Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (13)

Search Parameters:
Keywords = field curvature aberration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 5329 KiB  
Article
Stepped Confocal Microlens Array Fabricated by Femtosecond Laser
by Jinchi Wu, Hao Wu, Zheli Lin and Honghao Zhang
Photonics 2025, 12(5), 494; https://doi.org/10.3390/photonics12050494 - 16 May 2025
Viewed by 570
Abstract
Multi-focal microlens arrays provide notable advantages over mono-focal counterparts, such as multi-scale imaging capabilities and optical aberration correction. However, existing multi-focal microlens arrays fabricated on continuous surfaces are incapable of achieving confocal imaging. As a result, multiple focus adjustments are required to acquire [...] Read more.
Multi-focal microlens arrays provide notable advantages over mono-focal counterparts, such as multi-scale imaging capabilities and optical aberration correction. However, existing multi-focal microlens arrays fabricated on continuous surfaces are incapable of achieving confocal imaging. As a result, multiple focus adjustments are required to acquire comprehensive image data, thereby complicating system design and increasing operational duration. To overcome this limitation, a stepped confocal surface microlens array is proposed, capable of simultaneously capturing images with multiple depths of field, various field-of-view scales, and different resolutions—without the need for additional focus adjustments. A combination of femtosecond laser processing and chemical etching was employed to fabricate microlenses with varying curvatures on a stepped fused silica substrate, which was subsequently used as a mold. The final stepped confocal microlens array was replicated via polydimethylsiloxane (PDMS) molding. Preliminary experimental analyses were carried out to determine the relationship between processing parameters and the resulting focal lengths. By precisely controlling these parameters, the fabricated stepped confocal microlens array successfully enabled confocal imaging, allowing for the simultaneous acquisition of diverse image data. This microlens array shows great potential in advancing lightweight, integrated, and highly stable optical systems for applications in optical sensing, spatial positioning, and machine vision. Full article
Show Figures

Figure 1

19 pages, 12483 KiB  
Article
The Optical System Design of a Space-Based Wide-Field Infrared Slitless Spectrometer
by Yue Chen, Liang Zhou, Peiquan Chen, Pengkai Dong, Haiyang Zhang and Wenji She
Photonics 2025, 12(5), 445; https://doi.org/10.3390/photonics12050445 - 4 May 2025
Viewed by 606
Abstract
With the increasingly complex space environment, the operational safety of spacecraft faces severe challenges, creating an urgent need to develop efficient and reliable space target detection and identification technologies. Traditional optical detection equipment faces significant challenges in space target detection and identification due [...] Read more.
With the increasingly complex space environment, the operational safety of spacecraft faces severe challenges, creating an urgent need to develop efficient and reliable space target detection and identification technologies. Traditional optical detection equipment faces significant challenges in space target detection and identification due to the low signal-to-noise ratio of space targets. To address the limited field of view (FOV) of traditional spectrometers, this paper proposes an improved wide-FOV infrared slitless spectrometer system based on the Dyson spectrometer. The system consists of three main components: a front telescope system, a spectral dispersion system, and a relay lens system. The front telescope system adopts a Ritchey–Chrétien structure and incorporates a correction lens group to enhance imaging quality. To overcome the practical challenges of conventional Dyson spectrometers—such as the high difficulty and cost in manufacturing and aligning concave gratings—an improved Dyson spectrometer based on a planar blazed grating is designed. A collimating lens group is incorporated to reduce spectral line curvature and chromatic aberration while ensuring a linear spectral dispersion relationship, achieving “spectrum-value unification” in the system. Additionally, a secondary imaging relay lens system is designed to ensure 100% cold stop matching efficiency, thereby minimizing stray light interference. Through optimization and ray tracing using optical design software, the final system achieves a field of view of 0.69° × 0.55°, a spectral resolution of 8.41 nm/pixel, spectral line curvature and chromatic aberration both below 10 µm, and a nearly linear spectral dispersion relationship, realizing spectrum-value unification to facilitate target identification. This infrared slitless spectrometer can stably acquire the spectral characteristics of space targets without requiring high-precision theodolites, providing a novel technical solution for the identification of dynamic space targets. It holds broad application prospects in space surveillance and related fields. Full article
Show Figures

Figure 1

18 pages, 7940 KiB  
Article
Method for Extracting Optical Element Information Using Optical Coherence Tomography
by Jiucheng Nie, Yukun Wang, Dacheng Wang, Yue Ding, Chengchen Zhou, Jincheng Wang, Shuangshuang Zhang, Junwei Song, Mengxue Cai, Junlin Wang, Zhongxu Cui, Yuhan Hou, Si Chen, Linbo Liu and Xiaokun Wang
Sensors 2024, 24(21), 6953; https://doi.org/10.3390/s24216953 - 30 Oct 2024
Viewed by 1548
Abstract
This study examines the measurement of film thickness, curvature, and defects on the surface or inside of an optical element using a highly accurate and efficient method. This is essential to ensure their quality and performance. Existing methods are unable to simultaneously extract [...] Read more.
This study examines the measurement of film thickness, curvature, and defects on the surface or inside of an optical element using a highly accurate and efficient method. This is essential to ensure their quality and performance. Existing methods are unable to simultaneously extract the three types of information: thickness, curvature, and defects. Spectral-domain optical coherence tomography (SD-OCT), a non-invasive imaging technique with imaging depths down to the millimeter scale, provides the possibility of detecting the optical element components’ parameters. In this paper, we propose an error correction model for compensating delay differences in A-scan, field curvature, and aberration to improve the accuracy of system fitting measurements using SD-OCT. During data processing, we use the histogram-equalized gray stretching (IAH-GS) method to deal with strong reflections in the thin film layers inside the optics using individual A-scan averages. In addition, we propose a window threshold cutoff algorithm to accurately identify defects and boundaries in OCT images. Finally, the system is capable of rapidly detecting the thickness and curvature of film layers in optical elements with a maximum measurement depth of 4.508 mm, a diameter of 15 × 15 mm, a resolution of 5.69 microns, and a sampling rate of 70 kHz. Measurements were performed on different standard optical elements to verify the accuracy and reliability of the proposed method. To the best of our knowledge, this is the first time that thickness, curvature, and defects of an optical film have been measured simultaneously, with a thickness measurement accuracy of 1.924 µm, and with a difference between the calibrated and nominal curvature measurements consistently within 1%. We believe that this research will greatly advance the use of OCT technology in the testing of optical thin films, thereby improving productivity and product quality. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

17 pages, 3900 KiB  
Article
Optical Simulation Design of a Short Lens Length with a Curved Image Plane and Relative Illumination Analysis
by Wen-Shing Sun, Chuen-Lin Tien, Yi-Hong Liu, Guan-Er Huang, Ying-Shun Hsu and Yi-Lun Su
Micromachines 2024, 15(1), 64; https://doi.org/10.3390/mi15010064 - 28 Dec 2023
Viewed by 1922
Abstract
This study proposes a three-lens design with a short lens length and explores the curved imaging plane and performs a relative illumination analysis. There are two ways to reduce the lens length: shortening the back focal and lens group lengths. We derived the [...] Read more.
This study proposes a three-lens design with a short lens length and explores the curved imaging plane and performs a relative illumination analysis. There are two ways to reduce the lens length: shortening the back focal and lens group lengths. We derived the relevant parameter relationships of three lenses using the first-order geometric optics theory. The optical lens length can be controlled within 2 mm. The shorter the lens length, the larger the angle of the chief ray in the image space, resulting in an increase in the field curvature and astigmatism. Third-order Seidel aberrations can be effectively reduced by a curved image plane. We also derived the equations for relative illuminance, solid angle, surface transmittance, and internal transmittance for the short three-lens design. The optical lens design uses a curved image plane to shorten the distance from the off-axis beam image space to the image plane and reduce the incident angle of the chief ray on the image plane. The formula and design results verified by Code V software (version 11.2) show that both the solid angle and relative contrast of the lens can be increased. For the proposed three-lens design with a short lens length, the semi-field angle is 32°, F/# is 2.7, the effective focal length is 1.984 mm, the image plane area is 2.16 mm × 1.22 mm, and the curvature radius of the concave image plane is 3.726 mm. Moroever, the MTF (100 lp/mm) is larger than 52%, the lateral color aberration is less than 2.12 μm, the optical distortion is less than 2.00%, and the relative illumination is greater than 68%. Full article
(This article belongs to the Special Issue Micro/Nano Photoelectrical Devices)
Show Figures

Figure 1

10 pages, 4468 KiB  
Article
Aberration Theory of a Flat, Aplanatic Metalens Doublet and the Design of a Meta-Microscope Objective Lens
by Woojun Han, Jinsoo Jeong, Jaisoon Kim and Sun-Je Kim
Sensors 2023, 23(22), 9273; https://doi.org/10.3390/s23229273 - 19 Nov 2023
Viewed by 2115
Abstract
A theoretical approach for reducing multiple monochromatic aberrations using a flat metalens doublet is proposed and verified through ray tracing simulations. The theoretical relation between the Abbe sine condition and the generalized Snell’s law is revealed in the doublet system. Starting from the [...] Read more.
A theoretical approach for reducing multiple monochromatic aberrations using a flat metalens doublet is proposed and verified through ray tracing simulations. The theoretical relation between the Abbe sine condition and the generalized Snell’s law is revealed in the doublet system. Starting from the Abbe aplanat design, minimization conditions of astigmatism and field curvature are derived. Based on the theory, a metalens doublet is semi-analytically optimized as a compact, practical-level meta-microscope objective lens working for a target wavelength. The proposed approach also reveals how to reduce lateral chromatism for an additional wavelength. The design degree of freedom and fundamental limits of the system are both rigorously analyzed in theory and verified through ray tracing simulations. It is expected that the proposed method will provide unprecedented practical opportunities for the design of advanced compact microscopic imaging or sensing systems. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

23 pages, 5929 KiB  
Article
Method for Compensating Aberrations of a Virtual Image Formed by an Augmented Reality Display Based on a Cylindrical Diffractive Waveguide
by Gavril N. Vostrikov, Nikolay V. Muravyev, Aleksandr E. Angervaks, Roman A. Okun, Anastasia S. Perevoznikova, Jaeyeol Ryu and Andrei N. Putilin
Appl. Sci. 2023, 13(4), 2400; https://doi.org/10.3390/app13042400 - 13 Feb 2023
Cited by 3 | Viewed by 3420
Abstract
To date, planar waveguides are under development for augmented reality systems with waveguide combiners. The next step of their development is the transition to curved waveguides, which could make the combiners more ergonomic. In the present work, a method has been developed that [...] Read more.
To date, planar waveguides are under development for augmented reality systems with waveguide combiners. The next step of their development is the transition to curved waveguides, which could make the combiners more ergonomic. In the present work, a method has been developed that makes it possible to minimize aberrations of a virtual image during its in-coupling to and out-coupling from a cylindrical waveguide. The method is based on the use of in-coupling and out-coupling diffractive optical elements (DOE) with a variable grating period, which provide virtual image pre-aberration when radiation is in-coupled into the waveguide and compensation of the waveguide curvature at the out-coupling. Analytical laws are derived for the period variation of the in-coupling and out-coupling DOEs for an arbitrary curvature of a cylindrical waveguide. These dependences were optimized to minimize virtual image aberrations when using a radiation source with finite dimensions. Samples of cylindrical concentric PMMA waveguides with a curvature radius of 150 mm and in-coupling/out-coupling holographic optical elements (HOEs) have been created. The transmission of test monochrome virtual images through these waveguides without doubling and breaks in the field of view has been experimentally demonstrated. Full article
(This article belongs to the Special Issue Holographic Technologies: Theory and Practice)
Show Figures

Figure 1

14 pages, 3014 KiB  
Review
Can the Applied Optics Employ Modern Approaches Developed in Seismic Prospecting? A Review
by Alexander Berkovitch and Lev V. Eppelbaum
Physics 2022, 4(3), 833-846; https://doi.org/10.3390/physics4030053 - 24 Jul 2022
Viewed by 2145
Abstract
The concept of infinitesimal elastic deformation and the theory of elastic seismic waves was formed in the first part of the 19th century and was based mainly on the Fermat, Huygens and Snell developments in the theory of optics. At the same time, [...] Read more.
The concept of infinitesimal elastic deformation and the theory of elastic seismic waves was formed in the first part of the 19th century and was based mainly on the Fermat, Huygens and Snell developments in the theory of optics. At the same time, seismic wave propagation (utilized in geophysical prospecting) and optic wave propagation through defined media are based on the same physical-mathematical principles, making it possible to transfer nonconventional procedures developed in the first domain to the second one and back. In this investigation, we propose transferring advanced methodologies established in seismic prospecting to practical optics. We selected two advanced approaches with the following aims: (a) homeomorphic imaging; (b) novel description of boundary conditions. The first approach is established with the utilization of the revealed local theoretical relationship between the geometrical features of two fundamental beams and the geometrical properties of hidden geological targets of the media under study. The employed geometrical characteristics of the fundamental beams are spreading functions and curvatures of the singular wavefronts. The second approach is based on a novel description of the boundary conditions. It enables the determination of a faultless seismic (optical) system with the preassigned focusing and imaging assets when any aberrations are absent. An optimal optical system is usually determined as some arrangement agreeing to some perfect system with acceptable correctness. Employment of the developed procedures in the optical design will permit the application of a description of the optical surface using: (1) parametric functions, (2) differential equations, and (3) mixed (parametric-differential). On this basis, optical systems with a minimal number of optical features with complicated shapes can be promptly computed. Another important application field of the suggested methods is the design of optical systems with diffractive elements. Full article
(This article belongs to the Section Applied Physics)
Show Figures

Figure 1

16 pages, 7116 KiB  
Article
Study of the Off-Axis Fresnel Zone Plate of a Microscopic Tomographic Aberration
by Lin Yang, Zhenyu Ma, Siqi Liu, Qingbin Jiao, Jiahang Zhang, Wei Zhang, Jian Pei, Hui Li, Yuhang Li, Yubo Zou, Yuxing Xu and Xin Tan
Sensors 2022, 22(3), 1113; https://doi.org/10.3390/s22031113 - 1 Feb 2022
Cited by 4 | Viewed by 2886
Abstract
A tomographic microscopy system can achieve instantaneous three-dimensional imaging, and this type of microscopy system has been widely used in the study of biological samples; however, existing chromatographic microscopes based on off-axis Fresnel zone plates have degraded image quality due to geometric aberrations [...] Read more.
A tomographic microscopy system can achieve instantaneous three-dimensional imaging, and this type of microscopy system has been widely used in the study of biological samples; however, existing chromatographic microscopes based on off-axis Fresnel zone plates have degraded image quality due to geometric aberrations such as spherical aberration, coma aberration, and image scattering. This issue hinders the further development of chromatographic microscopy systems. In this paper, we propose a method for the design of an off-axis Fresnel zone plate with the elimination of aberrations based on double exposure point holographic surface interference. The aberration coefficient model of the optical path function was used to solve the optimal recording parameters, and the principle of the aberration elimination tomography microscopic optical path was verified. The simulation and experimental verification were carried out utilizing a Seidel coefficient, average gradient, and signal-to-noise ratio. First, the aberration coefficient model of the optical path function was used to solve the optimal recording parameters. Then, the laminar mi-coroscopy optical system was constructed for the verification of the principle. Finally, the simulation calculation results and the experimental results were verified by comparing the Seidel coefficient, average gradient, and signal-to-noise ratio of the microscopic optical system before and after the aberration elimination. The results show that for the diffractive light at the orders 0 and ±1, the spherical aberration W040 decreases by 62–70%, the coma aberration W131 decreases by 96–98%, the image dispersion W222 decreases by 71–82%, and the field curvature W220 decreases by 96–96%, the average gradient increases by 2.8%, and the signal-to-noise ratio increases by 18%. Full article
(This article belongs to the Special Issue Micro-/Nano-Fiber Sensors and Optical Integration Devices)
Show Figures

Figure 1

10 pages, 3148 KiB  
Article
Design of Refractive/Diffractive Hybrid Projection Lens for DMD-Based Maskless Lithography
by Zhuohui Xu, Jinyun Zhou, Bo Wang and Ziming Meng
Optics 2021, 2(2), 103-112; https://doi.org/10.3390/opt2020011 - 8 Jun 2021
Cited by 1 | Viewed by 5023
Abstract
The projection lens is the core component of DMD-based maskless lithography and its imaging quality directly affects the transferal of exposure pattern. Based on the traditional projection lens system, we have designed diffractive optical element (DOE) and aspheric surfaces to optimize the refractive/diffractive [...] Read more.
The projection lens is the core component of DMD-based maskless lithography and its imaging quality directly affects the transferal of exposure pattern. Based on the traditional projection lens system, we have designed diffractive optical element (DOE) and aspheric surfaces to optimize the refractive/diffractive hybrid projection lens system to improve its imaging quality. We found that the best effect is obtained when DOE is very close to the front lens group before the diaphragm of the hybrid system. Compared with the traditional projection lens system, this hybrid projection lens system has lower wave aberration with the help of DOE, and higher image quality owing to the modulation transfer function (MTF) value being improved. Finally, a hybrid projection lens system with working distance of 29.07 mm, image Space NA of 0.45, and total length of 196.97 mm is designed. We found that the maximum distortion and field curvature are 1.36 × 10−5% and 0.91 μm, respectively. Full article
(This article belongs to the Special Issue Fabrication and Applications of Photonic Micro-Devices)
Show Figures

Figure 1

11 pages, 2593 KiB  
Article
Optical Design of a Novel Collimator System with a Variable Virtual-Object Distance for an Inspection Instrument of Mobile Phone Camera Optics
by Hojong Choi, Se-woon Choe and Jaemyung Ryu
Appl. Sci. 2021, 11(8), 3350; https://doi.org/10.3390/app11083350 - 8 Apr 2021
Cited by 7 | Viewed by 3595
Abstract
The resolution performance of mobile phone camera optics was previously checked only near an infinite point. However, near-field performance is required because of reduced camera pixel sizes. Traditional optics are measured using a resolution chart located at a hyperfocal distance, which can only [...] Read more.
The resolution performance of mobile phone camera optics was previously checked only near an infinite point. However, near-field performance is required because of reduced camera pixel sizes. Traditional optics are measured using a resolution chart located at a hyperfocal distance, which can only measure the resolution at a specific distance but not at close distances. We designed a new collimator system that can change the virtual image of the resolution chart from infinity to a short distance. Hence, some lenses inside the collimator systems must be moved. Currently, if the focusing lens is moved, chromatic aberration and field curvature occur. Additional lenses are required to correct this problem. However, the added lens must not change the characteristics of the proposed collimator. Therefore, an equivalent-lens conversion method was designed to maintain the first-order and Seidel aberrations. The collimator system proposed in this study does not move or change the resolution chart. Full article
Show Figures

Figure 1

15 pages, 5292 KiB  
Article
Spectral Domain Optical Coherence Tomography Imaging Performance Improvement Based on Field Curvature Aberration-Corrected Spectrometer
by Seung Seok Lee, Woosub Song and Eun Seo Choi
Appl. Sci. 2020, 10(10), 3657; https://doi.org/10.3390/app10103657 - 25 May 2020
Cited by 9 | Viewed by 5468
Abstract
We designed and fabricated a telecentric f-theta imaging lens (TFL) to improve the imaging performance of spectral domain optical coherence tomography (SD-OCT). By tailoring the field curvature aberration of the TFL, the flattened focal surface was well matched to the detector plane. Simulation [...] Read more.
We designed and fabricated a telecentric f-theta imaging lens (TFL) to improve the imaging performance of spectral domain optical coherence tomography (SD-OCT). By tailoring the field curvature aberration of the TFL, the flattened focal surface was well matched to the detector plane. Simulation results showed that the spot in the focal plane fitted well within a single pixel and the modulation transfer function at high spatial frequencies showed higher values compared with those of an achromatic doublet imaging lens, which are commonly used in SD-OCT spectrometers. The spectrometer using the TFL had an axial resolution of 7.8 μm, which was similar to the theoretical value of 6.2 μm. The spectrometer was constructed so that the achromatic doublet lens was replaced by the TFL. As a result, the SD-OCT imaging depth was improved by 13% (1.85 mm) on a 10 dB basis in the roll-off curve and showed better sensitivity at the same depth. The SD-OCT images of a multi-layered tape and a human palm proved that the TFL was able to achieve deeper imaging depth and better contrast. This feature was seen very clearly in the depth profile of the image. SD-OCT imaging performance can be improved simply by changing the spectrometer’s imaging lens. By optimizing the imaging lens, deeper SD-OCT imaging can be achieved with improved sensitivity. Full article
(This article belongs to the Special Issue Optical Devices and Systems for Biomedical Applications)
Show Figures

Figure 1

10 pages, 1605 KiB  
Article
Variable Curvature Displays: Optical Designs and Applications for VR/AR/MR Headsets
by Eduard Muslimov, Thibault Behaghel, Emmanuel Hugot, Kelly Joaquina and Ilya Guskov
Appl. Sci. 2020, 10(2), 712; https://doi.org/10.3390/app10020712 - 20 Jan 2020
Cited by 1 | Viewed by 3798
Abstract
In the present paper, we discuss the design of a projection system with curved display and its enhancement by variably adjusting the curvature. We demonstrate that the focal surface curvature varies significantly with a change of the object position and that it can [...] Read more.
In the present paper, we discuss the design of a projection system with curved display and its enhancement by variably adjusting the curvature. We demonstrate that the focal surface curvature varies significantly with a change of the object position and that it can easily be computed with the Seidel aberration theory. Using this analytically derived curvature value as the starting point, we optimise a refocusable projection system with 90 ° field of view and F / # = 6.2 . It is demonstrated that such a system can provide stable image quality and illumination when refocusing from infinity to 1.5 m. The gain in spatial resolution is as high as 1.54 times with respect to a flat focal surface. Furthermore, we prove that a silicon die can be curved to the required shape with a safety factor of 4.3 in terms of the mechanical stress. Finally, it is shown that the developed system can be used in a virtual reality headset providing high resolution, low distortion and a flexible focusing mode. Full article
(This article belongs to the Section Optics and Lasers)
Show Figures

Figure 1

16 pages, 5476 KiB  
Article
Wide Field-of-View Fluorescence Imaging with Optical-Quality Curved Microfluidic Chamber for Absolute Cell Counting
by Mohiuddin Khan Shourav, Kyunghoon Kim, Subin Kim and Jung Kyung Kim
Micromachines 2016, 7(7), 125; https://doi.org/10.3390/mi7070125 - 20 Jul 2016
Cited by 5 | Viewed by 6796
Abstract
Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide [...] Read more.
Field curvature and other aberrations are encountered inevitably when designing a compact fluorescence imaging system with a simple lens. Although multiple lens elements can be used to correct most such aberrations, doing so increases system cost and complexity. Herein, we propose a wide field-of-view (FOV) fluorescence imaging method with an unconventional optical-quality curved sample chamber that corrects the field curvature caused by a simple lens. Our optics simulations and proof-of-concept experiments demonstrate that a curved substrate with lens-dependent curvature can reduce greatly the distortion in an image taken with a conventional planar detector. Following the validation study, we designed a curved sample chamber that can contain a known amount of sample volume and fabricated it at reasonable cost using plastic injection molding. At a magnification factor of approximately 0.6, the curved chamber provides a clear view of approximately 119 mm2, which is approximately two times larger than the aberration-free area of a planar chamber. Remarkably, a fluorescence image of microbeads in the curved chamber exhibits almost uniform intensity over the entire field even with a simple lens imaging system, whereas the distorted boundary region has much lower brightness than the central area in the planar chamber. The absolute count of white blood cells stained with a fluorescence dye was in good agreement with that obtained by a commercially available conventional microscopy system. Hence, a wide FOV imaging system with the proposed curved sample chamber would enable us to acquire an undistorted image of a large sample volume without requiring a time-consuming scanning process in point-of-care diagnostic applications. Full article
(This article belongs to the Special Issue MEMS/NEMS for Biomedical Imaging and Sensing)
Show Figures

Graphical abstract

Back to TopTop