Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,925)

Search Parameters:
Keywords = fiber optical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 2326 KB  
Review
Comprehensive Analysis of FBG and Distributed Rayleigh, Brillouin, and Raman Optical Sensor-Based Solutions for Road Infrastructure Monitoring Applications
by Ugis Senkans, Nauris Silkans, Sandis Spolitis and Janis Braunfelds
Sensors 2025, 25(17), 5283; https://doi.org/10.3390/s25175283 (registering DOI) - 25 Aug 2025
Abstract
This study focuses on a comprehensive analysis of the common methods for road infrastructure monitoring, as well as the perspective of various fiber-optic sensor (FOS) realization solutions in road monitoring applications. Fiber-optic sensors are a topical technology that ensures multiple advantages such as [...] Read more.
This study focuses on a comprehensive analysis of the common methods for road infrastructure monitoring, as well as the perspective of various fiber-optic sensor (FOS) realization solutions in road monitoring applications. Fiber-optic sensors are a topical technology that ensures multiple advantages such as passive nature, immunity to electromagnetic interference, multiplexing capabilities, high sensitivity, and spatial resolution, as well as remote operation and multiple physical parameter monitoring, hence offering embedment potential within the road pavement structure for needed smart road solutions. The main key factors that affect FOS-based road monitoring scenarios and configurations are analyzed within this review. One such factor is technology used for optical sensing—fiber Bragg grating (FBG), Brillouin, Rayleigh, or Raman-based sensing. A descriptive comparison is made comparing typical sensitivity, spatial resolution, measurement distance, and applications. Technological approaches for monitoring physical parameters, such as strain, temperature, vibration, humidity, and pressure, as a means of assessing road infrastructure integrity and smart application integration, are also evaluated. Another critical aspect concerns spatial positioning, focusing on the point, quasi-distributed, and distributed methodologies. Lastly, the main topical FOS-based application areas are discussed, analyzed, and evaluated. Full article
18 pages, 8241 KB  
Article
Low Loss and High Polarization-Maintaining Single-Mode Hollow-Core Anti-Resonant Fibers with S+C+L+U Communication Bands
by Hongxiang Xu, Yuan Yang, Jinhui Yuan, Dongxin Wu, Yilin Huang, Shengbao Luo, Zhiyong Ren, Changming Xia, Jiantao Liu, Guiyao Zhou and Zhiyun Hou
Photonics 2025, 12(9), 846; https://doi.org/10.3390/photonics12090846 - 24 Aug 2025
Abstract
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both [...] Read more.
In this paper, a low loss and high polarization-maintaining single-mode hollow-core anti-resonant fiber (PM-HC-ARF) is designed. The elliptical core in the PM-HC-ARF is formed by strategically enlarging selected cladding air holes along the y-axis. Additionally, the variations in the wall thickness in both the x and y directions generate the distinct surface modes. By simultaneously employing an elliptical core and asymmetric core-wall thickness, we enhance the phase birefringence. Theoretical analysis results show that the proposed PM-HC-ARF achieves a transmission loss of 0.00082 dB/m at wavelength 1450 nm, along with a birefringence of 1.38 × 10−4; it demonstrates CL levels an order of magnitude below state-of-the-art polarization-maintaining HC-ARFs. Moreover, within the S+C+L+U communication bands, it achieves a bandwidth exceeding 380 nm (1420–1800 nm) while maintaining a birefringence of greater than 1.45 × 10−4. In particular, this PM-HC-ARF demonstrates a maximum higher-order mode extinction ratio of over 32,070; the single-mode transmission characteristics are excellent, along with exceptional bending resistance characteristics. When the bending radius exceeds 3 cm, the impacts on the loss and birefringence are negligible; this also demonstrates that the fiber structure shows good robustness when subjected to harsh environment interference. The proposed PM-HC-ARF is believed to have important applications in fiber optic gyroscopes, optical amplifiers, and hydrophones. Full article
Show Figures

Figure 1

16 pages, 4102 KB  
Article
Research on Active Defense System for Transformer Early Fault Based on Fiber Leakage Magnetic Field Measurement
by Junchao Wang, Yaqi Liu, Jian Mao, Shaoyong Liu, Zhixiang Tong, Xiangli Deng and Wenbin Tan
Energies 2025, 18(17), 4497; https://doi.org/10.3390/en18174497 - 24 Aug 2025
Abstract
In the early faults of transformer windings, there are obvious variation characteristics of the spatial leakage magnetic field. Taking the leakage magnetic field as the fault characteristic quantity can establish an active defense system for transformer defects and faults, thereby increasing the service [...] Read more.
In the early faults of transformer windings, there are obvious variation characteristics of the spatial leakage magnetic field. Taking the leakage magnetic field as the fault characteristic quantity can establish an active defense system for transformer defects and faults, thereby increasing the service life of the equipment. However, the installation method of the optical fiber leakage magnetic field sensor, the principle of leakage magnetic field protection, the research and development of the protection device, and the dynamic model testing of the protection device are all key links in realizing the leakage magnetic field monitoring and active defense system. This paper first analyzes the symmetry of the winding leakage magnetic field, proposes invasive and non-invasive installation methods for optical fiber sensors based on different application scenarios, presents the principle of leakage magnetic field differential protection, and develops a protection device. The feasibility of the protection scheme proposed in this paper was verified through dynamic model experiments, and the early fault active defense system was put into actual on-site operation. Full article
Show Figures

Figure 1

19 pages, 1887 KB  
Article
Chemical Dissection of PM2.5 in Cigarette Smoke: Main and Sidestream Emission Factors and Compositions
by Yujian Zhou, Hong Huang, Changwei Zou, Mengmeng Deng, Xiang Tu, Wei Deng, Chenglong Yu and Jianlong Li
Toxics 2025, 13(9), 711; https://doi.org/10.3390/toxics13090711 - 23 Aug 2025
Viewed by 51
Abstract
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In [...] Read more.
Despite increasing evidence that cigarette smoke is a significant source of indoor fine particulate matter (PM2.5), quantitative emission factors (EFs) for PM2.5 and its toxic chemical composition in mainstream (MS) and sidestream (SS) smoke are still not well defined. In this study, we employed a custom-designed chamber to separately collect MS (intermittent puff) and SS (continuous sampling) smoke from eleven cigarette models, representing six brands and two product types, under controlled conditions. PM2.5 was collected on quartz-fiber filters and analyzed for carbon fractions (using the thermal–optical IMPROVE-A protocol), nine water-soluble inorganic ions (by ion chromatography), and twelve trace elements (via ICP-MS). SS smoke exhibited significantly higher mass fractions of total analyzed species (84.7% vs. 65.9%), carbon components (50.6% vs. 44.2%), water-soluble ions (17.1% vs. 13.7%), and elements (17.0% vs. 7.0%) compared to MS smoke. MS smoke is characterized by a high proportion of pyrolytic organic carbon fractions (OC1–OC3) and specific elements such as vanadium (V) and arsenic (As), while SS smoke shows elevated levels of elemental carbon (EC1), water-soluble ions (NH4+, NO3), and certain elements like zinc (Zn) and cadmium (Cd). The toxicity-weighted distribution indicates that MS smoke primarily induces membrane disruption and pulmonary inflammation through semi-volatile organics and elements, whereas SS smoke enhances oxidative stress and cardiopulmonary impairment via EC-mediated reactions and secondary aerosol formation. The mean OC/EC ratio of 132.4 in SS smoke is an order of magnitude higher than values reported for biomass or fossil-fuel combustion, indicative of extensive incomplete combustion unique to cigarettes and suggesting a high potential for oxidative stress generation. Emission factors (µg/g cigarette) revealed marked differences: MS delivered higher absolute EFs for PM2.5 (422.1), OC (8.8), EC (5.0), Na+ (32.6), and V (29.2), while SS emitted greater proportions of NH4+, NO3, Cl, and carcinogenic metals (As, Cd, Zn). These findings provide quantitative source profiles suitable for receptor-oriented indoor source-apportionment models and offer toxicological evidence to support the prioritization of comprehensive smoke-free regulations. Full article
(This article belongs to the Section Air Pollution and Health)
Show Figures

Figure 1

11 pages, 2175 KB  
Case Report
First Case in Lithuania of an Autosomal Recessive Mutation in the DNAJC30 Gene as a Cause of Leber’s Hereditary Optic Neuropathy
by Liveta Sereikaite, Alvita Vilkeviciute, Brigita Glebauskiene, Rasa Traberg, Arvydas Gelzinis, Raimonda Piskiniene, Reda Zemaitiene, Rasa Ugenskiene and Rasa Liutkeviciene
Genes 2025, 16(9), 993; https://doi.org/10.3390/genes16090993 (registering DOI) - 23 Aug 2025
Viewed by 39
Abstract
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case [...] Read more.
Background: Leber’s hereditary optic neuropathy (LHON) is the most common mitochondrial disorder and an inherited optic neuropathy. Recently, two different LHON inheritance types have been discovered: mitochondrially inherited LHON (mtLHON) and autosomal recessive LHON (arLHON). Our case report is the first diagnosed case of arLHON in a patient of Lithuanian descent and confirms the DnaJ Heat Shock Protein Family (Hsp40) Member C30 (DNAJC30) c.152A>G p.(Tyr51Cys) founder variant. Case Presentation: A 34-year-old Lithuanian man complained of headache and sudden, painless loss of central vision in his right eye. On examination, the visual acuity of the right and left eyes was 0.1 and 1.0, respectively. Visual-field examination revealed a central scotoma in the right eye, and visual evoked potentials (VEPs) showed prolonged latency in both eyes. Optical coherence tomography showed thickening of the retinal nerve fiber layer in the upper quadrant of the optic disk in the left eye. Magnetic resonance imaging of the head showed evidence of optic nerve inflammation in the right eye. Blood tests were within normal range and showed no signs of inflammation. Retrobulbar neuritis of the right eye was suspected, and the patient was treated with steroids, which did not improve visual acuity. He later developed visual loss in the left eye as well. A genetic origin of the optic neuropathy was suspected, and a complete mitochondrial DNA analysis was performed, but it did not reveal any pathologic mutations. Over time, the visual acuity of both eyes slowly deteriorated, and the retinal nerve fiber layer (RNFL) thinning of the optic disks progressed. A multidisciplinary team of specialists concluded that vasculitis or infectious disease was unlikely to be the cause of the vision loss, and a genetic cause for the disease was still suspected, although a first-stage genetic test did not yield the diagnosis. Thirty-three months after disease onset, whole-exome sequencing revealed a pathogenic variant in the DNAJC30 gene, leading to the diagnosis of arLHON. Treatment with Idebenone was started 35 months after the onset of the disease, resulting in no significant worsening of the patient’s condition. Conclusion: This case highlights the importance of considering arLHON as a possible diagnosis for patients with optic neuropathy, because the phenotype of arLHON appears to be identical to that of mtLHON and cannot be distinguished by clinicians. Full article
(This article belongs to the Section Human Genomics and Genetic Diseases)
Show Figures

Figure 1

36 pages, 10529 KB  
Review
Tapered Optical Fiber Optofluidics: Bridging In-Fiber and Outside-Fiber Architectures Toward Autonomous Lab-on-Fiber Biosensing
by Alba Lako and Marzhan Sypabekova
Sensors 2025, 25(17), 5229; https://doi.org/10.3390/s25175229 - 22 Aug 2025
Viewed by 245
Abstract
Optical fiber-based biosensors have proven to be a powerful platform for chemical and biological analysis due to their compact size, fast response, high sensitivity, and immunity to electromagnetic interference. Among the various fiber designs, tapered optical fibers have gained prominence due to the [...] Read more.
Optical fiber-based biosensors have proven to be a powerful platform for chemical and biological analysis due to their compact size, fast response, high sensitivity, and immunity to electromagnetic interference. Among the various fiber designs, tapered optical fibers have gained prominence due to the increased evanescent fields that significantly improve light–analyte interactions, making them well-suited for advanced sensing applications. At the same time, advances in microfluidics have allowed for the precise control of small-volume fluids, supporting integration with optical fiber sensors to create compact and multifunctional optofluidic systems. This review explores recent developments in optical fiber optofluidic sensing, with a focus on two primary architectures: in-fiber and outside-fiber platforms. The advantages, limitations, and fabrication strategies for each are discussed, along with their compatibility with various sensing mechanisms. Special emphasis is placed on tapered optical fibers, focusing on design strategies, fabrication, and integration with microfluidics. While in-fiber systems offer compactness and extended interaction lengths, outside-fiber platforms offer greater mechanical stability, modularity, and ease of functionalization. The review highlights the growing interest in tapered fiber-based optofluidic biosensors and their potential to serve as the foundation for autonomous lab-on-a-fiber technologies. Future pathways for achieving self-contained, multiplexed, and reconfigurable sensing platforms are also discussed. Full article
(This article belongs to the Special Issue Recent Advances in Microfluidic Sensing Devices)
Show Figures

Figure 1

10 pages, 3663 KB  
Article
Compact All-Fiber SERS Probe Sensor Based on the MMF-NCF Structure with Self-Assembled Gold Nanoparticles
by Peng Cai, Tiantian Xu, Hangan Wei, Huili He and Fu Li
Sensors 2025, 25(17), 5221; https://doi.org/10.3390/s25175221 - 22 Aug 2025
Viewed by 170
Abstract
Brain natriuretic peptide (BNP) is an important biomarker for the diagnosis and prediction of chronic heart failure (CHF). Aiming at the problems of the low sensitivity and poor portability of traditional BNP detection methods, this study proposes a Surface-enhanced Raman-scattering (SERS) fiber-optic sensor [...] Read more.
Brain natriuretic peptide (BNP) is an important biomarker for the diagnosis and prediction of chronic heart failure (CHF). Aiming at the problems of the low sensitivity and poor portability of traditional BNP detection methods, this study proposes a Surface-enhanced Raman-scattering (SERS) fiber-optic sensor based on a multimode fiber (MMF)–no core fiber (NCF) structure. The sensor achieves BNP detection by significantly amplifying the Raman signal of the toluidine blue (TB) marker through the synergistic effect of NCF’s unique optical transmission modes and localized surface plasmon resonance (LSPR). To optimize the sensor performance, we first investigated the effect of the NCF length on the Raman signal, using Rhodamine 6G (R6G), and determined the optimal structural parameters. Combined with the microfluidic chip integration technology, the antibody–BNP–antibody sandwich structure was adopted, and TB was used as the Raman label to realize the quantitative detection of BNP. Experimental results demonstrate that the detection limit of the sensor is lower than the clinical diagnostic threshold and exhibits stability. The sensor sensitivity can be adjusted by regulating the laser power. With its stability and high portability, this sensor provides a new solution for the early diagnosis of heart failure and demonstrates broad application prospects in biomarker detection. Full article
(This article belongs to the Special Issue Novel Optical Sensors for Biomedical Applications—2nd Edition)
Show Figures

Figure 1

22 pages, 4566 KB  
Article
A Suppression Method for Random Errors of IFOG Based on the Decoupling of Colored Noise-Spectrum Information
by Zhe Liang, Zhili Zhang, Zhaofa Zhou, Hongcai Li, Junyang Zhao, Longjie Tian and Hui Duan
Micromachines 2025, 16(8), 963; https://doi.org/10.3390/mi16080963 - 21 Aug 2025
Viewed by 105
Abstract
In high-precision inertial navigation systems, suppressing the random errors of a fiber-optic gyroscope is of great importance. However, the traditional rule-based autoregressive moving average modeling method, when applied in Kalman filtering considering colored noise, presents inherent disadvantages in principle, including inaccurate state equations [...] Read more.
In high-precision inertial navigation systems, suppressing the random errors of a fiber-optic gyroscope is of great importance. However, the traditional rule-based autoregressive moving average modeling method, when applied in Kalman filtering considering colored noise, presents inherent disadvantages in principle, including inaccurate state equations and difficulties in state dimension expansion. To this end, the noise characteristics in the fiber-optic gyroscope signal are first deeply analyzed, a random error model form is clarified, and a new model-order determination criterion is proposed to achieve the high-precision modeling of random errors. Then, based on the effective suppression of the angle random walk error of the fiber-optic gyroscope, and combined with the linear system equation of its colored noise, an adaptive Kalman filter based on noise-spectrum information decoupling is designed. This breaks through the principled limitations of traditional methods in suppressing colored noise and provides a scheme for modeling and suppressing fiber-optic gyroscope random errors under static conditions. Experimental results show that, compared with existing methods, the initial alignment accuracy of the proposed method based on 5 min data of fiber-strapdown inertial navigation is improved by an average of 48%. Full article
(This article belongs to the Special Issue Integrated Photonics and Optoelectronics, 2nd Edition)
Show Figures

Figure 1

17 pages, 1543 KB  
Article
Foveal Avascular Zone Enlargement as a Risk Factor for Early Retinal Ganglion Cell Dysfunction in Glaucoma Suspects
by Andrew Tirsi, Kashviya Suri, Samuel Potash, Joby Tsai, Danielle Kacaj, Vasiliki Gliagias, Nicholas Leung, Timothy Foster, Rushil Kumbhani, Derek Orshan, Daniel Zhu and Celso Tello
Diagnostics 2025, 15(16), 2103; https://doi.org/10.3390/diagnostics15162103 - 21 Aug 2025
Viewed by 230
Abstract
Background/Objectives: The aim of this study was to evaluate the relationship between foveal avascular zone (FAZ) enlargement, retinal ganglion cell (RGC) dysfunction, and structural retinal measurements in glaucoma suspects (GS), using pattern electroretinogram (PERG) and optical coherence tomography angiography (OCTA) parameters. Methods: Thirty-one [...] Read more.
Background/Objectives: The aim of this study was to evaluate the relationship between foveal avascular zone (FAZ) enlargement, retinal ganglion cell (RGC) dysfunction, and structural retinal measurements in glaucoma suspects (GS), using pattern electroretinogram (PERG) and optical coherence tomography angiography (OCTA) parameters. Methods: Thirty-one eyes (20 subjects) of GS status underwent comprehensive ophthalmologic evaluation including steady-state PERG, optical coherence tomography (OCT), and OCTA. FAZ area was measured using ImageJ software (version 1.54p), and PERG parameters (Magnitude, MagnitudeD, and MagnitudeD/Magnitude ratio) were analyzed. Partial correlation analyses were performed to assess associations between FAZ area, PERG parameters, and structural metrics including retinal nerve fiber layer (RNFL), ganglion cell layer–inner plexiform layer (GCL + IPL), and macular thickness. Results: After controlling for age, sex, central corneal thickness (CCT), intraocular pressure (IOP), and spherical equivalent, partial correlation analysis showed that FAZ area was significantly associated with both lower Magnitude (r < −0.503, p < 0.05) and MagnitudeD (r < −0.507, p < 0.05) values. PERG parameters were significantly correlated with superior and average RNFL thickness, as well as superior and superior temporal GCL + IPL thickness. FAZ area was significantly associated with multiple GCL + IPL and macular thickness sectors, but not with RNFL thickness. Conclusions: FAZ enlargement is significantly associated with RGC dysfunction and inner retinal layer thinning in GS. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

21 pages, 2309 KB  
Review
A Comprehensive Review of Satellite Orbital Placement and Coverage Optimization for Low Earth Orbit Satellite Networks: Challenges and Solutions
by Adel A. Ahmed
Network 2025, 5(3), 32; https://doi.org/10.3390/network5030032 - 20 Aug 2025
Viewed by 317
Abstract
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and [...] Read more.
Nowadays, internet connectivity suffers from instability and slowness due to optical fiber cable attacks across the seas and oceans. The optimal solution to this problem is using the Low Earth Orbit (LEO) satellite network, which can resolve the problem of internet connectivity and reachability, and it has the power to bring real-time, reliable, low-latency, high-bandwidth, cost-effective internet access to many urban and rural areas in any region of the Earth. However, satellite orbital placement (SOP) and navigation should be carefully designed to reduce signal impairments. The challenges of orbital satellite placement for LEO include constellation development, satellite parameter optimization, bandwidth optimization, consideration of signal impairment, and coverage optimization. This paper presents a comprehensive review of SOP and coverage optimization, examines prevalent issues affecting LEO internet connectivity, evaluates existing solutions, and proposes novel solutions to address these challenges. Furthermore, it recommends a machine learning solution for coverage optimization and SOP that can be used to efficiently enhance internet reliability and reachability for LEO satellite networks. This survey will open the gate for developing an optimal solution for global internet connectivity and reachability. Full article
Show Figures

Figure 1

31 pages, 14651 KB  
Article
Temperature–Load Stress Analysis of Ultra-Long Pool Structures Based on Distributed Fiber Optic Sensing and Finite Element Analysis
by Yongxing Li, Xinyang Han, Dajian Zhang, Jianrong Li, Pengyong Miao and Wenrui Wang
Buildings 2025, 15(16), 2961; https://doi.org/10.3390/buildings15162961 - 20 Aug 2025
Viewed by 262
Abstract
Ultra-long pool structures used in mine water treatment projects are typical large-volume concrete structures that are highly susceptible to cracking due to the combined effects of cement hydration heat, seasonal temperature variations, and internal water pressure. Such cracking can compromise the durability and [...] Read more.
Ultra-long pool structures used in mine water treatment projects are typical large-volume concrete structures that are highly susceptible to cracking due to the combined effects of cement hydration heat, seasonal temperature variations, and internal water pressure. Such cracking can compromise the durability and long-term service performance of the structure. In this study, distributed fiber optic sensing and finite element analysis were conducted to observe the response of ultra-long pool structures under thermal–load effects. System comparison shows that the average error between the monitored peak thermal strain values and the corresponding simulated values is within 9%. Parametric analysis using the validated simulation model indicates that the hydration protocol with temperatures of 15 °C (casting), 55 °C (peak), and 15 °C (stable), a temperature drop of −20 °C, and loading conditions in sub-pools 3+6 and sub-pools 1+3+5 are the most unfavorable scenarios for inducing tensile stress. When a temperature drop of −20 °C is combined with loading conditions in sub-pools 3+6 or sub-pools 1+3+5, the tensile stress in the pool structure increases by 30% compared to the stress induced by loading alone. This indicates that during the service life of the pool structure, extreme temperature variations combined with mechanical loading may result in localized cracking. This study provides a comprehensive understanding of ultra-long pool behavior during construction and service phases, supporting effective maintenance and long-term durability. Full article
Show Figures

Figure 1

24 pages, 5532 KB  
Article
Pulsed CO2 Laser-Fabricated Cascades of Double Resonance Long Period Gratings for Sensing Applications
by Tinko Eftimov, Sanaz Shoar Ghaffari, Georgi Dyankov, Veselin Vladev and Alla Arapova
Micromachines 2025, 16(8), 959; https://doi.org/10.3390/mi16080959 - 20 Aug 2025
Viewed by 121
Abstract
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn [...] Read more.
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn around point (TAP) gratings. A pulsed CO2 laser was used to fabricate ordinary and cascaded DR LPGs in a photosensitive optical fiber. The responses of the fabricated C DR LPGs to surrounding refractive index (SRI) temperature as well to longitudinal strain have been studied. A statistical comparison of the SRI sensitivities of ordinary and cascaded DR LPGs is presented to outline the capabilities and advantages of cascaded DR gratings. It was experimentally established that the temperature dependence of the wavelength split at the TAP follows a logarithmic dependence and the sensitivity to temperature is inversely proportional to the temperature itself. We evaluate the temperature stability needed for SRI-based sensing application and the importance of fine-tuning to the operational point slightly after the TAP to ensure maximum sensitivity of the sensor. Full article
Show Figures

Figure 1

12 pages, 5264 KB  
Article
A PDMS Coating-Based Balloon-Shaped Fiber Optic Respiratory Monitoring Sensor
by Qingfeng Shi, Yunkun Cui, Yu Zhang, Jie Zhang and Feng Peng
Sensors 2025, 25(16), 5174; https://doi.org/10.3390/s25165174 - 20 Aug 2025
Viewed by 302
Abstract
A respiratory monitoring sensor based on a balloon-shaped optical fiber is proposed. The sensor consists of a single-mode fiber (SMF) coated with polydimethylsiloxane (PDMS) bent into a balloon shape to form a fiber optic Mach–Zehnder interferometer. The sensor’s sensitivity to temperature enables monitoring [...] Read more.
A respiratory monitoring sensor based on a balloon-shaped optical fiber is proposed. The sensor consists of a single-mode fiber (SMF) coated with polydimethylsiloxane (PDMS) bent into a balloon shape to form a fiber optic Mach–Zehnder interferometer. The sensor’s sensitivity to temperature enables monitoring of breathing status by recognizing the temperature changes that occur during human respiration. By adjusting the bending radius of the balloon-shaped SMF, high-order modes can be effectively excited to interfere with the core mode. Due to the high thermo-optic coefficient and thermal expansion coefficient of PDMS itself, the balloon-shaped fiber optic sensor can achieve temperature sensitivity. The experimental results show that the temperature sensitivity is −166.29 pm/°C in a temperature range of 30 °C to 60 °C. Finally, the proposed sensor was mounted into a respiratory mask to monitor different breathing states (normal, fast, slow, and oral–nasal breathing transitions) and breathing frequencies. Full article
(This article belongs to the Special Issue Recent Advances in Micro- and Nanofiber-Optic Sensors)
Show Figures

Figure 1

22 pages, 2382 KB  
Article
Spatiotemporal Anomaly Detection in Distributed Acoustic Sensing Using a GraphDiffusion Model
by Seunghun Jeong, Huioon Kim, Young Ho Kim, Chang-Soo Park, Hyoyoung Jung and Hong Kook Kim
Sensors 2025, 25(16), 5157; https://doi.org/10.3390/s25165157 - 19 Aug 2025
Viewed by 300
Abstract
Distributed acoustic sensing (DAS), which can provide dense spatial and temporal measurements using optical fibers, is quickly becoming critical for large-scale infrastructure monitoring. However, anomaly detection in DAS data is still challenging owing to the spatial correlations between sensing channels and nonlinear temporal [...] Read more.
Distributed acoustic sensing (DAS), which can provide dense spatial and temporal measurements using optical fibers, is quickly becoming critical for large-scale infrastructure monitoring. However, anomaly detection in DAS data is still challenging owing to the spatial correlations between sensing channels and nonlinear temporal dynamics. Recent approaches often disregard the explicit sensor layout and instead handle DAS data as two-dimensional images or flattened sequences, eliminating the spatial topology. This work proposes GraphDiffusion, a novel generative anomaly-detection model that combines a conditional denoising diffusion probabilistic model (DDPM) and a graph neural network (GNN) to overcome these limitations. By treating each channel as a graph node and building edges based on Euclidean proximity, the GNN explicitly models the spatial arrangement of DAS sensors, allowing the network to capture local interchannel dependencies. The conditional DDPM uses iterative denoising to model the temporal dynamics of standard signals, enabling the system to detect deviations without the need for anomalies. The performance evaluations based on real-world DAS datasets reveal that GraphDiffusion achieves 98.2% and 98.0% based on the area under the curve (AUC) of the F1-score at K different levels (F1K-AUC), an AUC of receiver operating characteristic (ROC) at K different levels (ROCK-AUC), outperforming other comparative models. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Graphical abstract

21 pages, 7834 KB  
Article
Robust and Adaptive Ambiguity Resolution Strategy in Continuous Time and Frequency Transfer
by Kun Wu, Weijin Qin, Daqian Lv, Wenjun Wu, Pei Wei and Xuhai Yang
Remote Sens. 2025, 17(16), 2878; https://doi.org/10.3390/rs17162878 - 18 Aug 2025
Viewed by 304
Abstract
The integer precise point positioning (IPPP) technique significantly improves the accuracy of positioning and time and frequency transfer by restoring the integer nature of carrier-phase ambiguities. However, in practical applications, IPPP performance is often degraded by day-boundary discontinuities and instances of incorrect ambiguity [...] Read more.
The integer precise point positioning (IPPP) technique significantly improves the accuracy of positioning and time and frequency transfer by restoring the integer nature of carrier-phase ambiguities. However, in practical applications, IPPP performance is often degraded by day-boundary discontinuities and instances of incorrect ambiguity resolution, which can compromise the reliability of time transfer. To address these challenges and enable continuous, robust, and stable IPPP time transfer, this study proposes an effective approach that utilizes narrow-lane ambiguities to absorb receiver clock jumps, combined with a robust sliding-window weighting strategy that fully exploits multi-epoch information. This method effectively mitigates day-boundary discontinuities and employs adaptive thresholding to enhance error detection and mitigate the impact of incorrect ambiguity resolution. Experimental results show that at an averaging time of 76,800 s, the frequency stabilities of GPS, Galileo, and BDS IPPP reach 4.838 × 10−16, 4.707 × 10−16, and 5.403 × 10−16, respectively. In the simulation scenario, the carrier-phase residual under the IGIII scheme is 6.7 cm, whereas the robust sliding-window weighting method yields a lower residual of 5.2 cm, demonstrating improved performance. In the zero-baseline time link, GPS IPPP achieves stability at the 10−17 level. Compared to optical fiber time transfer, the GPS IPPP solution demonstrates superior long-term performance in differential analysis. For both short- and long-baseline links, IPPP consistently outperforms the PPP float solution and IGS final products. Specifically, at an averaging time of 307,200 s, IPPP improves average frequency stability by approximately 29.3% over PPP and 32.6% over the IGS final products. Full article
Show Figures

Figure 1

Back to TopTop