Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. The Preparation of TMB-5/PA66 Fiber
2.3. Characterization of the TMB-5/PA66 Fiber
3. Results and Discussion
3.1. Morphological Analysis of TMB-5 in TMB-5/PA66 Fibers
3.2. The Crystallization Behavior of TMB-5/PA66 Fibers
3.3. The Orientation of the Condensed Phase Structure in TMB-5/PA66 Fibers
3.4. The Dynamic Mechanical Properties of TMB-5/PA66 Fibers
3.5. The Tensile Performance and Mechanism of TMB-5/PA66 Fibers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sun, Z.; Luo, Y.; Chen, C.; Dong, Z.; Jiang, G.; Chen, F.; Ma, P. Mechanical enhancement of carbon fiber-reinforced polymers: From interfacial regulating strategies to advanced processing technologies. Prog. Mater. Sci. 2023, 142, 101221. [Google Scholar] [CrossRef]
- Tian, K.; Hu, D.; Wei, Q.; Fu, Q.; Deng, H. Recent progress on multifunctional electromagnetic interference shielding polymer composites. J. Mater. Sci. Technol. 2023, 134, 106–131. [Google Scholar] [CrossRef]
- Liu, Y.; Zou, W.; Yang, M.; Luo, H.; Yang, S.; Xu, J.; Zhao, N. Polymer Films with Metal-Like Thermal Conductivity, Excellent Stability, and Flame Retardancy. Adv. Funct. Mater. 2023, 33, 2303561. [Google Scholar] [CrossRef]
- Huang, H.D.; Ren, P.G.; Zhong, G.J.; Olah, A.; Li, Z.M.; Baer, E.; Zhu, L. Promising strategies and new opportunities for high barrier polymer packaging films. Prog. Polym. Sci. 2023, 144, 101722. [Google Scholar] [CrossRef]
- Walther, A.; Bjurhager, I.; Malho, J.M.; Pere, J.; Ruokolainen, J.; Berglund, L.A.; Ikkala, O. Large-area, lightweight and thick biomimetic composites with superior material properties via fast, economic, and green pathways. Nano Lett. 2010, 10, 2742–2748. [Google Scholar] [CrossRef] [PubMed]
- Mirabedini, A.; Ang, A.; Nikzad, M.; Fox, B.; Lau, K.; Hameed, N. Evolving strategies for producing multiscale graphene-enhanced fiber-reinforced polymer composites for smart structural applications. Adv. Sci. 2020, 7, 1903501. [Google Scholar] [CrossRef]
- Wondraczek, L.; Bouchbinder, E.; Ehrlicher, A.; Mauro, J.C.; Sajzew, R.; Smedskjaer, M.M. Advancing the mechanical performance of glasses: Perspectives and challenges. Adv. Mater. 2022, 34, 2109029. [Google Scholar] [CrossRef] [PubMed]
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.Y.; Park, S.J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A-Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Dias, E.; Chalse, H.; Mutha, S.; Mundhe, Y.; Ambhore, N.; Kulkarni, A.; Mache, A. Review on synthetic/natural fibers polymer composite filled with nanoclay and their mechanical performance. Mater. Today Proc. 2023, 77, 916–925. [Google Scholar] [CrossRef]
- Jin, Z.; Han, Z.; Chang, C.; Sun, S.; Fu, H. Review of methods for enhancing interlaminar mechanical properties of fiber-reinforced thermoplastic composites: Interfacial modification, nano-filling and forming technology. Compos. Sci. Technol. 2022, 228, 109660. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, D.; Fan, S.; Rahman, M.Z.; Guo, S.; Chen, F. Structural and mechanical properties of bamboo fiber bundle and fiber/bundle reinforced composites: A review. J. Mater. Res. Technol. 2022, 19, 1162–1190. [Google Scholar] [CrossRef]
- Shahnaz, T.; Hayder, G.; Shah, M.A.; Ramli, M.Z.; Ismail, N.; Hua, C.K.; Zahari, N.M.; Mardi, N.H.; Selamat, F.E.; Kabilmiharbi, N.; et al. Graphene-based nanoarchitecture as a potent cushioning/filler in polymer composites and their applications. J. Mater. Res. Technol. 2023, 28, 2671–2698. [Google Scholar] [CrossRef]
- Ning, N.; Fu, S.; Zhang, W.; Chen, F.; Wang, K.; Deng, H.; Zhang, Q.; Fu, Q. Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog. Polym. Sci. 2012, 37, 1425–1455. [Google Scholar] [CrossRef]
- Yang, X.; Biswas, S.K.; Han, J.; Tanpichai, S.; Li, M.; Chen, C.; Zhu, S.; Das, A.K.; Yano, H. Surface and interface engineering for nanocellulosic advanced materials. Adv. Mater. 2021, 33, 2002264. [Google Scholar] [CrossRef]
- Ciprari, D.; Jacob, K.; Tannenbaum, R. Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 2006, 39, 6565–6573. [Google Scholar] [CrossRef]
- Haque, F.M.; Grayson, S.M. The synthesis, properties and potential applications of cyclic polymers. Nat. Chem. 2020, 12, 433–444. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.C.; Huang, Y.W.; Hung, C.C.; Chiang, Y.C.; Chen, C.K.; Hsu, L.C.; Chueh, C.C.; Chen, W.C. Backbone engineering of diketopyrrolopyrrole-based conjugated polymers through random terpolymerization for improved mobility–stretchability property. ACS Appl. Mater. Interfaces 2020, 12, 50648–50659. [Google Scholar] [CrossRef] [PubMed]
- Hart, L.F.; Hertzog, J.E.; Rauscher, P.M.; Rawe, B.W.; Tranquilli, M.M.; Rowan, S.J. Material properties and applications of mechanically interlocked polymers. Nat. Rev. Mater. 2021, 6, 508–530. [Google Scholar] [CrossRef]
- Zhang, Q.; Lan, L.; Zheng, Z.; Liu, P.; Wu, H.; Guo, S.; Lin, C.; He, G. Constructing highly oriented and condensed shish-kebab crystalline structure of HDPE/UHMWPE blends via intense stretching process: Achieving high mechanical properties and in-plane thermal conductivity. Polymer 2022, 241, 124532. [Google Scholar] [CrossRef]
- Kong, D.; Yang, M.; Zhang, X.; Du, Z.; Fu, Q.; Gao, X.; Gong, J. Control of polymer properties by entanglement: A review. Macromol. Mater. Eng. 2021, 306, 2100536. [Google Scholar] [CrossRef]
- Zheng, Y.; Pan, P. Crystallization of biodegradable and biobased polyesters: Polymorphism, cocrystallization, and structure-property relationship. Prog. Polym. Sci. 2020, 109, 101291. [Google Scholar] [CrossRef]
- Li, H.; Dai, X.; Han, X.; Wang, J. Molecular orientation-regulated bioinspired multilayer composites with largely enhanced mechanical properties. ACS Appl. Mater. Interfaces 2023, 15, 21467–21475. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.; Li, R.; Zhao, X.; Ye, L. Construction of a highly oriented poly (lactic acid)-based block polymer foam and its self-reinforcing mechanism. ACS Sustain. Chem. Eng. 2023, 11, 1133–1145. [Google Scholar] [CrossRef]
- Xu, S.; Zhou, J.; Pan, P. Strain-induced multiscale structural evolutions of crystallized polymers: From fundamental studies to recent progresses. Prog. Polym. Sci. 2023, 140, 101676. [Google Scholar] [CrossRef]
- Ren, S.; Feng, J. Reconfigurable and Reprocessable Thermadapt Stress-Free Two-Way Shape Memory Polymers Based on a Dual Crosslinking Network with Outstanding Mechanical Properties. Adv. Mater. Technol. 2023, 8, 2300029. [Google Scholar] [CrossRef]
- Zhong, Y.; Chen, L.; Gao, J.; Guo, J.; Xing, C.; Li, Y.; Wang, Z. Structural Evolution of High-Entanglement Ultrahigh Molecular Weight Polyethylene Films with Reserved Shish Crystals during the Hot Stretching Process. Macromolecules 2024, 57, 2176–2190. [Google Scholar] [CrossRef]
- Liu, G.; Guan, J.; Wang, X.; Yu, J.; Ding, B. Polylactic Acid (PLA) melt-blown nonwovens with superior mechanical properties. ACS Sustain. Chem. Eng. 2023, 11, 4279–4288. [Google Scholar] [CrossRef]
- Gao, X.-R.; Li, Y.; Huang, H.-D.; Xu, J.-Z.; Xu, L.; Ji, X.; Zhong, G.-J.; Li, Z.-M. Extensional stress-induced orientation and crystallization can regulate the balance of toughness and stiffness of polylactide films: Interplay of oriented amorphous chains and crystallites. Macromolecules 2019, 52, 5278–5288. [Google Scholar] [CrossRef]
- Qin, Q.; Zhou, T.; Wang, M.; Li, L.; Chen, N. Structure evolution and performance of poly (vinyl alcohol) fibers with controllable cross-section fabricated using a combination of melt-spinning and stretching. Polym. Test. 2023, 117, 107867. [Google Scholar] [CrossRef]
- Gubała, D.; Slastanova, A.; Matthews, L.; Islas, L.; Wąsik, P.; Cacho-Nerin, F.; Sanchez, D.F.; Robles, E.; Chen, M.; Briscoe, W.H. Effects of Erucamide on Fiber “Softness”: Linking Single-Fiber Crystal Structure and Mechanical Properties. ACS Nano 2024, 18, 5940–5950. [Google Scholar] [CrossRef] [PubMed]
- Botiz, I. Prominent processing techniques to manipulate semiconducting polymer microstructures. J. Mater. Chem. C 2023, 11, 364–405. [Google Scholar] [CrossRef]
- Wang, B.; Nie, Y.; Kang, Z.; Liu, X. Effects of coagulating conditions on the crystallinity, orientation and mechanical properties of regenerated cellulose fibers. Int. J. Biol. Macromol. 2023, 225, 1374–1383. [Google Scholar] [CrossRef]
- Shi, S.; Huang, P.; Nie, M.; Wang, Q. Polypropylene/polyamide blend featuring mechanical interlocking via controlled interfacial diffusion and recrystallization. Polymer 2017, 132, 23–30. [Google Scholar] [CrossRef]
- Han, R.; Yang, Q.; Wang, Z.; Cao, D.; Li, G.; Zheng, L.; Peng, B.; Gao, X.; Chen, G. 3D printing-enabled self-assembling β-nucleating agent alignment: Structural evolution and mechanical performances. Polymer 2022, 246, 124736. [Google Scholar] [CrossRef]
- Zhang, Y.; Luo, G.; Niu, Y.; Li, G. Reversible nucleation behavior of N, N′-dicyclohexylterephthalamide to polypropylene with the aid of polyamide 12. Polymer 2023, 264, 125539. [Google Scholar] [CrossRef]
- Nasser, J.; Zhang, L.; Lin, J.; Sodano, H. Aramid nanofiber reinforced polymer nanocomposites via amide–amide hydrogen bonding. ACS Appl. Polym. Mater. 2020, 2, 2934–2945. [Google Scholar] [CrossRef]
- Phulkerd, P.; Nobukawa, S.; Uchiyama, Y.; Yamaguchi, M. Anomalous mechanical anisotropy of β form polypropylene sheet with N,N’-dicyclohexyl-2,6-naphthalenedicarboxamide. Polymer 2011, 52, 4867. [Google Scholar] [CrossRef]
- Deshmukh, Y.S.; Wilsens, C.H.R.M.; Leoné, N.; Portale, G.; Harings, J.A.W.; Rastogi, S. Melt-miscible oxalamide based nucleating agents and their nucleation efficiency in isotactic polypropylene. Ind. Eng. Chem. Res. 2016, 55, 11756. [Google Scholar] [CrossRef]
- Zhao, S.; Gong, S.; Zhao, B.; Hou, L.; Zhang, L.; Hu, Q.; Pan, K. Mechanism study of the polymerization of polyamide 56: Reaction kinetics and process parameters. Macromol. Rapid Commun. 2023, 44, 2300371. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Wang, N.; Zhou, G. Utilizing a metal-forging inspired chain combing strategy to enhance properties and expand applications of Nylon 66 plastic via heat inducing. Nano Res. 2024, 17, 2164–2171. [Google Scholar] [CrossRef]
- Guo, J.; Cui, H.; Miao, Y.; Zhong, Y.; Zhu, J.; Li, Y.; Wang, Z.; Yao, J. Structural evolution of biodegradable polyglycolide fibers under stress-temperature coupled field and its impact on properties. Polymer 2023, 287, 126417. [Google Scholar] [CrossRef]
- Lai, Y.C.; Hu, Y.R.; Lo, C.T. Hydrogen bonding-induced crystal orientation changes in confined microdomains constructed by block copolymer blends. Macromolecules 2022, 56, 241–253. [Google Scholar] [CrossRef]
- Yu, J.; Cheng, H.; Wang, Y.; He, C.; Zhou, B.; Liu, C.; Feng, Y. Multiple shearing-induced high alignment in polyethylene/graphene films for enhancing thermal conductivity and solar-thermal conversion performance. Chem. Eng. J. 2024, 480, 148062. [Google Scholar] [CrossRef]
- Duernberger, E.; MacLeod, C.; Lines, D. Fibre volume fraction screening of pultruded carbon fibre reinforced polymer panels based on analysis of anisotropic ultrasonic sound velocity. Compos. Part B-Eng. 2023, 254, 110577. [Google Scholar] [CrossRef]
- Candau, N.; Chenal, J.M.; Lame, O.; Schouwink, P.; Michaud, V.; Plummer, C.J.; Frauenrath, H. Enhanced ductility in high performance polyamides due to strain-induced phase transitions. Polymer 2022, 238, 124424. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-Y.; He, P.; Peng, T.; Zhang, S.; Li, G.-Z.; Nie, M.; Han, R. Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization. Molecules 2025, 30, 862. https://doi.org/10.3390/molecules30040862
Wang W-Y, He P, Peng T, Zhang S, Li G-Z, Nie M, Han R. Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization. Molecules. 2025; 30(4):862. https://doi.org/10.3390/molecules30040862
Chicago/Turabian StyleWang, Wen-Yan, Pan He, Ting Peng, Shuai Zhang, Guang-Zhao Li, Min Nie, and Rui Han. 2025. "Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization" Molecules 30, no. 4: 862. https://doi.org/10.3390/molecules30040862
APA StyleWang, W.-Y., He, P., Peng, T., Zhang, S., Li, G.-Z., Nie, M., & Han, R. (2025). Tailoring Polyamide66 Mechanical Performance: A Strategy for Condensed Phase Structure Optimization Through Hydrogen Bond Reorganization. Molecules, 30(4), 862. https://doi.org/10.3390/molecules30040862