conducting tests, the time required for product development can be reduced. We are confident that this is a very groundbreaking technology because it allows fire safety simulations for developed products to be conducted in a virtual space by creating an environment similar to actual fire test standards. Full article
(This article belongs to the Special Issue High-Temperature-Resistant Polymers and Their Advanced Composites)
Show Figures

Figure 1

Back to TopTop