Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = fiber Bragg grating (FBG), chirped FBG

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1880 KiB  
Article
Fabrication of Large-Core Multicore Fiber Bragg Gratings Based on Femtosecond Laser Direct Writing Technology
by Xinda Lu, Rong Zhao, Chenhui Gao, Xinyu Ye, Qiushi Qin, Hao Li, Zhixian Li, Meng Wang, Zilun Chen and Zefeng Wang
Nanomaterials 2025, 15(12), 891; https://doi.org/10.3390/nano15120891 - 9 Jun 2025
Viewed by 445
Abstract
We demonstrate the fabrication of the fiber Bragg grating (FBG) in a self-developed Yb-doped seven-core fiber using two femtosecond laser direct writing methods: a grating array inscription method and a plane-by-plane inscription method. The array fabrication method uses the femtosecond laser to directly [...] Read more.
We demonstrate the fabrication of the fiber Bragg grating (FBG) in a self-developed Yb-doped seven-core fiber using two femtosecond laser direct writing methods: a grating array inscription method and a plane-by-plane inscription method. The array fabrication method uses the femtosecond laser to directly write a parallel fiber grating array in the core. The plane-by-plane method is implemented by adding a diaphragm in the optical path to precisely control the length of the refractive index modulation line along the femtosecond laser incident direction. Combined with femtosecond laser scanning, a uniform refractive index modulation plane can be inscribed in the core in a single scanning. Based on these methods, we successfully fabricate high-quality high-reflection FBGs and chirped FBGs in each core of the large-core multicore fiber (MCF) with 14 μm core diameters. Both fabrication methods achieve FBGs with reflectivity above 97% at the central wavelength. We report for the first time the fabrication of high-quality, high-reflectivity FBGs in large-core Yb-doped seven-core fibers using the femtosecond laser plane-by-plane inscription method. This work provides a feasible scheme for fabricating FBGs in MCF. Full article
(This article belongs to the Special Issue Nano-Optics and Nanophotonics)
Show Figures

Graphical abstract

18 pages, 6225 KiB  
Article
An Energy Modulation Interrogation Technique for Monitoring the Adhesive Joint Integrity Using the Full Spectral Response of Fiber Bragg Grating Sensors
by Chow-Shing Shin, Tzu-Chieh Lin and Shun-Hsuan Huang
Sensors 2025, 25(1), 36; https://doi.org/10.3390/s25010036 - 25 Dec 2024
Viewed by 4197
Abstract
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting [...] Read more.
Adhesive joining has the severe limitation that damages/defects developed in the bondline are difficult to assess. Conventional non-destructive examination (NDE) techniques are adequate to reveal disbonding defects in fabrication and delamination near the end of service life but are not helpful in detecting and monitoring in-service degradation of the joint. Several techniques suitable for long-term joint integrity monitoring are proposed. Fiber Bragg grating (FBG) sensors embedded in the joint are one of the promising candidates. It has the advantages of being close to the damage and immune to environmental attack and electromagnetic interference. Damage and disbonding inside an adhesive joint will give rise to a non-uniform strain field that may bring about peak splitting and chirping of the FBG spectrum. It is shown that the evolution of the full spectral responses can closely reveal the development of damages inside the adhesive joints during tensile and fatigue failures. However, recording and comparing the successive full spectra in the course of damage is tedious and can be subjective. An energy modulation interrogation technique is proposed using a pair of tunable optical filters. Changes in the full FBG spectral responses are modulated by the filters and converted into a conveniently measurable voltage output by photodiodes. Monitoring damage development can then be easily automated, and the technique is well-suited for practical applications. Filter spectrum width of 5 nm and initial overlap with the FBG spectrum to give 40% of the maximum output voltage is found to be optimal for measurement. The technique is tested on embedded FBGs from different adhesive lap-joint specimens and successfully reflected the severity of changes in the full spectral shapes during the course of tensile failure. Moreover, the trends in these PD outputs corroborate with the V value previously proposed to describe the qualitative change in FBG spectral shape. Full article
(This article belongs to the Special Issue Feature Papers in Physical Sensors 2024)
Show Figures

Figure 1

14 pages, 4903 KiB  
Article
Fiber-Optic Sensor Spectrum Noise Reduction Based on a Generative Adversarial Network
by Yujie Lu, Qingbin Du, Ruijia Zhang, Bo Wang, Zigeng Liu, Qizhe Tang, Pan Dai, Xiangxiang Fan and Chun Huang
Sensors 2024, 24(22), 7127; https://doi.org/10.3390/s24227127 - 6 Nov 2024
Viewed by 1767
Abstract
In the field of fiber-optic sensing, effectively reducing the noise of sensing spectra and achieving a high signal-to-noise ratio (SNR) has consistently been a focal point of research. This study proposes a deep-learning-based denoising method for fiber-optic sensors, which involves pre-processing the sensor [...] Read more.
In the field of fiber-optic sensing, effectively reducing the noise of sensing spectra and achieving a high signal-to-noise ratio (SNR) has consistently been a focal point of research. This study proposes a deep-learning-based denoising method for fiber-optic sensors, which involves pre-processing the sensor spectrum into a 2D image and training with a cycle-consistent generative adversarial network (Cycle-GAN) model. The pre-trained algorithm demonstrates the ability to effectively denoise various spectrum types and noise profiles. This study evaluates the denoising performance of simulated spectra obtained from four different types of fiber-optic sensors: fiber Fabry–Perot interferometer (FPI), regular fiber Bragg grating (FBG), chirped FBG, and FBG pair. Compared to traditional denoising algorithms such as wavelet transform (WT) and empirical mode decomposition (EMD), the proposed method achieves an SNR improvement of up to 13.71 dB, an RMSE that is up to three times smaller, and a minimum correlation coefficient (R2) of no less than 99.70% with the original high-SNR signals. Additionally, the proposed algorithm was tested for multimode noise reduction, demonstrating an excellent linearity in temperature response with a R2 of 99.95% for its linear fitting and 99.74% for the temperature response obtained from single-mode fiber sensors. The proposed denoising approach effectively reduces the impact of various noises from the sensing system, enhancing the practicality of fiber-optic sensing, especially for specialized fiber applications in research and industrial domains. Full article
(This article belongs to the Special Issue New Prospects in Fiber Optic Sensors and Applications)
Show Figures

Figure 1

18 pages, 2226 KiB  
Article
Optically Delaying a Radio Frequency–Linear Frequency-Modulated (RF-LFM) Pulse Using Kerr Comb Carriers and Off-the-Shelf Concatenation of a Linearly Chirped Fiber Bragg Grating and a Chirped-and-Sampled Fiber Bragg Grating
by Ahmed Almaiman, Yinwen Cao, Peicheng Liao, Alan Willner and Moshe Tur
Photonics 2024, 11(9), 823; https://doi.org/10.3390/photonics11090823 - 31 Aug 2024
Viewed by 1319
Abstract
We demonstrate a low latency delay of a radio frequency (RF)–linear frequency-modulated (LFM) pulse by modulating it onto optical carriers from a Kerr comb and sending the signal through a concatenation of off-the-shelf linearly chirped fiber Bragg gratings (LC-FBGs) and chirped-and-sampled FBG (CS-FBG). [...] Read more.
We demonstrate a low latency delay of a radio frequency (RF)–linear frequency-modulated (LFM) pulse by modulating it onto optical carriers from a Kerr comb and sending the signal through a concatenation of off-the-shelf linearly chirped fiber Bragg gratings (LC-FBGs) and chirped-and-sampled FBG (CS-FBG). We characterize the frequency response and latency of the LC-FBG and CS-FBG. Then, experimentally, the LFM pulse performance is characterized by measuring the peak sidelobe level (PSL) at the output of the tunable delay system. The experiment, performed with an LFM pulse of 1 GHz bandwidth at a 10 GHz center frequency, shows a PSL better than 34.4 dB, attesting to the high quality of the buffer RF transfer function. Thus, the proposed optical memory buffer architecture, utilizing compact devices based on a Kerr comb and FBGs, offers several benefits for delaying LFM pulses, including (i) a larger tunable delay range, (ii) low latency, (iii) wide bandwidth, and (iv) high PSL. Full article
Show Figures

Figure 1

17 pages, 13990 KiB  
Article
Strain and Temperature Sensing Based on Different Temperature Coefficients fs-FBG Arrays for Intelligent Buoyancy Materials
by Meng Tian, Minggan Lou, Wei Zhang, Wenzhu Huang, Kaiqi Yan, Bin Liao and Wentao Zhang
Sensors 2024, 24(9), 2824; https://doi.org/10.3390/s24092824 - 29 Apr 2024
Cited by 3 | Viewed by 1809
Abstract
The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a [...] Read more.
The temperature and strain fields monitoring during the preparation process of buoyancy materials, as well as the health status after molding, are important for mastering the mechanical properties of buoyancy materials and ensuring the safety of operators and equipment. This paper proposes a short and high-density femtosecond fiber Bragg grating (fs-FBG) array based on different temperature coefficients fibers. By optimizing the parameters of femtosecond laser point-by-point writing technology, high-performance fs-FBG arrays with millimeter level gating length and millimeter level spatial resolution were prepared on two types of fibers. These were successfully embedded in buoyancy materials to achieve in-situ online monitoring of the curing process and after molding. The experimental results show that the fs-FBG array sensor has good anti-chirp performance and achieves online monitoring of millimeter-level spatial resolution. Intelligent buoyancy materials can provide real-time feedback on the health status of equipment in harsh underwater environments. The system can achieve temperature monitoring with an accuracy of 0.56 °C and deformation monitoring with sub-millimeter accuracy; the error is in the order of micrometers, which is of great significance in the field of deep-sea exploration. Full article
(This article belongs to the Special Issue Fiber Grating Sensors and Applications)
Show Figures

Figure 1

21 pages, 6804 KiB  
Article
Damage Monitoring of Composite Adhesive Joint Integrity Using Conductivity and Fiber Bragg Grating
by Chow-Shing Shin and Liang-Wei Chen
Polymers 2023, 15(6), 1575; https://doi.org/10.3390/polym15061575 - 22 Mar 2023
Cited by 5 | Viewed by 2736
Abstract
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance [...] Read more.
Adhesive joints possess a number of advantages over traditional joining methods and are widely used in composite structures. Conventional non-destructive examination techniques do not readily reveal joint degradation before the formation of explicit defects. Embedded fiber Bragg grating (FBG) sensors and the resistance of carbon nanotube (CNT)-doped conductive joints have been proposed to monitor the structural integrity of adhesive joints. Both techniques will be employed and compared in the current work to monitor damage development in adhesive joints under tensile and cyclic fatigue loading. Most of the previous works took measurements under an applied load, which by itself will affect the monitoring signals without the presence of any damage. Moreover, most FBG works primarily relied on the peak shifting phenomenon for sensing. Degradation of adhesive and inter-facial defects will lead to non-uniform strain that may chirp the FBG spectrum, causing complications in the peak shifting measurement. In view of the above shortfalls, measurements are made at some low and fixed loads to preclude any unwanted effect due to the applied load. The whole FBG spectrum, instead of a single peak, will be used, and a quantitative parameter to describe spectrum changes is proposed for monitoring purposes. The extent of damage is revealed by a fluorescent penetrant and correlated with the monitoring signals. With these refined techniques, we hope to shed some light on the relative merits and limitations of the two techniques. Full article
(This article belongs to the Special Issue Structural Integrity Assessment on Polymers and Composites)
Show Figures

Figure 1

16 pages, 5037 KiB  
Article
Static and Dynamic Multiparameter Assessment of Structural Elements Using Chirped Fiber Bragg Gratings
by Leandro Macedo, Edson A. Souza, Anselmo Frizera, Maria José Pontes, Carlos Marques and Arnaldo Leal-Junior
Sensors 2023, 23(4), 1860; https://doi.org/10.3390/s23041860 - 7 Feb 2023
Cited by 7 | Viewed by 2029
Abstract
This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the [...] Read more.
This paper presents the development, analysis, and application of chirped fiber Bragg gratings (CFBGs) for dynamic and static measurements of beams of different materials in the single-cantilever configuration. In this case, the beams were numerically analyzed using the finite-element method (FEM) for the assessment of the natural frequencies and vibration modes of the beam for the dynamic analysis of the structural element. Furthermore, the static numerical analysis was performed using a load at the free end of the beam, where the maximum strain and its distribution along the beam were analyzed, especially in the region at which the FBG was positioned. The experimental evaluation of the proposed CFBG sensor was performed in static conditions for forces from 0 to 50 N (in 10 N steps) applied at the free end of the beam, whereas the dynamic evaluation was performed by means of positioning an unbalanced motor at the end of the beam, which was excited at 16 Hz, 65 Hz, 100 Hz, and 131 Hz. The results showed the feasibility of the proposed device for the simultaneous assessment of the force and strain distribution along the CFBG region using the wavelength shift and the full-width at half-maximum (FWHM), respectively. In these cases, the determination coefficients of the spectral features as a function of the force and strain distribution were higher than 0.99 in all analyzed cases, where a potential resolution of 0.25 N was obtained on the force assessment. In the dynamic tests, the frequency spectrum of the sensor responses indicated a frequency peak at the excited frequency in all analyzed cases. Therefore, the proposed sensor device is a suitable option to extend the performance of sensors for structural health assessment, since it is possible to simultaneously measure different parameters in dynamic and static conditions using only one sensor device, which, due to its multiplexing capabilities, can be integrated with additional optical fiber sensors for the complete shape reconstruction with millimeter-range spatial resolution. Full article
(This article belongs to the Special Issue Recent Advances in Fiber Bragg Grating Sensing-2nd Edition)
Show Figures

Figure 1

14 pages, 826 KiB  
Review
Fiber-Bragg-Grating-Based Displacement Sensors: Review of Recent Advances
by Marco Bonopera
Materials 2022, 15(16), 5561; https://doi.org/10.3390/ma15165561 - 12 Aug 2022
Cited by 53 | Viewed by 5479
Abstract
With the development of fiber optical technologies, fiber Bragg grating (FBG) sensors are frequently utilized in structural health monitoring due to their considerable advantages, including fast response, electrical passivity, corrosion resistance, multi-point sensing capability and low-cost production, as well as high accuracy and [...] Read more.
With the development of fiber optical technologies, fiber Bragg grating (FBG) sensors are frequently utilized in structural health monitoring due to their considerable advantages, including fast response, electrical passivity, corrosion resistance, multi-point sensing capability and low-cost production, as well as high accuracy and resolution over a long period. These characteristics allow FBG to be a proper alternative sensing element for displacement measurements. In this article, the recent sensing advances and principles of detection of FBG-based displacement sensors are illustrated. Specifically, the latest FBG-based displacement technologies are examined from three principles of detection, i.e., wavelength, intensity and phase signal demodulation. Regarding wavelength detection methods, the problem related to the cross-sensitivity can significantly be reduced depending on the new type of cantilever–FBG-based sensing developed. Vice versa, only the packaging method of FBG prestressed between two fixed ends can still avoid the chirp phenomenon in the reflection spectrum. Moreover, to attenuate the influence of temperature variations on the accuracy of FBG displacement sensors, specific temperature self-compensation structures were successfully designed according to the concepts of phase signal demodulation. In future investigations, different elastic structures and gratings manufactured through special fibers and new methodologies for temperature compensation will still highly refine the efficiency of FBG-based displacement sensors. Full article
(This article belongs to the Special Issue Application of Emerging Materials for Advanced Imaging and Sensing)
Show Figures

Figure 1

15 pages, 3910 KiB  
Article
An All-Fiber Optical Sensor Combined with FBG and CFBG-FP for Attitude Estimation
by Yifan Li, Shuidong Xiong and Ji Xia
Sensors 2022, 22(15), 5562; https://doi.org/10.3390/s22155562 - 26 Jul 2022
Cited by 3 | Viewed by 2295
Abstract
In order to meet the needs of attitude correction of the optical fiber sensor array, an all-fiber optical sensor combined with FBG and CFBG-FP is proposed to monitor its attitude angle. The FBG sensor for pitch and roll angles detection employs a geometric [...] Read more.
In order to meet the needs of attitude correction of the optical fiber sensor array, an all-fiber optical sensor combined with FBG and CFBG-FP is proposed to monitor its attitude angle. The FBG sensor for pitch and roll angles detection employs a geometric model solution to shift the center wavelength of the three fiber Bragg gratings connected to it through the mass sphere, allowing for pitch and roll angle detection. Based on the magnetostrictive effect, the CFBG-FP sensor for heading angle detection employs changes of the cavity length of the chirped grating Fabry-Pérot cavity connected to its surface. The method of interpolation data processing and derivation of the attitude angle matrix is used to realize heading angle detection. The experimental results indicate that the FBG sensor for the pitch and roll angles detection has an effective detection range of 180 degrees and an angle measurement error of less than 1.5 degrees. Meanwhile, in the region beyond 10 degrees in the geomagnetic north-south direction, the angle measurement error of the CFBG-FP sensor for the heading angle detection is less than 1.3 degrees. Moreover, the impact of temperature in the system is minimized, demonstrating the validity of this combined fiber optical approach in the attitude angle measurements. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 7255 KiB  
Article
Hygrothermal Damage Monitoring of Composite Adhesive Joint Using the Full Spectral Response of Fiber Bragg Grating Sensors
by Chow-Shing Shin and Tzu-Chieh Lin
Polymers 2022, 14(3), 368; https://doi.org/10.3390/polym14030368 - 18 Jan 2022
Cited by 12 | Viewed by 2750
Abstract
Adhesive joints in composite structures are subject to degradation by elevated temperature and moisture. Moisture absorption leads to swelling, plasticization, weakening of the interface, interfacial defects/cracking and reduction in strength. Moisture and material degradation before the formation of defects are not readily revealed [...] Read more.
Adhesive joints in composite structures are subject to degradation by elevated temperature and moisture. Moisture absorption leads to swelling, plasticization, weakening of the interface, interfacial defects/cracking and reduction in strength. Moisture and material degradation before the formation of defects are not readily revealed by conventional non-destructive examination techniques. Embedded fiber Bragg grating (FBG) sensors can reflect the swelling strain in adhesive joints and offer an economical alternative for on-line monitoring of moisture absorption under hygrothermal aging. Most of the available works relied on the peak shifting phenomenon for sensing. Degradation of adhesive and interfacial defects will lead to non-uniform strain that may chirp the FBG spectrum, causing complications in the peak shifting measurement. It is reasoned that the full spectral responses may be more revealing regarding the joint’s integrity. Studies on this aspect are still lacking. In this work, single-lap joint composite specimens with embedded FBGs are soaked in 60 °C water for 30 days. Spectrum evolution during this period and subsequent tensile and fatigue failure has been studied to shed some light on the possible use of the full spectral response to monitor the development of hygrothermal degradation. Full article
Show Figures

Graphical abstract

24 pages, 9939 KiB  
Review
Recent Achievements on Grating Fabrications in Polymer Optical Fibers with Photosensitive Dopants: A Review
by Jie Jiang, Nan Zhang, Rui Min, Xin Cheng, Hang Qu and Xuehao Hu
Polymers 2022, 14(2), 273; https://doi.org/10.3390/polym14020273 - 10 Jan 2022
Cited by 20 | Viewed by 3615
Abstract
This review discusses recent achievements on grating fabrications in polymer optical fibers doped with photosensitive materials. First, different photosensitive dopants in polymer optical fibers (POFs) are summarized, and their refractive index change mechanisms are discussed. Then, several different doping methods to fabricate the [...] Read more.
This review discusses recent achievements on grating fabrications in polymer optical fibers doped with photosensitive materials. First, different photosensitive dopants in polymer optical fibers (POFs) are summarized, and their refractive index change mechanisms are discussed. Then, several different doping methods to fabricate the photosensitive POFs are presented. Following that, the principles of gratings, including standard fiber Bragg gratings (FBGs), tilted fiber Bragg gratings (TFBGs), chirped fiber Bragg gratings (CFBGs), phase-shifted fiber Bragg gratings (PSFBGs), and long period fiber gratings (LPFGs), are reported. Finally, fabrications of different gratings based on photosensitive POFs in the last 20 years are reported. We present our article clearly and logically, so that it will be helpful for researchers to explore a broad perspective on this proposed topic. Overall, the content provides a comprehensive overview of photosensitive POF fabrications and grating inscriptions in photosensitive POFs, including previous breakthroughs and recent advancements. Full article
(This article belongs to the Special Issue Polymer Optical Fibers: Recent Developments and Applications)
Show Figures

Figure 1

5 pages, 1341 KiB  
Proceeding Paper
Optimal Analysis of 40 Gbps Dispersion Compensated Optical Fiber System
by Murad Hassan and Arslan Arif
Eng. Proc. 2021, 12(1), 66; https://doi.org/10.3390/engproc2021012066 - 31 Dec 2021
Viewed by 1917
Abstract
Dispersion is one of the main factors that limit the development of optical fiber communication systems regarding data rate and long distance transmission of the signal. This is because of increases in dispersion with the increase in data rate and distance, resulting in [...] Read more.
Dispersion is one of the main factors that limit the development of optical fiber communication systems regarding data rate and long distance transmission of the signal. This is because of increases in dispersion with the increase in data rate and distance, resulting in signal degradation. In this work, we propose an optimal dispersion compensated optical fiber system, which is designed on the basis of Q-factor, eye height, and bit error rate. The system operates at a bit rate of 40 Gbps and a distance of 100 km. According to the optimization scheme, the system is simulated using the modulation format Non Return to Zero (NRZ) with uniform and Linear Chirped Apodized Fiber Bragg Grating (LCAFBG) as dispersion compensator. After deciding the Fiber Bragg Grating (FBG) structure, other key parameters are simulated to meet the requirements. The simulation results show that using NRZ modulation format with a LCAFBG Tanh profile gives better performance. Full article
(This article belongs to the Proceedings of The 1st International Conference on Energy, Power and Environment)
Show Figures

Figure 1

10 pages, 6381 KiB  
Article
2.58 kW Narrow Linewidth Fiber Laser Based on a Compact Structure with a Chirped and Tilted Fiber Bragg Grating for Raman Suppression
by Xin Tian, Chenhui Gao, Chongwei Wang, Xiaofan Zhao, Meng Wang, Xiaoming Xi and Zefeng Wang
Photonics 2021, 8(12), 532; https://doi.org/10.3390/photonics8120532 - 25 Nov 2021
Cited by 6 | Viewed by 4064
Abstract
We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and [...] Read more.
We report a high power, narrow linewidth fiber laser based on oscillator one-stage power amplification configuration. A fiber oscillator with a center wavelength of 1080 nm is used as the seed, which is based on a high reflection fiber Bragg grating (FBG) and an output coupling FBG of narrow reflection bandwidth. The amplifier stage adopted counter pumping. By optimizing the seed and amplifier properties, an output laser power of 2276 W was obtained with a slope efficiency of 80.3%, a 3 dB linewidth of 0.54 nm and a signal to Raman ratio of 32 dB, however, the transverse mode instability (TMI) began to occur. For further increasing the laser power, a high-power chirped and tilted FBG (CTFBG) was inserted between the backward combiner and the output passive fiber, experimental results showed that both the threshold of Stimulated Raman scattering (SRS) and TMI increased. The maximum laser power was improved to 2576 W with a signal to Raman ratio of 42 dB, a slope efficiency of 77.1%, and a 3 dB linewidth of 0.87 nm. No TMI was observed and the beam quality factor M2 maintained about 1.6. This work could provide a useful reference for obtaining narrow-linewidth high-power fiber lasers with high signal to Raman ratio. Full article
(This article belongs to the Special Issue High-Power Lasers and Amplifiers)
Show Figures

Figure 1

16 pages, 57386 KiB  
Article
Adhesive Joint Integrity Monitoring Using the Full Spectral Response of Fiber Bragg Grating Sensors
by Chow-Shing Shin and Tzu-Chieh Lin
Polymers 2021, 13(17), 2954; https://doi.org/10.3390/polym13172954 - 31 Aug 2021
Cited by 9 | Viewed by 2539
Abstract
Although adhesive joining has many advantages over traditional joining techniques, their integrity is more difficult to examine and monitor. Serious structural failures might follow if adhesive joint degradation goes undetected. Available non-destructive examination (NDE) methods to detect defects are helpful in discovering defective [...] Read more.
Although adhesive joining has many advantages over traditional joining techniques, their integrity is more difficult to examine and monitor. Serious structural failures might follow if adhesive joint degradation goes undetected. Available non-destructive examination (NDE) methods to detect defects are helpful in discovering defective joints during fabrication. For long-term monitoring of joint integrity, many of these NDE techniques are prohibitively expensive and time-consuming to carry out. Recently, fiber Bragg grating (FBG) sensors have been shown to be able to reflect strain in adhesive joints and offer an economical alternative for on-line monitoring. Most of the available works relied on the peak shifting phenomenon for sensing and studies on the use of full spectral responses for joint integrity monitoring are still lacking. Damage and disbonding inside an adhesive joint will give rise to non-uniform strain field that may chirp the FBG spectrum. It is reasoned that the full spectral responses may reveal the damage status inside the adhesive joints. In this work, FBGs are embedded in composite-to-composite single lap joints. Tensile and fatigue loading to joint failure have been applied, and the peak splitting and broadening of the full spectral responses from the embedded FBGs are shown to reflect the onset and development of damages. A parameter to quantify the change in the spectral responses has been proposed and independent assessment of the damage monitoring capability has been verified with post-damage fatigue tests. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

12 pages, 2222 KiB  
Article
Shallow-Tapered Chirped Fiber Bragg Grating Sensors for Dual Refractive Index and Temperature Sensing
by Takhmina Ayupova, Madina Shaimerdenova and Daniele Tosi
Sensors 2021, 21(11), 3635; https://doi.org/10.3390/s21113635 - 24 May 2021
Cited by 16 | Viewed by 5086
Abstract
In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 μm. [...] Read more.
In this work, we present a gold-coated shallow-tapered chirped fiber Bragg grating (stCFBG) for dual refractive index (RI) and temperature sensing. The stCFBG has been fabricated on a 15-mm long chirped FBG, by tapering a 7.29-mm region with a waist of 39 μm. The spectral analysis shows two distinct regions: a pre-taper region, in which the stCFBG is RI-independent and can be used to detect thermal changes, and a post-taper region, in which the reflectivity increases significantly when the RI increments. We estimate the RI and thermal sensitivities as 382.83 dB/RIU and 9.893 pm/°C, respectively. The cross-talk values are low (−1.54 × 10−3 dB/°C and 568.1 pm/RIU), which allows an almost ideal separation between RI and thermal characteristics. The stCFBG is a compact probe, suitable for long-term and temperature-compensated biosensing and detection of chemical analytes. Full article
(This article belongs to the Special Issue Plasmonic Optical Fiber Sensors: Technology and Applications)
Show Figures

Figure 1

Back to TopTop