Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (89)

Search Parameters:
Keywords = fiber entanglement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2793 KiB  
Article
Doping Carbon Coating on Glass Fiber to Enhance Its Reinforcing Potential in a Polymer Matrix
by Siok Wei Tay, Inez Lau and Liang Hong
J. Compos. Sci. 2025, 9(7), 348; https://doi.org/10.3390/jcs9070348 - 6 Jul 2025
Viewed by 455
Abstract
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix [...] Read more.
This research investigates a novel hybrid E-glass fiber coated with a thin amorphous carbon (coke) layer, referred to as GF@C, designed to enhance the affinity of fiber with a polymer matrix. Acrylonitrile butadiene styrene (ABS), an engineering thermoplastic, was selected as the matrix to form the composite. The carbon coating was produced by pyrolyzing a lubricant oil (Lo) layer applied to the glass fiber strands. To promote the formation of graphite crystallites during carbonization, a small amount (x wt.% of Lo) of coronene (Cor) was added to Lo as a dopant. The resulting doped fibers, denoted GF@CLo-Cor(x%), were embedded in ABS at 70 wt.%, leading to significant improvements in mechanical properties. At the optimal doping level (x = 5), the composite achieved a Young’s modulus of 1.02 GPa and a tensile strength of 6.96 MPa, substantially higher than the 0.4 GPa and 3.81 MPa observed for the composite with the pristine GF. This enhancement is attributed to a distribution of graphite crystallites and their graphitization extent in the carbon coating, which improves interfacial bonding and increases chain entanglement. Additionally, GF@CLo-Cor(x%)–ABS composites (x = 0 and 5) exhibit significantly higher dielectric constant–temperature profiles than GF–ABS, attributed to the formation of diverse chain adsorption states on the C-coating. Full article
(This article belongs to the Special Issue Polymer Composites and Fibers, 3rd Edition)
Show Figures

Graphical abstract

13 pages, 2360 KiB  
Article
Relation Between Injection Molding Conditions, Fiber Length, and Mechanical Properties of Highly Reinforced Long Fiber Polypropylene: Part II Long-Term Creep Performance
by Jon Haitz Badiola, U. Astobitza, M. Iturrondobeitia, A. Burgoa, J. Ibarretxe and A. Arriaga
Polymers 2025, 17(12), 1630; https://doi.org/10.3390/polym17121630 - 12 Jun 2025
Viewed by 571
Abstract
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on [...] Read more.
This study investigates the long-term mechanical performance of highly reinforced long glass fiber thermoplastic polypropylene composites, focusing on the effects of processing parameters, fiber length, and skin–core structures. Dynamic mechanical and creep analyses were conducted to evaluate the impact of injection molding on the final microstructure and long-term mechanical properties. The findings confirm that a significant microstructural change occurs at a fiber length of 1000 µm, which strongly influences the material’s mechanical behavior. Samples with fiber lengths above this threshold reveal greater creep resistance due to the reduced flowability that leads to more entangled, three-dimensional fiber networks in the core. This structure limits chain mobility and consequently improves the resistance to long-term deformation under load. Conversely, fiber lengths below 1000 µm promote a planar arrangement of fibers, which enhances chain relaxation, fiber orientation, and creep strain. Specifically, samples with fiber lengths exceeding 1000 µm exhibited up to a 15% lower creep strain compared to shorter fiber samples. Additionally, a direct relationship is observed between the findings in the viscoelastic response and quasi-static tensile properties from previous studies. Finally, the impact of the microstructure is more pronounced at low temperatures and becomes nearly negligible at high temperatures, indicating that beyond the glass transition temperature, the microstructural effect diminishes gradually until it becomes almost non-existent. Full article
(This article belongs to the Special Issue Advances in Polymer Molding and Processing)
Show Figures

Graphical abstract

9 pages, 823 KiB  
Communication
Simulating Higher-Dimensional Quantum Communications Using Principal Modes
by Daniel A. Nolan
Optics 2025, 6(2), 24; https://doi.org/10.3390/opt6020024 - 4 Jun 2025
Viewed by 491
Abstract
Higher-dimensional communications in optical fiber enables new possibilities, including increased transmission capacity and hyper-entangled state transfer. However, mode coupling between channels during transmission causes interference between channels and limits detection. In classical optical communications, MIMO (modes in modes out) is a means to [...] Read more.
Higher-dimensional communications in optical fiber enables new possibilities, including increased transmission capacity and hyper-entangled state transfer. However, mode coupling between channels during transmission causes interference between channels and limits detection. In classical optical communications, MIMO (modes in modes out) is a means to deal with this issue; however, it is not possible to utilize this technology in quantum communications due to power limitations. Principal mode transmission is another means to deal with mode coupling and signal interference between channels. Conceptually, this can be used in quantum communications with some limitations. In this study, we numerically simulated this process using the time delay method and show how it can be implemented using two and four higher-dimensional quantum states, such as W or GHZ states. These numerical simulations are very illustrative of how the implementation proceeds. Full article
Show Figures

Figure 1

17 pages, 3691 KiB  
Article
Lamellar Orientation Analysis and Mechanical Properties of Polyethylene in Stretch-Induced Crystallization
by Mohammed Althaf Hussain, Takeshi Aoyagi, Takeshi Kikutani, Wataru Takarada, Takashi Yamamoto, Syed Farooq Adil and Shigeru Yao
Polymers 2025, 17(11), 1450; https://doi.org/10.3390/polym17111450 - 23 May 2025
Viewed by 623
Abstract
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in [...] Read more.
Polyethylene films prepared from orientation-dependent methods are strong and resilient, have reduced permeability, and possess higher tensile strength. A molecular dynamics investigation is performed to reveal the emergence of chain folding and lamellar crystal axis alignment along the stretching axis (tilt angle) in the stretch-induced crystallization (SIC) of high-density polyethylene (HDPE), which mimics the internal structure of the fiber. The morphology in phase transition is assessed by the total density (ρ), degree of crystallinity (%χc), average number of entanglements per chain (<Z>), elastic modulus of the mechanical property, and lamellar chain tilt angle (θ) from the stretch-axis. The simulation emphasizes crystal formation by changing the total ρ from 0.85 g·cm−3 to 0.90 g·cm−3 and by tracking the gradual increase in % χc during stretching (~40%) and relaxation processes (~50%). Moreover, the primitive path analysis-based <Z> decreased during stretching and further in the subsequent relaxation process, supporting the alignment and thickening of the lamellar chain structure and chain folding from the random coil structure. The elastic modulus of ~350–400 MPa evidences the high alignment of the lamellar chains along the stretching axis. Consistent with the chain tilt angle of the HDPE in SAXS/WAXS experiments, the model estimated the lamellar chain title angle (θ) relative to the stretching axis to be ~20–35°. In conclusion, SIC is a convenient approach for simulating high stiffness, tensile strength, reduced permeability, and chain alignment in fiber film models, which can help design new fiber morphology-based polymers or composites. Full article
Show Figures

Graphical abstract

18 pages, 7391 KiB  
Article
Deep Eutectic Solvent Assisted Mechano-Enzymatic Preparation for Reprocessable Hot-Melting Starch: A Comprehensive Analysis of Molecular Structure and Thermal Properties
by Xuan Liu, Jia Man, Yanhui Li, Liming Wang, Maocheng Ji, Sixian Peng, Junru Li, Shen Wang, Fangyi Li and Chuanwei Zhang
Polymers 2025, 17(10), 1296; https://doi.org/10.3390/polym17101296 - 9 May 2025
Viewed by 606
Abstract
Unlike the hot-melting processing of thermoplastic plastics, the processing of starch-based material relies on the addition of solvents, resulting in their low productivity, hindering large-scale industrialized production. A strategy to realize the high production efficiency of starch-based material, an environmentally friendly modification process [...] Read more.
Unlike the hot-melting processing of thermoplastic plastics, the processing of starch-based material relies on the addition of solvents, resulting in their low productivity, hindering large-scale industrialized production. A strategy to realize the high production efficiency of starch-based material, an environmentally friendly modification process without waste liquid generation, was designed to prepare a hot-melting starch (HMS) that can be repeatedly hot melted. Ball milling, enzymatic digestion, and deep eutectic solvent (DES) plasticization modification were combined to prepare the HMS. Ball milling destroyed the starch’s particles and the crystallinity, exposing the hydroxyl group, which allowed amylase to achieve enzymatic hydrolysis more easily. After enzymatic hydrolysis, the molecular chains of modified starch were shortened and the entanglement of molecular chains was reduced, which promoted the slip of molecular chains. The plasticization of DES, which promoted by the broken starch particles and the destroyed crystal structure, formed stronger hydrogen bonds and facilitated hot melting. Furthermore, due to the excellent hot-melting properties, HMS can be combined with sisal fiber and polycaprolactone (PCL) under solvent-free conditions. The tensile strength of HMS/sisal fiber/PCL was increased by 109%; meanwhile, the water contact angle was stabilized at 104°, when the blending ratio of hot-melting starch was 67.5% compared with HMS. Full article
Show Figures

Figure 1

12 pages, 10201 KiB  
Article
Effect of Resin Parameters on the Consistency and Mechanical Properties of Ultra-High-Molecular-Weight Polyethylene Fiber
by Cheng Yan, Tiantian Yan, Tianhong Dong, Mingxin Xia, Yumin Xia and Yong He
Polymers 2025, 17(8), 1109; https://doi.org/10.3390/polym17081109 - 19 Apr 2025
Viewed by 462
Abstract
Maintaining the consistency of linear density in ultra-high-molecular-weight polyethylene (UHMWPE) fiber has been a critical challenge in the production of UHMWPE fibers. However, there has been limited research focusing on the impact of UHMWPE resin parameters on the consistency in fiber linear density. [...] Read more.
Maintaining the consistency of linear density in ultra-high-molecular-weight polyethylene (UHMWPE) fiber has been a critical challenge in the production of UHMWPE fibers. However, there has been limited research focusing on the impact of UHMWPE resin parameters on the consistency in fiber linear density. In this study, a series of UHMWPE fibers were produced through wet spinning using UHMWPE resins with varying parameters. The effects of molecular weight, molecular weight distribution, particle size, and particle size distribution of UHMWPE resins on the consistency of linear density and the mechanical properties of UHMWPE fibers were systematically investigated. The experimental findings revealed that narrowing the molecular weight distribution and particle size distribution of ultra-high molecular weight polyethylene (UHMWPE) resin precursors significantly enhanced the consistency of resultant UHMWPE fibers, concurrently improving their tensile strength and elastic modulus. Notably, while the absolute molecular weight of the resin demonstrated no statistically significant correlation with fiber consistency, an optimal molecular weight range was identified to maximize the mechanical performance of UHMWPE fibers. Specifically, fibers synthesized from resin precursors within this molecular weight window exhibited peak values in both strength and modulus, suggesting a critical balance between molecular chain entanglement and processability. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

13 pages, 2964 KiB  
Article
Nonlinear-Optical Processing of OAM Light States in a Few-Mode Fiber
by Cheng Guo, Afshin Shamsshooli, Francesca Parmigiani, Xiaoying Li and Michael Vasilyev
Photonics 2025, 12(3), 233; https://doi.org/10.3390/photonics12030233 - 4 Mar 2025
Viewed by 809
Abstract
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP [...] Read more.
Utilizing the phase-matching conditions of inter-modal four-wave mixing in an elliptical-core few-mode fiber supporting three non-degenerate modes, we experimentally demonstrate schemes for generating orbital-angular-momentum (OAM)-entangled photon pairs with high mode purity and for achieving highly mode-selective frequency conversion of beams in OAM-compatible (LP11a, LP11b) mode basis. These techniques expand the toolbox for using OAM modes in both classical and quantum communications and information processing. Full article
(This article belongs to the Special Issue Progress in OAM Beams: Recent Innovations and Future Perspectives)
Show Figures

Figure 1

15 pages, 6972 KiB  
Article
Preparation of Mechanically Strong Aramid Nanofiber Gel Film with Surprising Entanglements and Orientation Structure Through Aprotic Donor Solvent Exchange
by Zeyu Chen, Chuying Yu and Wenbin Zhong
Materials 2025, 18(5), 1142; https://doi.org/10.3390/ma18051142 - 4 Mar 2025
Viewed by 920
Abstract
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor [...] Read more.
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor reagent. There are rare reports regarding the utilization of an aprotic donor reagent to convert deprotonated ANF dispersion into film or gel with a controllable structure and high mechanical properties. In this work, dichloromethane, as an anhydrous aprotic donor solvent, has been introduced into the deprotonated ANF dispersion to replace DMSO, containing PPTA molecules and hydroxyl ions, leading to the gelation of deprotonated ANF dispersions, forming a film (ANFDCM) possessing a surprisingly highly entangled and oriented structure, as proven by SEM results. Due to the attenuation of electrostatic repulsion in the dispersion, partially deprotonated ANFs intertwined and cross-linked through π–π conjugation among a large number of benzene rings in PPTA molecules. After treating ANFDCM with water for re-protonation, the as-prepared film (ANFDCM-W) exhibited high tensile strength (307.7 MPa) and toughness (74.7 MJ m−3). Full article
Show Figures

Figure 1

14 pages, 2691 KiB  
Article
Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization
by Wen-Yan Wang, Pan He, Ting Peng, Shuai Zhang, Guang-Zhao Li, Min Nie and Rui Han
Molecules 2025, 30(4), 862; https://doi.org/10.3390/molecules30040862 - 13 Feb 2025
Viewed by 764
Abstract
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement [...] Read more.
Polymers are widely used in various industries due to their unique properties, but their mechanical strength often falls short compared to other materials. This has spurred extensive research into enhancing their mechanical performance through condensed phase structure regulation. This study investigates the enhancement of mechanical properties in polyamide 66 (PA66) through the introduction of arylamide-based materials (TMB-5) during the melt-spinning process. TMB-5, possessing amide groups like PA66, can reorganize intermolecular hydrogen bonds within PA66, thereby facilitating molecular movement and reducing chain entanglement during fiber formation. Consequently, the synergistic effect of TMB-5 and the stretching field leads to enhanced crystallization and molecular and lamellae orientation in PA66 fibers without post-drawing, resulting in a significant increase in tensile strength and modulus. This work not only offers a novel strategy for adjusting polymer mechanical performance but also sheds light on the importance of molecular interactions in governing polymer properties. Full article
Show Figures

Graphical abstract

13 pages, 4526 KiB  
Article
Facile Enhancement of Mechanical Interfacial Strength of Recycled Carbon Fiber Web-Reinforced Polypropylene Composites via a Single-Step Silane Modification Process
by Yeo-Jun Song, Dong-Kyu Kim, Woong Han, Sun-Ho Choi, Dong-Chul Chung, Kwan-Woo Kim and Byung-Joo Kim
Polymers 2025, 17(4), 483; https://doi.org/10.3390/polym17040483 - 12 Feb 2025
Cited by 1 | Viewed by 1021
Abstract
In this study, a surface treatment process was introduced into the conventional dispersion process for preparing wet-laid nonwoven fabrics to improve their properties, using recycled carbon fibers (rCFs). The conventional binder solution was replaced with a solution containing different amounts of silane, and [...] Read more.
In this study, a surface treatment process was introduced into the conventional dispersion process for preparing wet-laid nonwoven fabrics to improve their properties, using recycled carbon fibers (rCFs). The conventional binder solution was replaced with a solution containing different amounts of silane, and the changes in the fiber properties of the prepared nonwoven fabrics were examined after the addition of modified rCFs and polypropylene. FE-SEM analysis confirmed that a silane layer was formed on the rCF surface due to the formation of a siloxane network. FT-IR and XPS analyses further confirmed the presence of siloxane bonds and chemical modification of the rCF surface. When an optimal amount of silane content was used, the mechanical strength increased by 64% compared to untreated rCFs, owing to the improved molecular chain entanglement within the matrix. Our findings indicate that the simultaneous use of dispersion and a surface treatment can produce composites with excellent mechanical properties and improved processing and surface properties; thus, this method can be used to help upcycle rCFs, thereby expanding their applications. Full article
Show Figures

Graphical abstract

19 pages, 5172 KiB  
Article
Towards Digital-Twin Assisted Software-Defined Quantum Satellite Networks
by Francesco Chiti, Tommaso Pecorella, Roberto Picchi and Laura Pierucci
Sensors 2025, 25(3), 889; https://doi.org/10.3390/s25030889 - 31 Jan 2025
Viewed by 1214
Abstract
The Quantum Internet (QI) necessitates a complete revision of the classical protocol stack and the technologies used, whereas its operating principles depend on the physical laws governing quantum mechanics. Recent experiments demonstrate that Optical Fibers (OFs) allow connections only in urban areas. Therefore, [...] Read more.
The Quantum Internet (QI) necessitates a complete revision of the classical protocol stack and the technologies used, whereas its operating principles depend on the physical laws governing quantum mechanics. Recent experiments demonstrate that Optical Fibers (OFs) allow connections only in urban areas. Therefore, a novel Quantum Satellite Backbone (QSB) composed of a considerable number of Quantum Satellite Repeaters (QSRs) deployed in Low Earth Orbit (LEO) would allow for the overcoming of typical OFs’ attenuation problems. Nevertheless, the dynamic nature of the scenario represents a challenge for novel satellite networks, making their design and management complicated. Therefore, we have designed an ad hoc QSB considering the interaction between Digital Twin (DT) and Software-Defined Networking (SDN). In addition to defining the system architecture, we present a DT monitoring protocol that allows efficient status recovery for the creation of multiple End-to-End (E2E) entanglement states. Moreover, we have evaluated the system performance by assessing the path monitoring and configuration time, the time required to establish the E2E entanglement, and the fidelity between a couple of Ground Stations (GSs) interconnected through the QSB, also conducting a deep analysis of the created temporal paths. Full article
(This article belongs to the Special Issue Quantum Technologies for Communications and Networks Security)
Show Figures

Figure 1

24 pages, 9880 KiB  
Article
Effect of Fiber Types and Dosages on the Properties of Modified Aluminum Dross–Coal Gangue-Based Foam Filling Materials
by Keyuan Yin, Kai Wang, Xiaoqiang Zhang, Yulong Jiang and Shiyu Zhang
Minerals 2025, 15(2), 106; https://doi.org/10.3390/min15020106 - 22 Jan 2025
Cited by 1 | Viewed by 928
Abstract
Fiber reinforcement offers a promising solution to improve the mechanical performance and durability of cement-based foam backfill (CFB), addressing critical issues such as brittleness and poor crack resistance under high-stress conditions. This study investigates the effects of polypropylene and polyacrylonitrile fibers, at varying [...] Read more.
Fiber reinforcement offers a promising solution to improve the mechanical performance and durability of cement-based foam backfill (CFB), addressing critical issues such as brittleness and poor crack resistance under high-stress conditions. This study investigates the effects of polypropylene and polyacrylonitrile fibers, at varying contents and lengths, on the mechanical and flow properties of CFB. A series of experiments, including slump tests, rheology analysis, uniaxial compressive strength (UCS) tests, pore structure analysis, and scanning electron microscopy (SEM), were conducted to comprehensively evaluate fiber reinforcement mechanisms. The results show that increasing fiber content and length reduced fluidity due to fiber entanglement, while significantly enhancing mechanical properties through anchoring effects and network formation. After 28 days of curing, UCS increased by 208.2% with 2 wt% polypropylene fibers and 215.3% with 1 wt% polyacrylonitrile fibers (both at 6 mm length). Fiber-reinforced CFB demonstrated improved structural integrity and crack resistance, with failure modes transitioning from brittle to ductile. These findings highlight the potential of fiber-reinforced CFB to deliver durable, crack-resistant, and efficient mine backfill solutions, contributing to enhanced safety and sustainability in underground mining operations. Full article
(This article belongs to the Special Issue Metallurgy Waste Used for Backfilling Materials)
Show Figures

Figure 1

19 pages, 5154 KiB  
Review
Single-Site Catalyst for the Synthesis of Disentangled Ultra-High-Molecular-Weight Polyethylene
by Jian Chen, Shuzhang Qu, Xinwei Li, Yiming Wei, Qian Li, Zhao Wen and Zifang Guo
Polymers 2025, 17(1), 95; https://doi.org/10.3390/polym17010095 - 1 Jan 2025
Cited by 2 | Viewed by 1408
Abstract
Disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the [...] Read more.
Disentangled ultra-high-molecular-weight polyethylene (d-UHMWPE) solves the problem of the difficult processing of traditional UHMWPE caused by entanglements between molecular chains. In this review, we look into the innovative realm of nascent disentangled UHMWPE, concentrating on the recent advances achieved through the in situ polymerization of ethylene by single-site catalysts. The effect of single-site catalysts and polymerization conditions on the molecular characteristics is discussed in detail from the perspective of mechanism and DFT calculations. The key factors to low entanglement are revealed, which have instructive implications for the development of new single-site catalytic systems that can generate d-UHMWPE more efficiently and become closer to industrial production. The progress in the preparation for nascent d-UHMWPE with homogeneous and heterogeneous single-site catalysts is systematically reviewed. Rheology and DSC can be used to characterize the degree of entanglement. High-modulus and high-strength biaxial films, tapes, and fibers are obtained by the solid-state processing of these nascent d-UHMWPE. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

24 pages, 59484 KiB  
Article
Simulation of Flax Threshing Process by Different Forms of Threshing Drums in Combined Harvesting
by Ruijie Shi, Leilei Chang, Wuyun Zhao, Fei Dai and Zhenwei Liang
Agronomy 2025, 15(1), 36; https://doi.org/10.3390/agronomy15010036 - 27 Dec 2024
Cited by 1 | Viewed by 925
Abstract
Flax, an important oil and fiber crop, is widely cultivated in temperate and sub-frigid regions worldwide. China is one of the major producers of flax, with Gansu Province predominantly practicing cultivation in hilly areas. However, common issues such as feeding difficulties, stem entanglement, [...] Read more.
Flax, an important oil and fiber crop, is widely cultivated in temperate and sub-frigid regions worldwide. China is one of the major producers of flax, with Gansu Province predominantly practicing cultivation in hilly areas. However, common issues such as feeding difficulties, stem entanglement, and low threshing efficiency significantly restrict the improvement of planting efficiency. This study addresses the key technical challenges in flax combine harvesting in hilly regions by developing a discrete element model of the flax plant and utilizing DEM-FEA co-simulation technology. The performance of two threshing drum models (T1 and T2) was analyzed, focusing on motion trajectory, stress distribution, and threshing effects. The simulation results show that the T2 model, with its combination of rib and rod tooth design, significantly improves threshing and separation efficiency. The loss rate was reduced from 5.6% in the T1 model to 1.78% in the T2 model, while the maximum stress and deformation were significantly lower, indicating higher structural stability and durability. Field validation results revealed that the T1 model had a total loss rate of 3.32%, an impurity rate of 3.57%, and an efficiency of 0.09 hm2/h. In contrast, the T2 model achieved a total loss rate of 2.29%, an impurity rate of 3.39%, and an efficiency of 0.22 hm2/h, representing a 144.4% improvement in working efficiency. These findings indicate that the T2 model has a higher potential for flax harvesting in hilly and mountainous regions, especially in improving threshing efficiency and operational stability, providing an important theoretical basis for optimizing threshing equipment design. Full article
Show Figures

Figure 1

20 pages, 4822 KiB  
Article
Networking 3 K Two-Qubit Logic Gate Quantum Processors to Approach 1 Billion Logic Gate Performance
by Daniel Guidotti, Xiaoli Ma and Gee-Kung Chang
Electronics 2024, 13(23), 4604; https://doi.org/10.3390/electronics13234604 - 22 Nov 2024
Viewed by 1111
Abstract
Outlined is a proposal designed to culminate in the foundry fabrication of arrays of singly addressable quantum dot sources deterministically emitting single pairs of energy-time entangled photons at C-band wavelengths, each pair having negligible spin-orbit fine structure splitting, each pair being channeled into [...] Read more.
Outlined is a proposal designed to culminate in the foundry fabrication of arrays of singly addressable quantum dot sources deterministically emitting single pairs of energy-time entangled photons at C-band wavelengths, each pair having negligible spin-orbit fine structure splitting, each pair being channeled into single mode pig-tail optical fibers. Entangled photons carry quantum state information among distributed quantum servers via I/O ports having two functions: the unconditionally secure distribution of decryption keys to decrypt publicly distributed, encrypted classical bit streams as input to generate corresponding qubit excitations and to convert a stream of quantum nondemolition measurements of qubit states into a classical bit stream. Outlined are key steps necessary to fabricate arrays of on-demand quantum dot sources of entangled photon pairs; the principles are (1) foundry fabrication of arrays of isolated quantum dots, (2) generation of localized sub-surface shear strain in a semiconductor stack, (3) a cryogenic anvil cell, (4) channeling entangled photons into single-mode optical fibers, (5) unconditionally secure decryption key distribution over the fiber network, (6) resonant excitation of a Josephson tunnel junction qubits from classical bits, and (7) conversion of quantum nondemolition measurements of qubit states into a classical bit. Full article
(This article belongs to the Special Issue Advances in Signals and Systems Research)
Show Figures

Figure 1

Back to TopTop