Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (362)

Search Parameters:
Keywords = finite-difference time-domain method (FDTD)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2867 KB  
Article
Facile Fabrication of Moderate Sensitivity SERS Substrate Using Cu-Plasma Polymer Fluorocarbon Nanocomposite Thin Film
by Sejin Cho, Sung Hyun Kim, Joowon Lee and Sang-Jin Lee
Coatings 2026, 16(1), 108; https://doi.org/10.3390/coatings16010108 - 13 Jan 2026
Viewed by 11
Abstract
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders [...] Read more.
Herein, we propose a simple and cost-effective method for fabricating moderate-sensitivity surface-enhanced Raman scattering (SERS) substrates using Cu-plasma polymer fluorocarbon (Cu-PPFC) nanocomposite films fabricated through RF sputtering. The use of a composite target composed of carbon nanotube (CNT), Cu, and polytetrafluoroethylene (PTFE) powders (5:60–80:35–15 wt%) offers the advantage of the simple fabrication of moderate-sensitivity SERS substrates with a single cathode compared to co-sputtering. X-ray photoelectron spectroscopy (XPS) revealed that the film surface was partially composed of metallic Cu with Cu-F bonds and Cu–O bonds, confirming the coexistence of the conducting and plasmon-active domains. UV-VIS spectroscopy revealed a distinct absorption peak at approximately 680 nm, indicating the excitation of localized surface plasmon resonances in the Cu nanoclusters embedded in the plasma polymer fluorocarbon (PPFC) matrix. Atomic force microscopy and grazing incidence small-angle X-ray scattering analyses confirmed that the Cu nanoparticles were uniformly distributed with interparticle distances of 20–35 nm. The Cu-PPFC nanocomposite film with the highest Cu content (80 wt%) exhibited a Raman enhancement factor of 2.18 × 104 for rhodamine 6G, demonstrating its potential as a moderate-sensitivity SERS substrate. Finite-difference time-domain (FDTD) simulations confirmed the strong electromagnetic field localization at the Cu-Cu nanogaps separated by the PPFC matrix, corroborating the experimentally observed SERS enhancement. These results suggest that a Cu-PPFC nanocomposite film, easily fabricated using a composite target, provides an efficient and scalable route for fabricating reproducible, inexpensive, and moderate-sensitivity SERS substrates suitable for practical sensing applications. Full article
(This article belongs to the Special Issue Advanced Optical Film Coating)
Show Figures

Figure 1

14 pages, 7536 KB  
Article
The Modulated Hot Spot Formation of Void Defects During Laser Initiation in RDX Energetic Crystals
by Zhonghua Yan, Jiaojun Yang, Shuhuai Zhang, Jiangen Zheng, Weiping Li, Nana Pan, Xiang Chen, Xia Xiang, Xiaotao Zu, Bisheng Tan, Xiaodong Yuan and Ranran Fang
Crystals 2026, 16(1), 27; https://doi.org/10.3390/cryst16010027 - 30 Dec 2025
Viewed by 188
Abstract
The interaction between laser irradiation and energetic materials is critically influenced by microstructural void defects that determine local energy deposition and initiation sensitivity. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method was employed to investigate the modulation effects of void defects on [...] Read more.
The interaction between laser irradiation and energetic materials is critically influenced by microstructural void defects that determine local energy deposition and initiation sensitivity. In this work, a three-dimensional finite-difference time-domain (3D-FDTD) method was employed to investigate the modulation effects of void defects on optical field distributions and hot spot formation in RDX energetic crystals. The influences of void geometry, spatial position, and void number on the modulation of the incident laser beam were systematically analyzed. It reveals that void defects exhibit strong focusing and scattering behavior, leading to localized high-intensity regions both inside RDX bulk crystals and in void defects. For a single void defect, increasing either the width or depth can significantly enhance the peak electric field and thus the laser sensitivity of RDX crystals. When two voids are present, the number of high-intensity spots first increases and then decreases with increasing separation distance, and the strongest modulation effects are obtained at separations of 0.75λ–3λ. Furthermore, as the number of void defects increases, the modulation effect intensifies, promoting the formation of more hot spots. These findings provide quantitative insight into how void structures govern laser–matter interactions in energetic crystals, offering guidance for understanding and controlling laser initiation behavior. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

18 pages, 3977 KB  
Article
An Improved FDTD Method Based on Multi-Frame Lorentz Transformations for Plasma-Sheath-Covered Hypersonic Vehicle
by Bowen Bai, Yilin Yang, Boyu Zhao, Bailiang Pu, Mingyao Xue, Xiaoping Li and Yanming Liu
Electronics 2026, 15(1), 161; https://doi.org/10.3390/electronics15010161 - 29 Dec 2025
Viewed by 165
Abstract
The atmospheric reentry of hypersonic vehicles generates a plasma sheath enveloping the vehicle surface. This fluid medium moves at velocities distinct from the vehicle body, significantly altering its electromagnetic scattering properties. This paper introduces a Multi-Frame Lorentz Transformation Finite-Difference Time-Domain (FDTD) method, which [...] Read more.
The atmospheric reentry of hypersonic vehicles generates a plasma sheath enveloping the vehicle surface. This fluid medium moves at velocities distinct from the vehicle body, significantly altering its electromagnetic scattering properties. This paper introduces a Multi-Frame Lorentz Transformation Finite-Difference Time-Domain (FDTD) method, which incorporates a spatially varying velocity field into the computational scheme. The proposed algorithm maintains velocity synchronization in electromagnetic field updates and employs a near-to-far-field transformation for far-zone analysis. We systematically investigate the scattering characteristics of a plasma-sheath-covered hypersonic vehicle across a range of velocities and analyze the effect of velocity on the Radar Cross-Section (RCS) under different polarization conditions. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

11 pages, 1338 KB  
Article
Application of FDTD Method in the Calculation of Lightning Propagation Effects on Mixed Terrain of Land and Sea
by Fang Xiao, Qiming Ma, Xiao Zhou, Jiajun Song, Jiaquan Wang and Linsen Jiang
Information 2026, 17(1), 20; https://doi.org/10.3390/info17010020 - 29 Dec 2025
Viewed by 223
Abstract
Based on the finite-difference time-domain (FDTD) method, this study investigates the propagation effects of lightning electromagnetic fields over mixed sea–land paths. A self-developed FDTD computational model is employed, which takes into account the influence of the Earth–ionosphere waveguide structure on the radiation field [...] Read more.
Based on the finite-difference time-domain (FDTD) method, this study investigates the propagation effects of lightning electromagnetic fields over mixed sea–land paths. A self-developed FDTD computational model is employed, which takes into account the influence of the Earth–ionosphere waveguide structure on the radiation field propagation. Through numerical simulations, the waveforms of the vertical electric field and azimuthal magnetic field of the lightning radiation during mixed-path propagation are obtained. The results demonstrate that under long-distance propagation conditions of 50 km, the discontinuity between land and sea media significantly distorts the electric field waveform, while the influence on the magnetic field waveform is negligible. This study provides a reliable numerical basis for analyzing the propagation characteristics of lightning radiation fields in complex terrain and offers valuable insights for lightning location and electromagnetic environment assessment. Full article
Show Figures

Figure 1

16 pages, 4439 KB  
Article
FDTD Simulation on Signal Propagation and Induced Voltage of UHF Self-Sensing Shielding Ring for Partial Discharge Detection in GIS
by Ruipeng Li, Siqing Wang, Wei Zhang, Huiwu Liu, Longxing Li, Shurong Yuan, Dong Wang and Guanjun Zhang
Electronics 2025, 14(23), 4757; https://doi.org/10.3390/electronics14234757 - 3 Dec 2025
Viewed by 339
Abstract
Partial discharge (PD) is not only the primary manifestation of insulation deterioration in gas-insulated switchgear (GIS) but also a critical indicator of the equipment’s insulation condition. PD in GIS typically occurs at media interfaces such as the surface of the basin insulator and [...] Read more.
Partial discharge (PD) is not only the primary manifestation of insulation deterioration in gas-insulated switchgear (GIS) but also a critical indicator of the equipment’s insulation condition. PD in GIS typically occurs at media interfaces such as the surface of the basin insulator and is characterized by high randomness and low amplitude. Conventional built-in ultra-high frequency sensors exhibit limitations in early warning and detection performance. This study proposes and demonstrates a self-sensing shielding ring embedded within the basin insulator, functioning as a novel UHF sensor. Finite-difference time-domain (FDTD) is a numerical method used to solve problems involving electromagnetic fields. Based on actual GIS structural parameters, a FDTD simulation platform is constructed and a built-in sensor is used as a control to evaluate the receiving performance of the self-sensing shielding ring for PD signals. Time-domain array simulations are conducted to investigate the influence of radial, angular and axial positions on the observed performance. The results show that the proposed shielding ring exhibits broadband and low-reflection characteristics, achieving an average S11 of −6.347 dB, which is significantly lower than those of the built-in sensors (−1.270 dB and −1.274 dB). The results demonstrate that the self-sensing shielding ring enables high sensitivity and the wideband detection of partial discharge, providing a new design approach and technical foundation for online early-warning systems in GIS. Full article
(This article belongs to the Special Issue Polyphase Insulation and Discharge in High-Voltage Technology)
Show Figures

Figure 1

14 pages, 2531 KB  
Article
Highly Sensitive SERS Detection of Food Colorants via Charge Transfer of Metal and Semiconductor in Ag/TiO2/Ti Foam
by Qunlong Wang, Yuting Jing, De Zhang, Ruijing Wang, Linlin Chen, Jianghua Zhang, Shaofeng Sui and Xuefeng Wang
Foods 2025, 14(23), 3998; https://doi.org/10.3390/foods14233998 - 22 Nov 2025
Cited by 1 | Viewed by 434
Abstract
A three-dimensional Ag/TiO2/Ti foam was fabricated via thermal annealing followed by pulsed laser deposition (PLD), providing a simple and scalable fabrication strategy. The porous Ti foam framework allows for the uniform dispersion of Ag nanoparticles (NPs), while the thermally formed TiO [...] Read more.
A three-dimensional Ag/TiO2/Ti foam was fabricated via thermal annealing followed by pulsed laser deposition (PLD), providing a simple and scalable fabrication strategy. The porous Ti foam framework allows for the uniform dispersion of Ag nanoparticles (NPs), while the thermally formed TiO2 interlayer promotes synergistic electromagnetic and chemical enhancement mechanisms. The localized electromagnetic field amplification at Ag-TiO2 interfaces was simulated using the finite-difference time-domain (FDTD) method. Density functional theory (DFT) calculations confirmed that TiO2 enhances both rhodamine 6G (R6G) adsorption on the substrate and charge transfer (CT) between the substrate and R6G, increasing the SERS activity. The optimized substrate demonstrates exceptional surface-enhanced Raman scattering (SERS) performance with an enhancement factor of 1.9 × 107 and a detection limit of 2.24 × 10−11 M for rhodamine 6G, with good reproducibility (RSD = 8.4%). Practical applicability is validated through sensitive detection of food colorants (brilliant blue and allura red). The synergistic combination of CT and electromagnetic enhancement in the easily fabricated Ag/TiO2/Ti foam enables its application as a promising platform for food safety monitoring, effectively bridging laboratory innovation and practical applications. Full article
(This article belongs to the Section Food Analytical Methods)
Show Figures

Graphical abstract

7 pages, 3245 KB  
Article
Tapered Cladding Design for Monolithic Waveguide–Photodetector Coupling in Si-Based Integrated Photonics
by Alfredo A. Gonzalez-Fernandez, Jorge A. Vazquez-Hernandez, Felix Aguilar-Valdez and Neil Moffat
Nanomaterials 2025, 15(22), 1731; https://doi.org/10.3390/nano15221731 - 17 Nov 2025
Viewed by 580
Abstract
Silicon photonics offers a powerful route to leverage existing microelectronics infrastructure to enhance performance and enable new applications in data processing and sensing. Among the available material platforms, silicon nitride (Si3N4) provides significant advantages due to its wide optical [...] Read more.
Silicon photonics offers a powerful route to leverage existing microelectronics infrastructure to enhance performance and enable new applications in data processing and sensing. Among the available material platforms, silicon nitride (Si3N4) provides significant advantages due to its wide optical transmission window. A key challenge, however, remains the monolithic integration of passive nitride-based photonic components with active electronic devices directly on silicon wafers. In this work, we propose and demonstrate a tapered bottom-cladding design that enables efficient coupling of visible light from Si3N4/SiO2 core–cladding waveguides into planar p–n junction photodiodes fabricated on the silicon surface. Si3N4/SiO2 waveguides were fabricated using fully CMOS-compatible processes and materials. Controlled reactive ion etching (RIE) of SiO2 allowed the formation of vertically tapered claddings, and finite-difference time-domain (FDTD) simulations were carried out to analyze coupling efficiency across wavelengths from 509 nm to 740 nm. Simulations showed transmission efficiencies above 90% for taper angles below 30°, with near-total coupling at 10°. Experimental fabrication achieved angles as low as 8°. Responsivity simulations yielded values up to 311 mA W−1 for photodiodes without internal gain. These results demonstrate the feasibility of fabricating monolithic Si-based waveguide–photodetector systems using simple, CMOS-compatible methods, opening a scalable path for integrated photonic–electronic devices operating in the visible range. Full article
Show Figures

Figure 1

16 pages, 2782 KB  
Article
Defect–Coating–Wavelength Coupling Effects on Nano-Scale Electric Field Modulation in Fused Silica Under Multi-Wavelength Irradiation
by Hongbing Cao, Xing Peng, Feng Shi and Xinjie Zhao
Nanomaterials 2025, 15(21), 1626; https://doi.org/10.3390/nano15211626 - 25 Oct 2025
Viewed by 541
Abstract
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength [...] Read more.
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength irradiation, AR coating layers, and defects in AR-coated fused silica, this paper uses the finite-difference time-domain (FDTD) method to simulate the nanoscale electric field intensity distribution in fused silica coated with a double-layer AR coating at three different design wavelengths using multi-wavelength lasers. The effects of electric field coupling between the coating layers and defects are analyzed for three representative scratch geometries. The results show that when the incident wavelength matches the AR design wavelength, the interface field is effectively suppressed, resulting in a smoother field distribution and localized hot spots. Conversely, mismatched wavelengths induce severe field distortion, producing multiple hot spots and lateral interference fringes. Wide, shallow scratches are particularly sensitive to wavelength mismatch, with a 532 nm AR coating exhibiting a global maximum enhancement factor of 1.63442 for 355 nm incident light. These findings highlight the coupling effects of scratch geometry, AR coating dispersion, and laser wavelength on electric field modulation. This research provides valuable insights for optimizing antireflection coatings and improving defect tolerance in multi-wavelength laser applications, helping to improve the reliability of high-power laser systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

22 pages, 3491 KB  
Review
A Review of Sub-Wavelength Wire Grid Polarizers and Their Development Trends
by Bing Chen, Xiuhua Fu, Xianzhu Liu, Yonggang Pan, Suotao Dong, Ben Wang, Zhaowen Lin and Huilin Jiang
Photonics 2025, 12(11), 1046; https://doi.org/10.3390/photonics12111046 - 23 Oct 2025
Viewed by 1201
Abstract
There has been a significant rise in the fabrication of polarizing elements with the rapid advancement of polarization imaging technology, coinciding with a rise in research on such elements. This article provides a comprehensive review of sub-wavelength wire grid polarizers which can be [...] Read more.
There has been a significant rise in the fabrication of polarizing elements with the rapid advancement of polarization imaging technology, coinciding with a rise in research on such elements. This article provides a comprehensive review of sub-wavelength wire grid polarizers which can be applied in different operating wavelength ranges, specifically focusing on their design, as well as their related fabrication processes and metrology methods. First, structural parameters, designed and simulated via the finite-difference time-domain (FDTD) method or rigorous coupled wave analysis (RCWA), and their impact on wire grid performance are investigated based on the effective medium theory. Second, a comprehensive overview of domestic and international studies is provided, focusing on the developments in sub-wavelength wire grid polarizers with single-layer structures and bilayer structures at different operating wavelength bands—deep ultraviolet, visible, middle- and far-infrared, and terahertz wavelength bands. Research related to polarizers with multilayer structures, simulated and carried out via the use of specific software, is also presented. Finally, the progress regarding sub-wavelength wire grid polarizer research is summarized, and future prospects are forecasted, with emphasis on material selection, wire grid structure optimization, and innovation in manufacturing processes. Full article
(This article belongs to the Section Optoelectronics and Optical Materials)
Show Figures

Figure 1

12 pages, 2252 KB  
Article
Ultra-High Spectral Contrast Nanobeam Photonic Crystal Cavity on Bending Waveguide
by Ping Yu, Peihong Cheng, Zhuoyuan Wang, Jingrui Wang, Fangfang Ge, Huiye Qiu and Daniel Kacik
Photonics 2025, 12(10), 1031; https://doi.org/10.3390/photonics12101031 - 17 Oct 2025
Viewed by 699
Abstract
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show [...] Read more.
In this article, one-dimensional photonic crystal cavities on bending waveguides (PCCoBW) used for achieving high-contrast spectra are proposed, analyzed, and experimentally verified on silicon on insulator (SOI). Both air and dielectric modes of the PCCoBW calculated by the finite-difference time-domain (FDTD) method show finger-ring-like mode profiles with the achievement of high-quality factors (Q∼106), even when the bending radius is less than 50 times the lattice constant. Straight waveguides side-coupled to the cavity are used to access and measure mode resonances. The measured spectra show a high extinction ratio over 40 dB for dielectric modes and 20 dB for air modes, respectively. Both dielectric and air resonant modes are revealed with Q-factors over 3.3 × 104 and 7.9 × 104, respectively, for the coupled PCCoBWs. The proposed PCCoBW could be implemented as high-contrast notch filtering and would benefit a broad range of applications such as optical filters, modulators, sensors, or switches. Full article
(This article belongs to the Special Issue Recent Advancement in Microwave Photonics)
Show Figures

Figure 1

13 pages, 4449 KB  
Article
Design of High-Efficiency Silicon Nitride Grating Coupler with Self-Compensation for Temperature Drift
by Qianwen Lin, Yunxin Wang, Yu Zhang, Chang Liu and Wenqi Wei
Photonics 2025, 12(10), 959; https://doi.org/10.3390/photonics12100959 - 28 Sep 2025
Cited by 1 | Viewed by 1226
Abstract
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this [...] Read more.
In order to solve the problem of the efficiency reduction and complex manufacturing of traditional grating couplers under environmental temperature fluctuations, a Si3N4 high-efficiency grating coupler integrating a distributed Bragg reflector (DBR) and thermo-optical tuning layer is proposed. In this paper, the double-layer DBR is used to make the down-scattered light interfere with other light and reflect it back into the waveguide. The finite difference time domain (FDTD) method is used to simulate and optimize the key parameters such as grating period, duty cycle, incident angle and cladding thickness, achieving a coupling efficiency of −1.59 dB and a 3 dB bandwidth of 106 nm. In order to further enhance the temperature stability, the amorphous silicon (a-Si) thermo-optical material layer and titanium metal serpentine heater are embedded in the DBR. The reduction in coupling efficiency caused by fluctuations in environmental temperature is compensated via local temperature control. The simulation results show that within the wide temperature range from −55 °C to 150 °C, the compensated coupling efficiency fluctuation is less than 0.02 dB, and the center wavelength undergoes a blue shift. This design is compatible with complementary metal-oxide-semiconductor (CMOS) processes, which not only simplifies the fabrication process but also significantly improves device stability over a wide temperature range. This provides a feasible and efficient coupling solution for photonic integrated chips in non-temperature-controlled environments, such as optical communications, data centers, and automotive systems. Full article
Show Figures

Figure 1

28 pages, 6410 KB  
Article
Two-Step Forward Modeling for GPR Data of Metal Pipes Based on Image Translation and Style Transfer
by Zhishun Guo, Yesheng Gao, Zicheng Huang, Mengyang Shi and Xingzhao Liu
Remote Sens. 2025, 17(18), 3215; https://doi.org/10.3390/rs17183215 - 17 Sep 2025
Viewed by 821
Abstract
Ground-penetrating radar (GPR) is an important geophysical technique in subsurface detection. However, traditional numerical simulation methods such as finite-difference time-domain (FDTD) face challenges in accurately simulating complex heterogeneous mediums in real-world scenarios due to the difficulty of obtaining precise medium distribution information and [...] Read more.
Ground-penetrating radar (GPR) is an important geophysical technique in subsurface detection. However, traditional numerical simulation methods such as finite-difference time-domain (FDTD) face challenges in accurately simulating complex heterogeneous mediums in real-world scenarios due to the difficulty of obtaining precise medium distribution information and high computational costs. Meanwhile, deep learning methods require excessive prior information, which limits their application. To address these issues, this paper proposes a novel two-step forward modeling strategy for GPR data of metal pipes. The first step employs the proposed Polarization Self-Attention Image Translation network (PSA-ITnet) for image translation, which is inspired by the process where a neural network model “understands” image content and “rewrites” it according to specified rules. It converts scene layout images (cross-sectional schematics depicting geometric details such as the size and spatial distribution of underground buried metal pipes and their surrounding medium) into simulated clutter-free GPR B-scan images. By integrating the polarized self-attention (PSA) mechanism into the Unet generator, PSA-ITnet can capture long-range dependencies, enhancing its understanding of the longitudinal time-delay property in GPR B-scan images. which is crucial for accurately generating hyperbolic signatures of metal pipes in simulated data. The second step uses the Polarization Self-Attention Style Transfer network (PSA-STnet) for style transfer, which transforms the simulated clutter-free images into data matching the distribution and characteristics of a real-world underground heterogeneous medium under unsupervised conditions while retaining target information. This step bridges the gap between ideal simulations and actual GPR data. Simulation experiments confirm that PSA-ITnet outperforms traditional methods in image translation, and PSA-STnet shows superiority in style transfer. Real-world experiments in a complex bridge support structure scenario further verify the method’s practicability and robustness. Compared to FDTD, the proposed strategy is capable of generating GPR data matching real-world subsurface heterogeneous medium distributions from scene layout models, significantly reducing time costs and providing an efficient solution for GPR data simulation and analysis. Full article
Show Figures

Figure 1

22 pages, 7111 KB  
Article
Study on the Ground-Penetrating Radar Response Characteristics of Pavement Voids Based on a Three-Phase Concrete Model
by Shuaishuai Wei, Huan Zhang, Jiancun Fu and Wenyang Han
Sensors 2025, 25(18), 5713; https://doi.org/10.3390/s25185713 - 12 Sep 2025
Viewed by 1225
Abstract
Concrete pavements frequently develop subsurface voids between surface and base layers during long-term service due to cyclic loading, environmental effects, and subgrade instability, which compromise structural integrity and traffic safety. Ground-penetrating radar (GPR) has been widely used as a non-destructive method for detecting [...] Read more.
Concrete pavements frequently develop subsurface voids between surface and base layers during long-term service due to cyclic loading, environmental effects, and subgrade instability, which compromise structural integrity and traffic safety. Ground-penetrating radar (GPR) has been widely used as a non-destructive method for detecting such voids. However, the presence of coarse aggregates with strong electromagnetic scattering properties often introduces pseudo-reflection signals in radar images, hindering accurate void identification. To address this challenge, this study develops a high-fidelity three-phase concrete model incorporating aggregates, mortar, and the interfacial transition zone (ITZ). The Finite-Difference Time-Domain (FDTD) method is used to simulate electromagnetic wave propagation in both voided and intact structures. Simulation results reveal that aggregate-induced scattering can blur or distort reflection interfaces, generating pseudo-hyperbolic anomalies even in the absence of voids. In cases of thin-layer voids, real echo signals may be masked by aggregate scattering, leading to missed detections. GPR systems can be broadly classified into impulse, continuous-wave, and multi-frequency types. To validate the simulations, field tests using multi-frequency 2D/3D GPR systems and borehole verification were conducted. The results confirm the consistency between simulated and actual radar anomalies and validate the proposed model. This work provides theoretical insight and modeling strategies to enhance the interpretation accuracy of GPR data for subsurface void detection in concrete pavements. Full article
(This article belongs to the Special Issue Electromagnetic Non-Destructive Testing and Evaluation)
Show Figures

Figure 1

13 pages, 1644 KB  
Article
Modeling and Simulation of Highly Efficient and Eco-Friendly Perovskite Solar Cells Enabled by 2D Photonic Structuring and HTL-Free Design
by Ghada Yassin Abdel-Latif
Electronics 2025, 14(18), 3607; https://doi.org/10.3390/electronics14183607 - 11 Sep 2025
Viewed by 1029
Abstract
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce [...] Read more.
A novel, eco-friendly perovskite solar cell design is investigated using numerical simulations based on the finite-difference time-domain (FDTD) method. The proposed structure incorporates a two-dimensional (2D) photonic crystal (PhC) architecture featuring a titanium dioxide (TiO2) cylindrical electron extraction layer. To reduce fabrication complexity and overall production costs, a hole-transport-layer-free (HTL-free) configuration is employed. Simulation results reveal a significant enhancement in photovoltaic performance compared to conventional planar structures, achieving an ultimate efficiency of 42.3%, compared to 36.6% for the traditional design—an improvement of over 16%. Electromagnetic field distributions are analyzed to elucidate the physical mechanisms behind the enhanced absorption. The improved optical performance is attributed to strong coupling between photonic modes and surface plasmon polaritons (SPPs), which enhances light–matter interaction. Furthermore, the device exhibits polarization-insensitive and angle-independent absorption characteristics, maintaining high performance for both transverse magnetic (TM) and transverse electric (TE) polarizations at incidence angles up to 60°. These findings highlight a promising pathway toward the development of cost-effective, lead-free perovskite solar cells with high efficiency and simplified fabrication processes. Full article
Show Figures

Figure 1

25 pages, 15183 KB  
Article
Permittivity Measurement in Multi-Phase Heterogeneous Concrete Using Evidential Regression Deep Network and High-Frequency Electromagnetic Waves
by Zhaojun Hou, Hui Liu, Jianchuan Cheng, Qifeng Zhang and Zheng Tong
Materials 2025, 18(16), 3766; https://doi.org/10.3390/ma18163766 - 11 Aug 2025
Cited by 1 | Viewed by 679
Abstract
Permittivity measurements of concrete materials benefit from the application of high-frequency electromagnetic waves (HF-EMWs), but they still face the problem of being aleatory and exhibit epistemic uncertainty, originating from multi-phase heterogeneous materials and the limited knowledge of HF-EMW propagation. This limitation restricts the [...] Read more.
Permittivity measurements of concrete materials benefit from the application of high-frequency electromagnetic waves (HF-EMWs), but they still face the problem of being aleatory and exhibit epistemic uncertainty, originating from multi-phase heterogeneous materials and the limited knowledge of HF-EMW propagation. This limitation restricts the precision of non-destructive testing. This study proposes an evidential regression deep network for conducting permittivity measurements with uncertainty quantification. This method first proposes a finite-difference time-domain (FDTD) model with multi-phase heterogeneous concrete materials to simulate HF-EMW propagation in a concrete sample or structure, obtaining the HF-EMW echo that contains aleatory uncertainties owing to the limited knowledge of wave propagation. A U-net-based model is then proposed to denoise an HF-EMW, where the difference between a couple of observed and denoised HF-EMWs characterizes aleatory uncertainty owing to measurement noise. Finally, a Dempster–Shafer theory-based (DST-based) evidential regression network is proposed to compute permittivity, incorporating the quantification of two types of uncertainty using a Gaussian random fuzzy number (GRFN): a type of fuzzy set that has the characteristics of a Gaussian fuzzy number and a Gaussian random variable. An experiment with 1500 samples indicates that the proposed method measures permittivity with a mean square error of 7.50% and a permittivity uncertainty value of 74.70% in four types of concrete materials. Additionally, the proposed method can quantify the uncertainty in permittivity measurements using a GRFN-based belief measurement interval. Full article
Show Figures

Figure 1

Back to TopTop