Flexible TiO2/ZrO2/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Apparatus
2.2. Synthesis of AuCNAs
2.3. Electrospinning of Nanofiber Films with TiO2 and ZrO2
2.4. Assembly of Flexible SERS Substrate
2.5. Detection of Standard Solutions
2.6. Detection of Actual Samples
2.7. Data Analysis for Detection
2.8. Theoretical Simulations
3. Results and Discussion
3.1. Characterization of AuCNA
3.2. Optimization of the Electrostatic Spinning Process
3.3. SERS Performance Verification of Flexible Films
3.4. SERS Mechanism Exploration of Asomate on Flexible Film
3.5. Detection of Asomate on Apple Epidermis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liang, X.; Zhang, R.; Gleason, M.L.; Sun, G. Sustainable Apple Disease Management in China: Challenges and Future Directions for a Transforming Industry. Plant Dis. 2022, 106, 786–799. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Xu, J.L.; Li, X.L.; Zhang, F. Green production of apples delivers environmental and economic benefits in China. Plant Commun. 2024, 5, 101006. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.J.; Gan, W.M.; Cai, M.D.; Cai, H.; Zhang, G.; Cheng, X. Development of a novel HPLC-CDCL method utilizing nitrogen-doped carbon dots for sensitive and selective detection of dithiocarbamate pesticides in tea. Food Chem. 2024, 458, 140237. [Google Scholar] [CrossRef]
- He, G.Y.; Xie, R.; Hou, X.; Yu, X.; Qiu, S.; Qin, S.; Wang, F.; Chen, X. Safety risk of using asomate to reduce acid in Citrus production. J. Food Compos. Anal. 2024, 134, 106537. [Google Scholar] [CrossRef]
- Qin, G.F.; Chen, Y.; He, F.R.; Yang, B.; Zou, K.; Shen, N.; Zuo, B.; Liu, R.; Zhang, W.; Li, Y. Risk assessment of fungicide pesticide residues in vegetables and fruits in the mid-western region of China. J. Food Compos. Anal. 2021, 95, 103663. [Google Scholar] [CrossRef]
- He, G.Y.; Chen, X.; Hou, X.; Yu, X.; Han, M.; Qiu, S.; Li, Y.; Qin, S.; Wang, F. UPLC-Q-TOF/MS-based metabolomic analysis reveals the effects of asomate on the citrus fruit. Curr. Res. Food Sci. 2023, 6, 100523. [Google Scholar] [CrossRef]
- Shi, R.G.; Yuan, L.; Chen, M.L.; Zheng, X.; Liu, X.; Zhao, Y.; Liu, A.; Jia, J.; Xu, M.; Zhao, Z. Detection of Frequently Used Pesticides in Apple Orchard Soil in China by High Resolution Mass Spectrometry. Pol. J. Environ. Stud. 2020, 29, 1341–1350. [Google Scholar] [CrossRef]
- Da Silva, R.C.; dos Santos, I.D.; Neu, J.P.; Wouters, R.D.; Fontana, M.E.Z.; Balbinot, P.D.R.; Wagner, R.; Pizzutti, I.R. Commercial yerba mate (Ilex paraguariensis) produced in South America: Determination of dithiocarbamate residues by gas chromatography-mass spectrometry. Food Chem. 2022, 394, 133513. [Google Scholar] [CrossRef]
- Balkan, T.; Yılmaz, Ö. Method validation, residue and risk assessment of 260 pesticides in some leafy vegetables using liquid chromatography coupled to tandem mass spectrometry. Food Chem. 2022, 384, 132516. [Google Scholar] [CrossRef]
- Pérez-Fernández, B.; Mercader, J.V.; Abad-Fuentes, A.; Checa-Orrego, B.I.; Costa-García, A.; Escosura-Muñiz, A.d.l. Direct competitive immunosensor for Imidacloprid pesticide detection on gold nanoparticle-modified electrodes. Talanta 2020, 209, 120465. [Google Scholar] [CrossRef]
- Sun, Y.; Tang, H.B.; Zou, X.B.; Meng, G.; Wu, N. Raman spectroscopy for food quality assurance and safety monitoring: A review. Curr. Opin. Food Sci. 2022, 47, 100910. [Google Scholar] [CrossRef]
- Xia, D.C.; Jiang, P.P.; Cai, Z.W.; Zhou, R.; Tu, B.; Gao, N.; Chang, G.; He, H.; He, Y. Ag nanocubes monolayer-modified PDMS as flexible SERS substrates for pesticides sensing. Microchim. Acta 2022, 189, 232. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.L.; Hu, Y.X.; Yu, H.M.; Sun, S.; Xu, D.; Zhang, Z.; Cong, S.; She, Y. Detection of neonicotinoids in agricultural products using magnetic molecularly imprinted polymers-surface enhanced Raman spectroscopy. Talanta 2024, 266, 125000. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.; Lee, S.; Vu, N.T.; Kim, H.; Hwang, I.S.; Oh, C.S.; You, J. Label-Free Surface-Enhanced Raman Scattering Detection of Fire Blight Pathogen Using a Pathogen-Specific Bacteriophage. J. Agric. Food Chem. 2024, 72, 2374–2380. [Google Scholar] [CrossRef]
- Weng, S.Z.; Tang, L.; Qiu, M.Q.; Wang, J.H.; Wu, Y.; Zhu, R.; Wang, C.; Li, P.; Sha, W.; Liang, D. Surface-enhanced Raman spectroscopy charged probes under inverted superhydrophobic platform for detection of agricultural chemicals residues in rice combined with lightweight deep learning network. Anal. Chim. Acta 2023, 1262, 341264. [Google Scholar] [CrossRef]
- Yang, C.W.; Zhang, X.; Yuan, L.; Wang, Y.-K.; Sheng, G.-P. Deciphering the microheterogeneous repartition effect of environmental matrix on surface-enhanced Raman spectroscopy (SERS) analysis for pollutants in natural waters. Water Res. 2023, 232, 119668. [Google Scholar] [CrossRef] [PubMed]
- Ruan, X.J.; Xie, L.F.; Liu, J.; Ge, Q.; Liu, Y.; Li, K.; You, W.; Huang, T.; Zhang, L. Rapid detection of nanoplastics down to 20 nm in water by surface-enhanced raman spectroscopy. J. Hazard. Mater. 2024, 462, 132702. [Google Scholar] [CrossRef]
- Sun, X.M.; Zhao, Y.; Liu, L.; Qiao, Y.; Yang, C.; Wang, X.; Li, Q.; Li, Y. Visual whole-process monitoring of pesticide residues: An environmental perspective using surface-enhanced Raman spectroscopy with dynamic borohydride-reduced silver nanoparticles. J. Hazard. Mater. 2024, 465, 133338. [Google Scholar] [CrossRef]
- Wang, T.; Wang, S.P.; Cheng, Z.H.; Wei, J.; Yang, L.; Zhong, Z.; Hu, H.; Wang, Y.; Zhou, B.; Li, P. Emerging core–shell nanostructures for surface-enhanced Raman scattering (SERS) detection of pesticide residues. Chem. Eng. J. 2021, 424, 130323. [Google Scholar] [CrossRef]
- Wang, J.H.; Zhu, R.; Wu, Y.H.; Tang, L.; Wang, C.; Qiu, M.; Zheng, L.; Li, P.; Weng, S. Dynamic surface-enhanced Raman spectroscopy and positively charged probes for rapid detection and accurate identification of fungal spores in infected apples via deep learning methods. Food Control 2024, 157, 110151. [Google Scholar] [CrossRef]
- Wang, X.T.; Jiang, S.; Liu, Z.H.; Sun, X.M.; Zhang, Z.; Quan, X.; Zhang, T.; Kong, W.; Yang, X.; Li, Y. Integrated surface-enhanced Raman spectroscopy and convolutional neural network for quantitative and qualitative analysis of pesticide residues on pericarp. Food Chem. 2024, 440, 138214. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Ma, J.M.; Jiang, P.D.; Shen, J.; Wang, R.; Wang, Y.; Tu, G. Large-scale flexible Surface-Enhanced Raman Scattering (SERS) sensors with high stability and signal homogeneity. ACS Appl. Mater. Interfaces 2020, 12, 45332–45341. [Google Scholar] [CrossRef]
- Hu, B.C.; Pu, H.B.; Sun, D.W. Flexible Au@AgNRs/CMC/qPCR film with enhanced sensitivity, homogeneity and stability for in-situ extraction and SERS detection of thiabendazole on fruits. Food Chem. 2023, 423, 135840. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.L.; Wang, Z.S.; Chen, C.N.; Liu, J.; Lu, J.; Lu, N. Fabrication of flexible pyramid array as SERS substrate for direct sampling and reproducible detection. Anal. Chem. 2023, 95, 14184–14191. [Google Scholar] [CrossRef]
- Chen, D.Z.; Zhang, L.; Ning, P.; Yuan, H.; Zhang, Y.; Zhang, M.; Fu, T.; He, X. In-situ growth of gold nanoparticles on electrospun flexible multilayered PVDF nanofibers for SERS sensing of molecules and bacteria. Nano Res. 2021, 14, 4885–4893. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.; Li, Z.Y.; Liao, Y.R.; Sa, R.; Yu, H.; Wang, Y.; Peng, J.; Lin, Y.; Wang, J. Exploring the potential of electrospun polymer-coated Ag nanofibers for synergistic SERS performance and real-world applications. Sens. Actuators B Chem. 2023, 396, 134542. [Google Scholar] [CrossRef]
- Hajikhani, M.; Kousheh, S.; Zhang, Y.; Lin, M. Design of a novel SERS substrate by electrospinning for the detection of thiabendazole in soy-based foods. Food Chem. 2024, 436, 137703. [Google Scholar] [CrossRef]
- Sang, Y.Q.; Chen, X.; Zhang, L.; Li, D.; Xu, H. Electrospun polymeric nanofiber decorated with sea urchin-like gold nanoparticles as an efficient and stable SERS platform. J. Colloid Interface Sci. 2021, 590, 125–133. [Google Scholar] [CrossRef]
- Yi, K.Y.; Fan, Z.L.; Ran, Q.M.; Jia, K.; Liu, X.; Wang, L. Scalable fabrication of silver covered polyurethane nanofibers as flexible SERS nanosensors for aflatoxin detection. Talanta 2023, 263, 124636. [Google Scholar] [CrossRef]
- Wei, X.O.; Song, W.J.; Fan, Y.S.; Sun, Y.; Li, Z.; Chen, S.; Shi, J.; Zhang, D.; Zou, X.; Xu, X. A SERS aptasensor based on a flexible substrate for interference-free detection of carbendazim in apple. Food Chem. 2024, 431, 137120. [Google Scholar] [CrossRef]
- Meng, Z.; Zhu, L.; Wang, J.H.; Li, T.; He, C.; Liu, R.; Hui, G.; Zhao, B. TiO2 nanofilms for surface-enhanced Raman scattering analysis of urea. Talanta 2024, 279, 126664. [Google Scholar] [CrossRef]
- Cai, Z.J.; Hu, X.T.; Li, Z.A.; He, H.; Li, T.; Yuan, H.; Zhang, Y.; Tan, B.; Wang, J. Hypercrosslinking porous polymer layers on TiO2-graphene photocatalyst: Enhanced adsorption of water pollutants for efficient degradation. Water Res. 2022, 227, 119341. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Cong, S.; Zhao, Z.G. Defect engineering in semiconductor-based SERS. Chem. Sci. 2022, 13, 1210–1224. [Google Scholar] [CrossRef] [PubMed]
- Das, R.S.; Kumar, A.; Wankhade, A.V.; Peshwe, D.R. ZrO2@chitosan composite for simultaneous photodegradation of three emerging contaminants and antibacterial application. Carbohydr. Polym. 2022, 278, 118940. [Google Scholar] [CrossRef] [PubMed]
- Dong, S.L.; Maciejewska, B.M.; Schofield, R.M.; Hawkins, N.; Siviour, C.R.; Grobert, N. Electrospinning Nonspinnable Sols to Ceramic Fibers and Springs. ACS Nano 2024, 18, 13538–13550. [Google Scholar] [CrossRef]
- Qi, W.; Yang, Y.; Du, J.F.; Yang, J.; Guo, L.; Zhao, L. Highly photocatalytic electrospun Zr/Ag Co-doped titanium dioxide nanofibers for degradation of dye. J. Colloid Interface Sci. 2021, 603, 594–603. [Google Scholar] [CrossRef]
- Wu, Y.T.; Guan, M.Y.; Chang, X.J.; Wang, J.; Xu, S. Homogeneous double-layer TiO2-ZrO2-SiO2 photocatalyst with multi-heterojunction structure for enhanced visible light-responsive photocatalytic activity. J. Mol. Liq. 2023, 369, 120959. [Google Scholar] [CrossRef]
- Mathew Simon, S.; George, G.; Sajna, M.S.; Prakashan, V.P.; Anna Jose, T.; Vasudevan, P.; Saritha, A.C.; Biju, P.R.; Joseph, C.; Unnikrishnan, N.V. Recent advancements in multifunctional applications of sol-gel derived polymer incorporated TiO2-ZrO2 composite coatings: A comprehensive review. Appl. Surf. Sci. Adv. 2021, 6, 100173. [Google Scholar] [CrossRef]
- Kumar, A.; Zhang, X.; Liang, X.-J. Gold nanoparticles: Emerging paradigm for targeted drug delivery system. Biotechnol. Adv. 2013, 31, 593–606. [Google Scholar] [CrossRef]
- Lopes, J.; Ferreira-Gonçalves, T.; Ascensão, L.; Viana, A.S.; Carvalho, L.; Catarino, J.; Faísca, P.; Oliva, A.; de Barros, D.P.C.; Rodrigues, C.M.P.; et al. Safety of gold nanoparticles: From in vitro to in vivo testing array checklist. Pharmaceutics 2023, 15, 1120. [Google Scholar] [CrossRef]
- Bailly, A.-L.; Correard, F.; Popov, A.; Tselikov, G.; Chaspoul, F.; Appay, R.; Al-Kattan, A.; Kabashin, A.V.; Braguer, D.; Esteve, M.-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep. 2019, 9, 12890. [Google Scholar] [CrossRef] [PubMed]
- Hwang, J.-S.; Yu, J.; Kim, H.-M.; Oh, J.-M.; Choi, S.-J. Food Additive titanium dioxide and its fate in commercial foods. Nanomaterials 2019, 9, 1175. [Google Scholar] [CrossRef] [PubMed]
- Nirmal, N.; Vashisht, P.; Sharma, S.; Singh, L.; Awasti, N.; Mahanta, S.; Gill, A.; Rathnakumar, K.; Khanashyam, A.C. Enhancement in the active food packaging system through metal-based nanomaterials: A review of innovations, challenges, and future directions. Discov. Food. 2024, 4, 108. [Google Scholar] [CrossRef]
- Dhein, J.; Haller, C.; Reichl, F.-X.; Milz, S.; Hickel, R.; Kollmuss, M.; Högg, C. Intranuclear cell uptake and toxicity of titanium dioxide and zirconia particles as well as bacterial adhesion on dental titanium- and zirconia-implants. Dent. Mater. 2022, 38, 517–528. [Google Scholar] [CrossRef]
- Kandel, R.; Jang, S.R.; Shrestha, S.; Ghimire, U.; Shrestha, B.K.; Park, C.H.; Kim, C.S. A bimetallic load-bearing bioceramics of TiO2 @ ZrO2 integrated polycaprolactone fibrous tissue construct exhibits anti bactericidal effect and induces osteogenesis in MC3T3-E1 cells. Mater. Sci. Eng. C 2021, 131, 112501. [Google Scholar] [CrossRef]
- Bannunah, A.M. Biomedical Applications of Zirconia-Based Nanomaterials: Challenges and Future Perspectives. Molecules 2023, 28, 5428. [Google Scholar] [CrossRef]
- Wu, S.; Weng, Z.; Liu, X.; Yeung, K.W.K.; Chu, P.K. Functionalized TiO2 Based Nanomaterials for Biomedical Applications. Adv. Funct. Mater. 2014, 24, 5464–5481. [Google Scholar] [CrossRef]
- Radu, R.-D.; Drăgănescu, D. Present and Future of ZrO2 Nanostructure as Reservoir for Drug Loading and Release. Coatings 2023, 13, 1273. [Google Scholar] [CrossRef]
- Kim, M.J.; Yoon, S.; Kim, Y.; Lee, C.Y.; Soegijopranoto, J.K.; Shim, Y.; Bae, H.B.; Jeong, J.-H.; Jeong, J.H.; Youn, Y.S.; et al. Polymer-Free Side-Patched Gold Nanorods Synthesized via Salt-Assisted Anisotropic Structural Tuning of Silica Shells. Chem. Mater. 2024, 36, 4642–4653. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.P.; Li, Z.; Xiao, J.; Shan, H.; Fang, Z.; Qi, L. Controlled growth and shape-directed self-assembly of gold nanoarrows. Sci. Adv. 2017, 3, e1701183. [Google Scholar] [CrossRef]
- Ma, A.; Yang, W.Y.; Gao, K.P.; Tang, J. Concave gold nano-arrows (AuCNAs) for efficient catalytic reduction of 4-nitrophenol. Chemosphere 2023, 310, 136800. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.Y.; Sun, Y.; Zhang, X.N.; Shen, Y.; Khalifa, S.A.M.; Huang, X.; Shi, J.; Li, Z.; Zou, X. Green and sustainable self-cleaning flexible SERS base: Utilized for cyclic-detection of residues on apple surface. Food Chem. 2024, 441, 138345. [Google Scholar] [CrossRef] [PubMed]
- Dowgiallo, A.M.; Guenther, D.A. Determination of the Limit of Detection of Multiple Pesticides Utilizing Gold Nanoparticles and Surface-Enhanced Raman Spectroscopy. J. Agric. Food Chem. 2019, 67, 12642–12651. [Google Scholar] [CrossRef] [PubMed]
- Pu, H.B.; Huang, Z.B.; Xu, F.; Sun, D.-W. Two-dimensional self-assembled Au-Ag core-shell nanorods nanoarray for sensitive detection of thiram in apple using surface-enhanced Raman spectroscopy. Food Chem. 2021, 343, 128548. [Google Scholar] [CrossRef]
- Zhang, G.G.; Ma, Y.Y.; Liu, Z.A.; Fu, X.; Niu, X.; Qu, F.; Si, C.; Zheng, Y. Seed-Morphology-Directed Synthesis of Concave Gold Nanocrystals with Tunable Sizes. Langmuir. 2020, 36, 15610–15617. [Google Scholar] [CrossRef]
- Liu, M.H.; Zareef, M.; Zhu, A.; Wei, W.; Li, H.; Chen, Q. SERS-based Au@Ag core-shell nanoprobe aggregates for rapid and facile detection of lead ions. Food Control. 2024, 155, 110078. [Google Scholar] [CrossRef]
- Chen, Q.; Ye, Y.X.; Liu, J.; Wu, S.; Li, P.; Liang, C. Stability evolution of ultrafine Ag nanoparticles prepared by laser ablation in liquids. J. Colloid Interface Sci. 2021, 585, 444–451. [Google Scholar] [CrossRef]
- Fujii, S.; Shimazaki, K.; Kuwabara, A. Empirical interatomic potentials for ZrO2 and YSZ polymorphs: Application to a tetragonal ZrO2 grain boundary. Acta Mater. 2024, 262, 119460. [Google Scholar] [CrossRef]
- Peng, W.; Zong, X.Q.; Xie, T.T.; Zhou, J.W.; Yue, M.-F.; Wen, B.-Y.; Wang, Y.-H.; Chen, J.; Zhang, Y.-J.; Li, J.-F. Ultrafast and field-based detection of methamphetamine in hair with Au nanocake-enhanced Raman spectroscopy. Anal. Chim. Acta 2022, 1235, 340531. [Google Scholar] [CrossRef]
- Feng, S.L.; Hu, Y.X.; Chen, L.; Lu, X. Molecularly imprinted core-shell Au nanoparticles for 2,4-dichlorophenoxyacetic acid detection in milk using surface-enhanced Raman spectroscopy. Anal. Chim. Acta 2022, 1227, 340333. [Google Scholar] [CrossRef]
- Hu, H.; Tian, Y.; Chen, P.; Chu, W. Perspective on Tailored Nanostructure-Dominated SPP Effects for SERS. Adv. Mater. 2024, 36, e2303001. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.Z.; Wang, D.Q.; Deng, F.; Liu, X.; Li, X.; Luo, X.; Peng, Y.; Zhang, J.; Zou, J.; Ding, L.; et al. Ag quantum dots decorated ultrathin g-C3N4 nanosheets for boosting degradation of pharmaceutical contaminants: Insight from interfacial electric field induced by local surface plasma resonance. Chem. Eng. J. 2023, 463, 142313. [Google Scholar] [CrossRef]
- Zheng, K.Y.; Shen, Y.; Chen, Z.Y.; Zhao, L.; Li, Z.; Huang, X.; Shi, J.; Zhang, Y.; Xu, X.; Zhu, Z.; et al. Bimetallic AuNR@AgNCs for ultrasensitive surface-enhanced Raman scattering sensing of dithianon in apple juice. Anal. Chim. Acta. 2024, 1292, 342199. [Google Scholar] [CrossRef]
- Niu, P.F.; Shen, Y.; Li, S.; Guo, Y.R. Determination of asomate residue in spples by RP-HPLC. Jiangsu J. Agric. Sci. 2018, 34, 706–710. [Google Scholar] [CrossRef]
- Huang, P.X.; Liu, X.W.; Wang, L.; Peng, Y.; Luo, M. Determination of asomate in apples and soils by high herformance liquid chromatography. Chin. J. Anal. Lab. 2016, 35, 86–89. [Google Scholar] [CrossRef]
- Guo, Z.M.; Zheng, Y.X.; Yin, L.M.; Xue, S.S.; Ma, L.X.; Zhou, R.Y.; El-Seedi, H.R.; Zhang, Y.; Yosri, N.; Jayan, H.; et al. Flexible Au@AgNRs/MAA/PDMS-based SERS sensor coupled with intelligent algorithms for in-situ detection of thiram on apple. Sens. Actuator B-Chem. 2024, 404, 10. [Google Scholar] [CrossRef]
- Wang, J.J.; Luo, Z.S.; Lin, X.Y. An ultrafast electrochemical synthesis of Au@Ag core-shell nanoflowers as a SERS substrate for thiram detection in milk and juice. Food Chem. 2023, 402, 8. [Google Scholar] [CrossRef]
- Tsen, C.M.; Yu, C.W.; Chen, S.Y.; Lin, C.L.; Chuang, C.Y. Application of surface-enhanced Raman scattering in rapid detection of dithiocarbamate pesticide residues in foods. Appl. Surf. Sci. 2021, 558, 11. [Google Scholar] [CrossRef]
- Zhu, C.H.; Wang, X.J.; Shi, X.F.; Feng, Y.; Guowen, M.; Qizhong, X.; Yan, K.; Hua, W.; Yilin, L.; Nianqiang, W. Detection of Dithiocarbamate Pesticides with a Spongelike Surface-Enhanced Raman Scattering Substrate Made of Reduced Graphene Oxide-Wrapped Silver Nanocubes. ACS Appl. Mater. Interfaces 2017, 9, 39618–39625. [Google Scholar] [CrossRef]
Types | Spiked (nM) | Detected (nM) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Red Delicious Apple | 300 | 307.75 | 102.58 | 4.89 |
500 | 479.71 | 95.94 | 3.16 | |
700 | 719.87 | 102.84 | 7.76 | |
Cream Fuji Apple | 300 | 333.62 | 111.21 | 6.65 |
500 | 519.32 | 103.86 | 8.38 | |
900 | 892.94 | 99.22 | 2.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Sun, Z.; Shen, Y.; Chen, Z.; Zhang, Y.; Shi, J.; Tahir, H.E.; Xu, X.; Zhang, M.; Zou, X.; et al. Flexible TiO2/ZrO2/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel. Foods 2025, 14, 2062. https://doi.org/10.3390/foods14122062
Zhao L, Sun Z, Shen Y, Chen Z, Zhang Y, Shi J, Tahir HE, Xu X, Zhang M, Zou X, et al. Flexible TiO2/ZrO2/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel. Foods. 2025; 14(12):2062. https://doi.org/10.3390/foods14122062
Chicago/Turabian StyleZhao, Lina, Zhengdong Sun, Ye Shen, Zhiyang Chen, Yang Zhang, Jiyong Shi, Haroon Elrasheid Tahir, Xuechao Xu, Meng Zhang, Xiaobo Zou, and et al. 2025. "Flexible TiO2/ZrO2/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel" Foods 14, no. 12: 2062. https://doi.org/10.3390/foods14122062
APA StyleZhao, L., Sun, Z., Shen, Y., Chen, Z., Zhang, Y., Shi, J., Tahir, H. E., Xu, X., Zhang, M., Zou, X., & Zheng, K. (2025). Flexible TiO2/ZrO2/AuCNAs Surface-Enhanced Raman Scattering Substrates for the Detection of Asomate in Apple Peel. Foods, 14(12), 2062. https://doi.org/10.3390/foods14122062