Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,520)

Search Parameters:
Keywords = financial loss

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5929 KiB  
Article
Optimization of Operations in Bus Company Service Workshops Using Queueing Theory
by Sergej Težak and Drago Sever
Vehicles 2025, 7(3), 82; https://doi.org/10.3390/vehicles7030082 - 6 Aug 2025
Abstract
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization [...] Read more.
Public transport companies are aware that the success of their operations largely depends on the proper sizing and optimization of their processes. Among the key activities are the maintenance and repair of the vehicle fleet. This paper presents the application of mathematical optimization methods from the field of operations research to improve the efficiency of service workshops for bus maintenance and repair. Based on an analysis of collected data using queueing theory, the authors assessed the current system performance and found that the queueing system still has spare capacity and could be downsized, which aligns with the company’s management goals. Specifically, the company plans to reduce the number of bus repair service stations (servers in a queueing system). The main question is whether the system will continue to function effectively after this reduction. Three specific downsizing solutions were proposed and evaluated using queueing theory methods: extending the daily operating hours of the workshops, reducing the number of arriving buses, and increasing the productivity of a service station (server). The results show that, under high system load, only those solutions that increase the productivity of individual service stations (servers) in the queueing system provide optimal outcomes. Other solutions merely result in longer queues and associated losses due to buses waiting for service, preventing them from performing their intended function and causing financial loss to the company. Full article
Show Figures

Figure 1

20 pages, 312 KiB  
Article
Pimelea and Its Toxicity: A Survey of Landholder Experiences and Management Practices
by Rashid Saleem, Shane Campbell, Mary T. Fletcher, Sundaravelpandian Kalaipandian and Steve W. Adkins
Toxins 2025, 17(8), 393; https://doi.org/10.3390/toxins17080393 - 6 Aug 2025
Abstract
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, [...] Read more.
Pimelea is one of the highly toxic plants in Australia, particularly affecting cattle. It contains simplexin, a potent toxin that can cause Pimelea poisoning (St. George Disease) in livestock. A survey was conducted to assess the current impact of Pimelea on livestock production, pasture systems, and financial losses among agricultural producers. In addition, information was also sought about the environmental conditions that facilitate its growth and the effectiveness of existing management strategies. The survey responses were obtained from producers affected by Pimelea across nine different Local Government Areas, through three States, viz., Queensland, New South Wales, and South Australia. Pimelea was reported to significantly affect animal production, with 97% of producers surveyed acknowledging its detrimental effects. Among livestock, cattle were the most severely affected (94%), when compared to sheep (13%), goats (3%), and horses (3%). The presence of Pimelea was mostly observed in spring (65%) and winter (48%), although 29% of respondents indicated that it could be present all year-round under favorable rainfall conditions. Germination was associated with light to moderate rainfall (52%), while only 24% linked it to heavy rainfall. Pimelea simplex F. Muell. was the most frequently encountered species (71%), followed by Pimelea trichostachya Lindl. (26%). Infestations were reported to occur annually by 47% of producers, with 41% noting occurrences every 2 to 5 years. Financially, producers estimated average annual losses of AUD 67,000, with 50% reporting an average of 26 cattle deaths per year, reaching up to 105 deaths in severe years. Some producers were spending up to AUD 2100 per annum to manage Pimelea. While chemical and physical controls were commonly employed, integrating competitive pastures and alternative livestock, such as sheep and goats, was considered as a potential management strategy. This study reiterates the need for further research on sustainable pasture management practices to reduce Pimelea-related risks to livestock and agricultural production systems. Full article
(This article belongs to the Special Issue Plant Toxin Emergency)
23 pages, 344 KiB  
Article
Hot-Hand Belief and Loss Aversion in Individual Portfolio Decisions: Evidence from a Financial Experiment
by Marcleiton Ribeiro Morais, José Guilherme de Lara Resende and Benjamin Miranda Tabak
J. Risk Financial Manag. 2025, 18(8), 433; https://doi.org/10.3390/jrfm18080433 - 5 Aug 2025
Viewed by 69
Abstract
We investigate whether a belief in trend continuation, often associated with the so-called “hot-hand effect,” can be endogenously triggered by personal performance feedback in a controlled financial experiment. Participants allocated funds across assets with randomly generated prices, under conditions of known probabilities and [...] Read more.
We investigate whether a belief in trend continuation, often associated with the so-called “hot-hand effect,” can be endogenously triggered by personal performance feedback in a controlled financial experiment. Participants allocated funds across assets with randomly generated prices, under conditions of known probabilities and varying levels of risk. In a two-stage setup, participants were first exposed to random price sequences to learn the task and potentially develop perceptions of personal success. They then faced additional price paths under incentivized conditions. Our findings show that participants initially increased purchases following gains—consistent with a feedback-driven belief in momentum—but this pattern faded over time. When facing sustained losses, loss aversion dominated decision-making, overriding early optimism. These results highlight how cognitive heuristics and emotional biases interact dynamically, suggesting that belief in trend continuation is context-sensitive and constrained by the reluctance to realize losses. Full article
(This article belongs to the Section Economics and Finance)
Show Figures

Figure 1

16 pages, 1176 KiB  
Article
Evaluating the Use of Rice Husk Ash for Soil Stabilisation to Enhance Sustainable Rural Transport Systems in Low-Income Countries
by Ada Farai Shaba, Esdras Ngezahayo, Goodson Masheka and Kajila Samuel Sakuhuka
Sustainability 2025, 17(15), 7022; https://doi.org/10.3390/su17157022 - 2 Aug 2025
Viewed by 285
Abstract
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily [...] Read more.
Rural roads are critical for connecting isolated communities to essential services such as education and health and administrative services, as well as production and market opportunities in low-income countries. More than 70% of movements of people and goods in Sub-Saharan Africa are heavily reliant on rural transport systems, using both motorised but mainly alternative means of transport. However, rural roads often suffer from poor construction due to the use of low-strength, in situ soils and limited financial resources, leading to premature failures and subsequent traffic disruptions with significant economic losses. This study investigates the use of rice husk ash (RHA), a waste byproduct from rice production, as a sustainable supplement to Ordinary Portland Cement (OPC) for soil stabilisation in order to increase durability and sustainability of rural roads, hence limit recurrent maintenance needs and associated transport costs and challenges. To conduct this study, soil samples collected from Mulungushi, Zambia, were treated with combinations of 6–10% OPC and 10–15% RHA by weight. Laboratory tests measured maximum dry density (MDD), optimum moisture content (OMC), and California Bearing Ratio (CBR) values; the main parameters assessed to ensure the quality of road construction soils. Results showed that while the MDD did not change significantly and varied between 1505 kg/m3 and 1519 kg/m3, the OMC increased hugely from 19.6% to as high as 26.2% after treatment with RHA. The CBR value improved significantly, with the 8% OPC + 10% RHA mixture achieving the highest resistance to deformation. These results suggest that RHA can enhance the durability and sustainability of rural roads and hence improve transport systems and subsequently improve socioeconomic factors in rural areas. Full article
Show Figures

Figure 1

26 pages, 1103 KiB  
Article
How to Compensate Forest Ecosystem Services Through Restorative Justice: An Analysis Based on Typical Cases in China
by Haoran Gao and Tenglong Lin
Forests 2025, 16(8), 1254; https://doi.org/10.3390/f16081254 - 1 Aug 2025
Viewed by 242
Abstract
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice [...] Read more.
The ongoing degradation of global forests has severely weakened ecosystem service functions, and traditional judicial remedies have struggled to quantify intangible ecological losses. China has become an important testing ground for restorative justice through the establishment of specialized environmental courts and the practice of environmental public interest litigation. Since 2015, China has actively explored and institutionalized the application of the concept of restorative justice in its environmental justice reform. This concept emphasizes compensating environmental damages through actual ecological restoration acts rather than relying solely on financial compensation. This shift reflects a deep understanding of the limitations of traditional environmental justice and an institutional response to China’s ecological civilization construction, providing critical support for forest ecosystem restoration and enabling ecological restoration activities, such as replanting and re-greening, habitat reconstruction, etc., to be enforced through judicial decisions. This study conducts a qualitative analysis of judicial rulings in forest restoration cases to systematically evaluate the effectiveness of restorative justice in compensating for losses in forest ecosystem service functions. The findings reveal the following: (1) restoration measures in judicial practice are disconnected from the types of ecosystem services available; (2) non-market values and long-term cumulative damages are systematically underestimated, with monitoring mechanisms exhibiting fragmented implementation and insufficient effectiveness; (3) management cycles are set in violation of ecological restoration principles, and acceptance standards lack function-oriented indicators; (4) participation of key stakeholders is severely lacking, and local knowledge and professional expertise have not been integrated. In response, this study proposes a restorative judicial framework oriented toward forest ecosystem services, utilizing four mechanisms: independent recognition of legal interests, function-matched restoration, application of scientific assessment tools, and multi-stakeholder collaboration. This framework aims to drive a paradigm shift from formal restoration to substantive functional recovery, providing theoretical support and practical pathways for environmental judicial reform and global forest governance. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

17 pages, 1027 KiB  
Article
AI-Driven Security for Blockchain-Based Smart Contracts: A GAN-Assisted Deep Learning Approach to Malware Detection
by Imad Bourian, Lahcen Hassine and Khalid Chougdali
J. Cybersecur. Priv. 2025, 5(3), 53; https://doi.org/10.3390/jcp5030053 - 1 Aug 2025
Viewed by 306
Abstract
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats [...] Read more.
In the modern era, the use of blockchain technology has been growing rapidly, where Ethereum smart contracts play an important role in securing decentralized application systems. However, these smart contracts are also susceptible to a large number of vulnerabilities, which pose significant threats to intelligent systems and IoT applications, leading to data breaches and financial losses. Traditional detection techniques, such as manual analysis and static automated tools, suffer from high false positives and undetected security vulnerabilities. To address these problems, this paper proposes an Artificial Intelligence (AI)-based security framework that integrates Generative Adversarial Network (GAN)-based feature selection and deep learning techniques to classify and detect malware attacks on smart contract execution in the blockchain decentralized network. After an exhaustive pre-processing phase yielding a dataset of 40,000 malware and benign samples, the proposed model is evaluated and compared with related studies on the basis of a number of performance metrics including training accuracy, training loss, and classification metrics (accuracy, precision, recall, and F1-score). Our combined approach achieved a remarkable accuracy of 97.6%, demonstrating its effectiveness in detecting malware and protecting blockchain systems. Full article
Show Figures

Figure 1

16 pages, 263 KiB  
Article
Hospitality in Crisis: Evaluating the Downside Risks and Market Sensitivity of Hospitality REITs
by Davinder Malhotra and Raymond Poteau
Int. J. Financial Stud. 2025, 13(3), 140; https://doi.org/10.3390/ijfs13030140 - 1 Aug 2025
Viewed by 223
Abstract
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to [...] Read more.
This study evaluates the risk-adjusted performance of Hospitality REITs using multi-factor asset pricing models and downside risk measures with the aim of assessing their diversification potential and crisis sensitivity. Unlike prior studies that examine REITs in aggregate, this study isolates Hospitality REITs to explore their unique cyclical and macroeconomic sensitivities. This study looks at the risk-adjusted performance of Hospitality Real Estate Investment Trusts (REITs) in relation to more general REIT indexes and the S&P 500 Index. The study reveals that monthly returns of Hospitality REITs increasingly move in tandem with the stock markets during financial crises, which reduces their historical function as portfolio diversifiers. Investing in Hospitality REITs exposes one to the hospitality sector; however, these investments carry notable risks and provide little protection, particularly during economic upheavals. Furthermore, the study reveals that Hospitality REITs underperform on a risk-adjusted basis relative to benchmark indexes. The monthly returns of REITs show significant volatility during the post-COVID-19 era, which causes return-to-risk ratios to be below those of benchmark indexes. Estimates from multi-factor models indicate negative alpha values across conditional models, indicating that macroeconomic variables cause unremunerated risks. This industry shows great sensitivity to market beta and size and value determinants. Hospitality REITs’ susceptibility comes from their showing the most possibility for exceptional losses across asset classes under Value at Risk (VaR) and Conditional Value at Risk (CvaR) downside risk assessments. The findings have implications for investors and portfolio managers, suggesting that Hospitality REITs may not offer consistent diversification benefits during downturns but can serve a tactical role in procyclical investment strategies. Full article
14 pages, 287 KiB  
Article
Exploring the Link Between Social and Economic Instability and COPD: A Cross-Sectional Analysis of the 2022 BRFSS
by Michael Stellefson, Min-Qi Wang, Yuhui Yao, Olivia Campbell and Rakshan Sivalingam
Int. J. Environ. Res. Public Health 2025, 22(8), 1207; https://doi.org/10.3390/ijerph22081207 - 31 Jul 2025
Viewed by 187
Abstract
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk [...] Read more.
Despite growing recognition of the role that social determinants of health (SDOHs) and health-related social needs (HRSNs) play in chronic disease, limited research has examined their associations with Chronic Obstructive Pulmonary Disease (COPD) in population-based studies. This cross-sectional study analyzed 2022 Behavioral Risk Factor Surveillance System (BRFSS) data from 37 U.S. states and territories to determine how financial hardship, food insecurity, employment loss, healthcare access barriers, and psychosocial stressors influence the prevalence of COPD. Weighted logistic regression models were used to assess the associations between COPD and specific SDOHs and HRSNs. Several individual SDOH and HRSN factors were significantly associated with COPD prevalence, with financial strain emerging as a particularly strong predictor. In models examining specific SDOH factors, economic hardships like inability to afford medical care were strongly linked to higher COPD odds. Psychosocial HRSN risks, such as experiencing mental stress, also showed moderate associations with increased COPD prevalence. These findings suggest that addressing both structural and individual-level social risks may be critical for reducing the prevalence of COPD in populations experiencing financial challenges. Full article
29 pages, 1119 KiB  
Systematic Review
Phishing Attacks in the Age of Generative Artificial Intelligence: A Systematic Review of Human Factors
by Raja Jabir, John Le and Chau Nguyen
AI 2025, 6(8), 174; https://doi.org/10.3390/ai6080174 - 31 Jul 2025
Viewed by 482
Abstract
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest [...] Read more.
Despite the focus on improving cybersecurity awareness, the number of cyberattacks has increased significantly, leading to huge financial losses, with their risks spreading throughout the world. This is due to the techniques deployed in cyberattacks that mainly aim at exploiting humans, the weakest link in any defence system. The existing literature on human factors in phishing attacks is limited and does not live up to the witnessed advances in phishing attacks, which have become exponentially more dangerous with the introduction of generative artificial intelligence (GenAI). This paper studies the implications of AI advancement, specifically the exploitation of GenAI and human factors in phishing attacks. We conduct a systematic literature review to study different human factors exploited in phishing attacks, potential solutions and preventive measures, and the complexity introduced by GenAI-driven phishing attacks. This paper aims to address the gap in the research by providing a deeper understanding of the evolving landscape of phishing attacks with the application of GenAI and associated human implications, thereby contributing to the field of knowledge to defend against phishing attacks by creating secure digital interactions. Full article
Show Figures

Figure 1

19 pages, 503 KiB  
Article
Dynamic Value at Risk Estimation in Multi-Functional Volterra Time-Series Model (MFVTSM)
by Fatimah A. Almulhim, Mohammed B. Alamari, Ali Laksaci and Mustapha Rachdi
Symmetry 2025, 17(8), 1207; https://doi.org/10.3390/sym17081207 - 29 Jul 2025
Viewed by 369
Abstract
In this paper, we aim to provide a new algorithm for managing financial risk in portfolios containing multiple high-volatility assets. We assess the variability of volatility with the Volterra model, and we construct an estimator of the Value-at-Risk (VaR) function using quantile regression. [...] Read more.
In this paper, we aim to provide a new algorithm for managing financial risk in portfolios containing multiple high-volatility assets. We assess the variability of volatility with the Volterra model, and we construct an estimator of the Value-at-Risk (VaR) function using quantile regression. Because of its long-memory property, the Volterra model is particularly useful in this domain of financial time series data analysis. It constitutes a good alternative to the standard approach of Black–Scholes models. From the weighted asymmetric loss function, we construct a new estimator of the VaR function usable in Multi-Functional Volterra Time Series Model (MFVTSM). The constructed estimator highlights the multi-functional nature of the Volterra–Gaussian process. Mathematically, we derive the asymptotic consistency of the estimator through the precision of the leading term of its convergence rate. Through an empirical experiment, we examine the applicability of the proposed algorithm. We further demonstrate the effectiveness of the estimator through an application to real financial data. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

17 pages, 339 KiB  
Review
Protein and Aging: Practicalities and Practice
by Stephanie Harris, Jessica DePalma and Hope Barkoukis
Nutrients 2025, 17(15), 2461; https://doi.org/10.3390/nu17152461 - 28 Jul 2025
Viewed by 772
Abstract
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 [...] Read more.
Dietary protein is an essential macronutrient derived from both plant and animal sources required for muscle building, immune function, and wound healing. However, in the United States, protein consumption worsens as individuals age, with 30% of men and 50% of women over 71 consuming inadequate dietary protein due to a variety of factors, including changes in gut function, loss of appetite, tooth loss, financial concerns, and social isolation. The aim of this review is to underscore the need for increased protein requirements in aging populations, highlight potential barriers, synthesize these protein requirements, and also recommend strategies to meet these increased protein needs. Achieving adequate protein status, especially when facing chronic or acute health concerns, is essential to promote muscle and bone strength (because aging is associated with significant decreases in postprandial muscle protein synthesis), to support immune health (due to immunosenescence), and to maintain a good quality of life. For older adults, the literature suggests that a dietary protein intake of at least 1.0–1.2 g/kg/day is required in healthy, aging populations, and intakes of 1.2–1.5 g/kg/day are necessary for those with chronic or acute conditions. These protein intake recommendations can increase to 2.0 g/kg/day in more severe cases of illness, malnutrition, and chronic conditions. The reviewed literature also suggests that evenly balanced protein distributions of 25–30 g of dietary protein (0.4 g/kg) per meal from animal and plant protein sources alike are sufficient to maximize muscle protein synthesis (MPS) rates in older populations. Additionally, pre-sleep protein feeds of 40 g/night may be another strategy to improve daily MPS and amino acid utilization. Full article
16 pages, 526 KiB  
Article
Greenhouse Gas Emissions and the Financial Stability of Insurance Companies
by Silvia Bressan
J. Risk Financial Manag. 2025, 18(8), 411; https://doi.org/10.3390/jrfm18080411 - 25 Jul 2025
Viewed by 337
Abstract
The recent losses and damages due to climate change have destabilized the insurance industry. As global warming is one of the most critical aspects of climate change, it is essential to investigate to what extent greenhouse gas emissions affect the financial stability of [...] Read more.
The recent losses and damages due to climate change have destabilized the insurance industry. As global warming is one of the most critical aspects of climate change, it is essential to investigate to what extent greenhouse gas emissions affect the financial stability of insurers. Insurers typically do not emit substantial greenhouse gases directly, while their underwriting and investment activities play a substantial role in enabling companies that do. This article uses panel data regressions to analyze companies in all insurance segments and in all geographic regions of the world from 2004 to 2023. The main finding is that insurers that increase their greenhouse gas emissions become financially unstable. This result is consistent in all three scopes (scope 1, scope 2, and scope 3) of emissions. Furthermore, the findings reveal that this impact is related to reserves and reinsurance. Specifically, reserves increase with greenhouse gas emissions, while premiums ceded to reinsurers decline. Thus, high-emissions insurers retain a significant share of carbon risk and eventually become financially weak. The results encourage several policy recommendations, highlighting the need for instruments that improve the assessment and disclosure of insurers’ carbon footprints. This is crucial to achieving environmental targets and improving the stability of both the insurance market and the economic system. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

7 pages, 723 KiB  
Proceeding Paper
Octanoic Fatty Acid Significantly Impacts the Growth of Foodborne Pathogens and Quality of Mabroom Date Fruits (Phoenix dactylifera L.)
by Elshafia Ali Hamid Mohammed, Károly Pál and Azza Siddig Hussien Abbo
Biol. Life Sci. Forum 2025, 47(1), 2; https://doi.org/10.3390/blsf2025047002 - 24 Jul 2025
Viewed by 265
Abstract
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the [...] Read more.
Mabroom dates (Phoenix dactylifera L.) are recognized as one of the most important crops in Qatar. Fresh fruit dates are susceptible to mould and post-harvest spoilage, resulting in a significant financial loss. Octanoic fatty acid (OFA) has been shown to regulate the growth of mould-causing organisms such as fungi and bacteria. It is known to have antibacterial properties. The objective of the current study was to evaluate the in vitro effect of OFA on the post-harvest pathogens of Mabroom fruits. Fresh, apparently healthy, and fully ripe Mabroom dates were obtained from the National Agriculture and Food Corporation (NAFCO). The chosen fruits were packed in sterile, well-ventilated plastic boxes and transported to the lab under controlled conditions. The fruits were distributed into five groups (G1 to G5). The groups G1, G2, and G3 received 1%, 2%, and 3.5% OFA, respectively, while G4 was left untreated and G5 was washed only with tap water as a positive control treatment. Each group contained 200 g of fresh and healthy semi-soft dates. The samples were then dried and incubated in a humidity chamber at 25 °C ± 2 for seven days. The signs and symptoms of decay were monitored and recorded. The presence of pathogens was confirmed via phenotypic and microscopic-based methods. The results showed a significant difference (p ≤ 0.05) among the groups. OFA at 3.5% had the strongest inhibitory action against post-harvest pathogens, followed by OFA2%. However, there were no differences (p ≤ 0.05) between OFA1% and the control groups. Aspergillus spp., Penicillium spp., Rhizopus spp., and Botrytis spp. were most abundant in the control group, followed by OFA2% and OFA1%, respectively. In conclusion, octanoic fatty acid at 3.5% may improve the quality of date fruits through its high antimicrobial activity, reduce the effect of post-harvest decay, minimize the loss of date fruits during storage, and improve the sustainability of date fruits. Further experiments are necessary to confirm the effectiveness of OFA as a green solution for sustainable date fruit production. Full article
Show Figures

Figure 1

14 pages, 379 KiB  
Article
Overconfidence and Investment Loss Tolerance: A Large-Scale Survey Analysis of Japanese Investors
by Honoka Nabeshima, Mostafa Saidur Rahim Khan and Yoshihiko Kadoya
Risks 2025, 13(8), 142; https://doi.org/10.3390/risks13080142 - 23 Jul 2025
Viewed by 439
Abstract
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level [...] Read more.
Accepting a certain degree of investment loss risk is essential for long-term portfolio management. However, overconfidence bias within financial literacy can prompt excessively risky behavior and amplify susceptibility to other cognitive biases. These tendencies can undermine investment loss tolerance beyond the baseline level shaped by sociodemographic, economic, psychological, and cultural factors. This study empirically examines the association between overconfidence and investment loss tolerance, which is measured by the point at which respondents indicate they would sell their investments in a hypothetical loss scenario. Using a large-scale dataset of 161,765 active investors from one of Japan’s largest online securities firms, we conduct ordered probit and ordered logit regression analyses, controlling for a range of sociodemographic, economic, and psychological variables. Our findings reveal that overconfidence is statistically significantly and negatively associated with investment loss tolerance, indicating that overconfident investors are more prone to prematurely liquidating assets during market downturns. This behavior reflects an impulse to avoid even modest losses. The findings suggest several possible practical strategies to mitigate the detrimental effects of overconfidence on long-term investment behavior. Full article
20 pages, 695 KiB  
Article
Deep Hybrid Model for Fault Diagnosis of Ship’s Main Engine
by Se-Ha Kim, Tae-Gyeong Kim, Junseok Lee, Hyoung-Kyu Song, Hyeonjoon Moon and Chang-Jae Chun
J. Mar. Sci. Eng. 2025, 13(8), 1398; https://doi.org/10.3390/jmse13081398 - 23 Jul 2025
Viewed by 202
Abstract
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, [...] Read more.
Ships play a crucial role in modern society, serving purposes such as marine transportation, tourism, and exploration. Malfunctions or defects in the main engine, which is a core component of ship operations, can disrupt normal functionality and result in substantial financial losses. Consequently, early fault diagnosis of abnormal engine conditions is critical for effective maintenance. In this paper, we propose a deep hybrid model for fault diagnosis of ship main engines, utilizing exhaust gas temperature data. The proposed model utilizes both time-domain features (TDFs) and time-series raw data. In order to effectively extract features from each type of data, two distinct feature extraction networks and an attention module-based classifier are designed. The model performance is evaluated using real-world cylinder exhaust gas temperature data collected from the large ship low-speed two-stroke main engine. The experimental results demonstrate that the proposed method outperforms conventional methods in fault diagnosis accuracy. The experimental results demonstrate that the proposed method improves fault diagnosis accuracy by 6.146% compared to the best conventional method. Furthermore, the proposed method maintains superior performanceeven in noisy environments under realistic industrial conditions. This study demonstrates the potential of using exhaust gas temperature using a single sensor signal for data-driven fault detection and provides a scalable foundation for future multi-sensor diagnostic systems. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop