Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (291)

Search Parameters:
Keywords = fertilizer factory

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 781 KiB  
Article
Absence of Sulfur Fertilization at Establishment in Urochloa brizantha Cultivars
by Carlos Eduardo Avelino Cabral, Luis Carlos Oliveira Borges, Anna Cláudia Cardoso Paimel, Eildson Souza de Oliveira Silva, Izabela Aline Gomes da Silva, Camila Fernandes Domingues Duarte, Lucas Gimenes Mota, Anne Caroline Dallabrida Avelino and Carla Heloisa Avelino Cabral
Grasses 2025, 4(3), 31; https://doi.org/10.3390/grasses4030031 - 5 Aug 2025
Abstract
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a [...] Read more.
Sulfur-containing fertilizers increase production costs, which leads to low utilization of this nutrient. Thus, evaluating how the absence of sulfur influences the early development of Urochloa brizantha is essential. Study was conducted in a greenhouse at the Federal University of Rondonópolis in a completely randomized design, with six treatments in a 3 × 2 factorial scheme, and eight replications. Three cultivars of U. brizantha (Marandu, Xaraés and Piatã) were evaluated under two fertilization strategies: with or without sulfur fertilization. Sufur presence increased the number of leaves and forage mass, in which cultivar Xaraés presented the greatest means. Piatã was the cultivar most sensitive to sulfur deficiency at establishment, which reduced forage mass, number of leaves and number of tillers by 42%, 32%, and 45%, respectively. Despite these differences between cultivars, sulfur efficiently increased the forage yield. Sulfur fertilization increased the concentrations of nutrients in the plants without significantly affecting the uptake of nitrogen, phosphorus, potassium, calcium and magnesium. Sulfur omission resulted in increased phosphorus uptake in all grass. In contrast, Marandu grass exhibited the greatest reduction in sulfur uptake. Therefore, the use of sulfur in the fertilization of grasses is recommended, it is important to evaluate the responses of each cultivar to better adjust the fertilization management. Full article
Show Figures

Figure 1

16 pages, 1850 KiB  
Article
Effect of Biochar-Coated Urea on Soil Nitrogen, Plant Uptake, and Sweet Corn Yield in Sandy Soil
by Sa’adah Shofiati, Gabryna Auliya Nugroho, Zaenal Kusuma and Syahrul Kurniawan
Nitrogen 2025, 6(3), 61; https://doi.org/10.3390/nitrogen6030061 - 28 Jul 2025
Viewed by 299
Abstract
The low nitrogen-use efficiency (NUE) in sandy soils, due to high porosity and poor nutrient retention, necessitates proper management in fertilization. This study aims to evaluate the effect of biochar-coated urea (BCU) with different coating thicknesses and nitrogen doses on soil nitrogen content, [...] Read more.
The low nitrogen-use efficiency (NUE) in sandy soils, due to high porosity and poor nutrient retention, necessitates proper management in fertilization. This study aims to evaluate the effect of biochar-coated urea (BCU) with different coating thicknesses and nitrogen doses on soil nitrogen content, nitrogen uptake, NUE, growth, and yield of sweet corn in sandy soil. The experiment used a factorial randomized block design with two factors, including biochar coating thicknesses (i.e., 14% and 29%) and fertilization doses (i.e., 50%, 100%, 150%, 200%, and 250%). The results showed that the 29% biochar coating thickness led to 9.9–21.3% higher plant height, N uptake, and N-use efficiency, but it led to 22.8% lower yield, as compared to the 14% biochar coating thickness. Additionally, the application of BCU doses of 100% and 150% (~161 and 241.5 kg N/ha) led to 9.2–97.3% higher maize growth, yield, N uptake, and NEU as compared to the other doses (i.e., 50%, 100%, 250%). This study confirmed that the combination of a 29% biochar coating thickness with 150% of the recommended BCU dose (~241.5 kg N/ha) was the best combination, resulting in the highest N uptake, growth, and yield of maize. Full article
Show Figures

Figure 1

24 pages, 1391 KiB  
Article
Nitrogen Fertilization and Glomus Mycorrhizal Inoculation Enhance Growth and Secondary Metabolite Accumulation in Hyssop (Hyssopus officinalis L.)
by Saeid Hazrati, Marzieh Mohammadi, Saeed Mollaei, Mostafa Ebadi, Giuseppe Pignata and Silvana Nicola
Nitrogen 2025, 6(3), 60; https://doi.org/10.3390/nitrogen6030060 - 26 Jul 2025
Viewed by 330
Abstract
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus [...] Read more.
Nitrogen (N) availability often limits primary productivity in terrestrial ecosystems, and arbuscular mycorrhizal fungi (AMF) can enhance plant N acquisition. This study investigated the interactive effects of N fertilization and AMF inoculation on N uptake, plant performance and phenolic acid content in Hyssopus officinalis L., with the aim of promoting sustainable N management in H. officinalis cultivation. A factorial randomized complete block design was employed to evaluate four AMF inoculation strategies (no inoculation, root inoculation, soil inoculation and combined root–soil inoculation) across three N application rates (0, 0.5 and 1,1 g N pot−1 (7 L)) in a controlled greenhouse environment. Combined root and soil AMF inoculation alongside moderate N fertilization (0.5 mg N pot−1) optimized N use efficiency, maximizing plant biomass and bioactive compound production. Compared to non-inoculated controls, this treatment combination increased N uptake by 30%, phosphorus uptake by 24% and potassium uptake by 22%. AMF colonization increased chlorophyll content and total phenolic compounds under moderate N supply. However, excessive N application (1 g N pot−1) reduced AMF effectiveness and secondary metabolite accumulation. Notably, AMF inoculation without N fertilization yielded the highest levels of anthocyanin and salicylic acid, indicating differential N-dependent regulation of specific biosynthetic pathways. The interaction between AMF and N demonstrated that moderate N fertilization (0.5 g N pot−1) combined with dual inoculation strategies can reduce total N input requirements by 50%, while maintaining optimal plant performance. These findings provide practical insights for developing N-efficient cultivation protocols in medicinal plant production systems, contributing to sustainable agricultural practices that minimize environmental N losses. Full article
Show Figures

Figure 1

20 pages, 1767 KiB  
Article
Rhizobium Inoculation Sustains Optimal Yields on Native Common Bean (Phaseolus vulgaris L.) Under Nitrogen-Deficient Fertilization
by Danny Jarlis Vásquez Lozano, Cledy Ureta Sierra, Joseph Campos Ruiz, Héctor Andrés Ramírez Maguiña, Azucena Chávez-Collantes, Leslie Diana Velarde-Apaza, Richard Solórzano and Attilio Israel Cadenillas Martínez
Crops 2025, 5(4), 47; https://doi.org/10.3390/crops5040047 - 25 Jul 2025
Viewed by 297
Abstract
Native bean genotypes (Phaseolus vulgaris L.) play a crucial role in ensuring food security in the Andean region. However, their cultivation faces challenges, such as low yields and a high dependence on nitrogen fertilizers. Addressing these issues requires the development of sustainable [...] Read more.
Native bean genotypes (Phaseolus vulgaris L.) play a crucial role in ensuring food security in the Andean region. However, their cultivation faces challenges, such as low yields and a high dependence on nitrogen fertilizers. Addressing these issues requires the development of sustainable strategies to enhance productivity. This study evaluated the interaction between Rhizobium phaseoli inoculation and three levels of phosphorus (P) and potassium (K) fertilization on the growth, yield, and nutritional profile of the ‘Tiachos bayo’ native bean variety under Andean field conditions. Two R. phaseoli strains (UNC-1 and CIAT-2) were tested in combination with three levels of chemical fertilization (0%, 50%, and 100%) using a factorial design under field conditions. Parameters assessed included nodule number, plant height, phenology, yield, and proximal grain composition. Results indicated that inoculation and fertilization levels significantly influenced nodulation, phenological phases, and crop yield. The highest yield (2172 kg·ha−1) and nodule number (78) were observed with the combined treatment of R. phaseoli CIAT-2 strain with 100% fertilization. It was concluded that R. phaseoli inoculation, when integrated with appropriate fertilization, enhances the productivity of native beans. Full article
Show Figures

Figure 1

19 pages, 2401 KiB  
Article
Variety-Dependent Yield and Physiological Responses to Combined Inorganic and Organic Sources of Nitrogen in Wheat
by Eva Herlinawati, Xiaoxiao Lei, Maoling Yang, Changlu Hu, Xueyun Yang and Shulan Zhang
Agronomy 2025, 15(7), 1679; https://doi.org/10.3390/agronomy15071679 - 10 Jul 2025
Viewed by 294
Abstract
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic [...] Read more.
Integrated application of chemical fertilizers with organic manure might improve crop yields and N-use efficiency (NUE, grain yield per unit N uptake), but the underlying physiological mechanisms are unclear. In this study, we aimed to examine the effects of combined inorganic and organic fertilizers on wheat biomass allocation, root growth, water-soluble carbohydrates (WSCs) translocation, leaf senescence, N uptake, and their relationship with yield and NUE. We established a 2-year factorial field experiment with five nutrient treatments with ratios of inorganic: organic fertilizers from 0 to 1, and three varieties—two new: Weilong169 and Zhongmai578; and one reference: Xiaoyan22. The yield ranged from 3469 to 8095 kg ha−1, and it generally declined in response to a higher proportion of organic fertilizer. The NUE increased when there was a higher proportion of organic fertilizer. Weilong169 exhibited higher NUE than Zhongmai578, and both new cultivars outperformed the reference variety in the N harvest index. The yield correlated with leaf senescence traits and harvest index, and NUE was associated with WSC translocation and N uptake. The combination of fertilizers with a low portion of organic maintained yield and improved NUE; Weilong169 had the highest yield, NUE, and N harvest index. A low portion of organic manure substitution for chemical fertilizer suited all varieties. A new variety with a higher yield, N harvest index, and NUE highlights the importance of N traits in breeding programs. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

21 pages, 2314 KiB  
Article
Urea Fertilization Buffered Acid-Inhibiting Effect on Litter Decomposition in Subtropical Plantation Forests of Southern China
by Yonghui Lin, Xiangshi Kong, Zaihua He and Xingbing He
Forests 2025, 16(7), 1110; https://doi.org/10.3390/f16071110 - 4 Jul 2025
Viewed by 213
Abstract
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using [...] Read more.
Acid deposition, a major environmental issue causing soil acidification and microbial suppression, impacts forest nutrient cycling. Meanwhile, nitrogen (N) fertilization is widely applied in subtropical forests, yet its interaction with acid deposition on litter decomposition is unclear. We conducted a field experiment using two common tree species, Cunninghamia lanceolata and Cinnamomum camphora, and applied three acid deposition levels (0, 0.25, and 0.50 g H+ m−2 month−1) and four N fertilization levels (0, 3, 6, and 9 g N m−2 year−1) in a factorial design. Our results showed that acid deposition alone significantly reduced litter decomposition rates, with maximum mass loss decreasing by 23.6% for Cunninghamia and 36.3% for Cinnamomum (p < 0.05). Urea fertilization alone also suppressed decomposition, reducing maximum mass loss by 27.3% for Cunninghamia and 37.3% for Cinnamomum (p < 0.05). However, when combined, urea fertilization mitigated the suppressive effect of acid deposition, particularly under severe acid conditions, where maximum mass loss increased by 18.5% for Cunninghamia and 43.1% for Cinnamomum (p < 0.05). Acid deposition reduced microbial respiration and enzyme activities related to carbon cycling, while urea fertilization showed both positive and negative effects depending on the acid levels (p < 0.05). Urea can enhance the litter layer’s acid-buffering capacity, offering potential management insights for acid deposition-affected forests. Further research on microbial mechanisms across ecosystems is recommended. Full article
Show Figures

Figure 1

12 pages, 502 KiB  
Article
Can Molybdenum Fertilization Enhance Protein Content and Digestibility of Sorghum Single Cropped and Intercropped with Cowpea?
by Nágila Sabrina Guedes da Silva, Alexandre Campelo de Oliveira, Baltazar Cirino Júnior, Rhaiana Oliveira de Aviz, Kedes Paulo Pereira, Domingos Sávio Marques de Menezes Vieira, Claudenilde de Jesus Pinheiro Costa, Jucelane Salvino de Lima, Jamiles Carvalho Gonçalves de Souza Henrique and Evaristo Jorge Oliveira de Souza
Grasses 2025, 4(3), 28; https://doi.org/10.3390/grasses4030028 - 2 Jul 2025
Viewed by 264
Abstract
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as [...] Read more.
Molybdenum fertilization represents a viable alternative for improving forage quality, potentially complementing or enhancing the effects of nitrogen fertilization. This study aimed to determine whether foliar or soil application of molybdenum would increase the crude protein content and digestibility of sorghum cultivated as a monoculture or intercropped with cowpea. The first experiment followed a 2 × 2 + 2 factorial design, including two application methods (foliar or soil), two cropping systems (monoculture or intercropping), and two additional control treatments (with and without molybdenum). In the second experiment, a split-plot design was used to assess the effects of molybdenum fertilization on the in situ digestibility of sorghum from monoculture and intercropping systems. Molybdenum fertilization increased the levels of crude protein, total carbohydrates, and soluble fractions. It also enhanced the disappearance rate, potential degradability, and effective degradability of sorghum, regardless of the application method or cropping system. Foliar or soil application of molybdenum is recommended to optimize the crude protein content and in situ digestibility of sorghum cultivated either as a monoculture or intercropped with cowpea. Full article
Show Figures

Graphical abstract

26 pages, 3348 KiB  
Article
Revalorization of Vinasse as a Farmland Improver Through Multi-Objective Genetic Algorithms: A Circular Economy Approach
by Aarón Montiel-Rosales, Nayeli Montalvo-Romero, Gregorio Fernández-Lambert, Horacio Bautista-Santos, Yair Romero-Romero and Juan Manuel Carrión-Delgado
Land 2025, 14(7), 1359; https://doi.org/10.3390/land14071359 - 26 Jun 2025
Viewed by 594
Abstract
Vinasse is a waste generated from the sugarcane ethanol production process. It is an effluent that, when discharged into the environment, causes serious damage. This study evaluated the potential of vinasse as a regenerator of agricultural soil through Multi-Objective Genetic Algorithms (MOGAs). This [...] Read more.
Vinasse is a waste generated from the sugarcane ethanol production process. It is an effluent that, when discharged into the environment, causes serious damage. This study evaluated the potential of vinasse as a regenerator of agricultural soil through Multi-Objective Genetic Algorithms (MOGAs). This study focused on optimizing the amount of vinasse that should be applied, depending on its composition and the needs of the agricultural land. The methodology included five phases where the properties of the cultivated land with and without vinasse were evaluated; with the experimental data, MOGAs were constructed to evaluate soil: (a) fertility, (b) quality, and (c) health. The vinasse was characterized; meanwhile, to understand how the soil behaves depending on the incorporation of vinasse, a factorial experiment was designed in soils where sugarcane is grown in Mexico. The models were built and optimized using MATLAB® and evaluated using Pareto Front. This study showed that vinasse improved soil fertility, quality, and health, with an optimal ratio of mixture formed by 40% vinasse and 60% irrigation water. This ratio allows the development of appropriate soil conditions for the growth of the crop—this is achieved after the application of the vinasse during the preparation of the land for cultivation, which is reached at approximately 20 cm depth—(a) fertility with K of 150 to 230 mg/kg, P of 25 to 35 mg/kg, and N of 17 to 19 mg/kg; (b) quality with MC of 90 to 95%, OM of 3.5 to 4%, and pH of 6.5 to 7.5 UpH; and (c) health with equity of 78% to 80%, abundance of 75% to 80%, and diversity of 80% to 95%. A comparative analysis between an experimental field with and without vinasse showed a 24% increase (ton/ha) in sugarcane yield. The value of vinasse is highlighted, not only as a waste to be treated, but as a regenerative input aligned with the Circular Economy. Full article
Show Figures

Figure 1

41 pages, 9366 KiB  
Article
Soil Bioindicators and Crop Productivity Affected by Legacy Phosphate Fertilization and Azospirillum brasilense Inoculation in No-Till Systems
by Naiane Antunes Alves Ribeiro, Aline Marchetti Silva Matos, Viviane Cristina Modesto, Nelson Câmara de Souza Júnior, Vitória Almeida Moreira Girardi, Iêda de Carvalho Mendes and Marcelo Andreotti
Appl. Sci. 2025, 15(13), 7146; https://doi.org/10.3390/app15137146 - 25 Jun 2025
Viewed by 357
Abstract
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and [...] Read more.
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and how these attributes correlated with crop productivity in a rotational system. The experiment also assessed the residual effects of phosphate fertilization (initially applied in 2013 and reapplied in 2020) and its interaction with inoculation on soil phosphorus fractions and crop performance. This study was conducted on Dystrophic Red Oxisol in the low-altitude Cerrado region under 20 years of no-tillage management, using a randomized block design in a 5 × 2 factorial scheme: five phosphorus doses (0, 30, 60, 120, and 240 kg ha−1 P2O5) and inoculated or non-inoculated grasses, with four replicates. The results showed that inoculation influenced dry matter (DM) production and nutrient cycling, improving soil health despite lower fertility and total DM. The correlation between bioindicators and productivity suggests that soil health indicators can be used to monitor system sustainability. No consistent effects of inoculation or phosphate fertilization were observed for some crop components, indicating complex interactions under long-term conservationist systems. Full article
(This article belongs to the Special Issue Soil Health and Soil Microbiology)
Show Figures

Figure 1

18 pages, 1697 KiB  
Article
Zinc Application Enhances Biomass Production, Grain Yield, and Zinc Uptake in Hybrid Maize Cultivated in Paddy Soil
by Phanuphong Khongchiu, Arunee Wongkaew, Jun Murase, Kannika Sajjaphan, Apidet Rakpenthai, Orawan Kumdee and Sutkhet Nakasathien
Agronomy 2025, 15(7), 1501; https://doi.org/10.3390/agronomy15071501 - 20 Jun 2025
Viewed by 555
Abstract
Zinc (Zn) fertilization is widely used in maize (Zea mays L.) production to alleviate Zn deficiency and improve biomass and grain yield. However, limited research exists on Zn management in maize cultivated in high-pH paddy soils following rice-based systems, where altered soil [...] Read more.
Zinc (Zn) fertilization is widely used in maize (Zea mays L.) production to alleviate Zn deficiency and improve biomass and grain yield. However, limited research exists on Zn management in maize cultivated in high-pH paddy soils following rice-based systems, where altered soil chemistry may affect Zn availability and plant uptake. This study aimed to evaluate the effects of Zn application rates on growth, yield, and Zn uptake in two hybrid maize varieties under such conditions. Field experiments were conducted during the 2019 and 2020 dry seasons in Phetchabun Province, Thailand, using a randomized complete block design with a 4 × 2 factorial arrangement and four replications. Treatments included four Zn rates (0, 5, 10, and 20.6 kg of Zn/ha), applied as Zn sulfate monohydrate (ZnSO4·H2O, 36% Zn) by soil banding at the V6 stage, and two hybrid varieties, Suwan 5731 (SW5731) and Suwan 5819 (SW5819). In 2019, significant Zn × variety interactions were observed for biomass, crop growth rate (CGR), and grain yield. SW5819 at 10 kg of Zn/ha produced the highest biomass (31.6 t/ha) and CGR (25.6 g/m2/day), increasing by 15.3% and 39.1%, respectively, compared to its own no Zn treatment. In contrast, 20.6 kg of Zn/ha reduced SW5819 biomass by 6.6% and 13.1% relative to SW5731 and its own no-Zn treatment, respectively. Grain yield in SW5819 peaked at 14.7 t/ha under 5 and 10 kg of Zn/ha, significantly higher than SW5731 under 0 and 5 kg of Zn/ha by 16.7%, while SW5731 showed no significant response. In SW5819, shoot and grain Zn uptake significantly increased under 5 and 10 kg of Zn/ha by up to 36.8% and 33.3%, respectively, compared to no Zn treatment. The lowest shoot Zn uptake was found in SW5819 under 20.6 kg of Zn/ha (264.1 ± 43.9 g/ha), which was lower than all its Zn treatments and all SW5731 treatments, showing a reduction of 19.4–43.6%. Zn application improved soil Zn availability, and Zn partitioning among plant organs varied with Zn rate and season. A moderate Zn rate (10 kg of Zn/ha) optimized maize performance under high-pH, rice-based conditions, emphasizing the need for variety-specific Zn management. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

11 pages, 801 KiB  
Article
Productive Performance of Brachiaria brizantha cv. Paiaguás in Response to Different Inoculation Techniques of Azospirillum brasilense Associated with Nitrogen Fertilization in the Brazilian Amazon
by Gianna Maria Oscar Bezerra, Cleyton de Souza Batista, Daryel Henrique Abreu de Queluz, Gabriela de Jesus Coelho, Daiane de Cinque Mariano, Pedro Henrique Oliveira Simões, Perlon Maia dos Santos, Ismael de Jesus Matos Viégas, Ricardo Shigueru Okumura and Raylon Pereira Maciel
Nitrogen 2025, 6(2), 47; https://doi.org/10.3390/nitrogen6020047 - 17 Jun 2025
Viewed by 471
Abstract
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and [...] Read more.
With the increase in prices of correctives and fertilizers, the investigation of the interactions between plants and plant growth-promoting bacteria shows an economically viable and sustainable alternative, and the use of Azospirillum brasilense has shown an increase in efficiency of nitrogen use and increased pasture yield. This study, conducted in the Brazilian Amazon, aimed to evaluate the effect of different inoculation techniques of Azospirillum brasilense associated with the dose of nitrogen topdressing on the productive performance of Brachiaria brizantha cv. Paiaguás is a grass species commonly cultivated in this region. The experiment was conducted in the Experimental Forage Sector of the Federal Rural University of the Amazon, Parauapebas city, Brazil. The experimental design was a randomized block design in a 3 × 3 factorial arrangement, with three inoculation methods (control, seed, and foliar) and three nitrogen fertilization doses (0, 75, and 150 kg ha−1 of N), with four replicates. An effect was observed in interaction between inoculation and nitrogen fertilization (p ≤ 0.05) for the variables total forage green mass, total forage dry mass, dry mass of leaf blade, dry stem mass, and number of tillers m−2. The dose of 150 kg ha−1 of N promoted a positive effect of N on the total forage dry mass and LAI (leaf area index). Inoculation with Azospirillum brasilense, especially foliar application, efficiently increased Brachiaria brizantha cv. Paiaguás yield, potentially reducing the use of nitrogen fertilizers, promotes greater sustainability in pasture management. Full article
Show Figures

Figure 1

11 pages, 988 KiB  
Article
Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses?
by Anna B. O. Moura, Gustavo B. A. Silva, Anna C. C. Paimel, Eildson S. O. Silva, Lucas G. Mota, Camila F. D. Duarte, Carla H. A. Cabral and Carlos E. A. Cabral
Agrochemicals 2025, 4(2), 9; https://doi.org/10.3390/agrochemicals4020009 - 11 Jun 2025
Viewed by 386
Abstract
Foliar fertilizers are low-cost agrochemicals used in pastures, and further research is needed regarding their impact on tropical grasses. Therefore, the objective of this research was to evaluate the effects of foliar fertilization on the development of tropical grasses. Two experiments, consisting of [...] Read more.
Foliar fertilizers are low-cost agrochemicals used in pastures, and further research is needed regarding their impact on tropical grasses. Therefore, the objective of this research was to evaluate the effects of foliar fertilization on the development of tropical grasses. Two experiments, consisting of five treatments and four replicates, were carried out. Each experiment was carried out using the following grasses: Zuri grass (Megathyrsus maximus Jacq. cv. Zuri) and ipypora grass (hybrid of Urochloa brizantha × Urochloa zizizensis). In each experiment, ten treatments were evaluated using a 2 × 5 factorial design with four replications. Treatments combined two soil fertilization strategies (with and without nitrogen) and five foliar fertilization strategies, which consisted of a control treatment without foliar fertilization and four application times: immediately after defoliation (0 leaves) and with 1, 2, and 3 expanded leaves. The grass height, tiller population density (TPD), leaf number (LN), forage dry mass (FDM), individual leaf mass (ILM) were evaluated. In the absence of soil fertilization, foliar fertilizer application had no effect on the development of the grasses (p > 0.05). Foliar fertilization did not affect the FDM of Ipyporã and Zuri grass under any of the conditions evaluated (p > 0.05). When applied in the soil fertilize with nitrogen, foliar fertilizer increased LN by 24% for two grasses (p < 0.05). For Zuri grass, foliar fertilization reduced individual leaf mass by 19% (p < 0.05). Thus, foliar fertilizer does not increase the productivity of tropical grasses, with small effects on the leaf’s appearance in Ipyporã and Zuri grass, without altering the forage mass, which necessitates new studies with agrochemicals, new doses, and concentrations of nitrogen. Full article
Show Figures

Figure 1

27 pages, 3249 KiB  
Article
Responses to the Interaction of Selenium and Zinc Through Foliar Fertilization in Processed Grains of Brazilian Upland Rice Genotypes
by Filipe Aiura Namorato, Patriciani Estela Cipriano, Pedro Antônio Namorato Benevenute, Everton Geraldo de Morais, Felipe Pereira Cardoso, Ana Paula Branco Corguinha, Stefânia Barros Zauza, Gustavo Ferreira de Sousa, Maila Adriely Silva, Eduardo Sobrinho Santos Figueredo, Raphael Felipe Rodrigues Correia, Fábio Aurélio Dias Martins, Flávia Barbosa Silva Botelho and Luiz Roberto Guimarães Guilherme
Agriculture 2025, 15(11), 1186; https://doi.org/10.3390/agriculture15111186 - 30 May 2025
Viewed by 618
Abstract
Rice (Oryza sativa L.) is a crucial crop for biofortification that is widely consumed and is cultivated in soils with low levels of selenium (Se) and zinc (Zn). The study evaluated how upland rice genotypes can increase Se and Zn in grains [...] Read more.
Rice (Oryza sativa L.) is a crucial crop for biofortification that is widely consumed and is cultivated in soils with low levels of selenium (Se) and zinc (Zn). The study evaluated how upland rice genotypes can increase Se and Zn in grains with foliar fertilization and analyzed the impact on agronomic characteristics and protein and amino acid contents. Experiments in Lambari and Lavras used a 5 × 4 factorial design with five genotypes (BRS Esmeralda, CMG 2188, CMG ERF 221-16, CMG ERF 221-19, CMG ERF 85-15) and four treatments (control, without Se; 5.22 g Se ha−1; 1.42 kg Zn ha−1; and combined Zn+Se) with three replicates. The study showed that CMG ERF 85-15, with Se fertilization, increased grain yield in Lambari. In Lavras, adding Zn to CMG 2188 and CMG ERF 85-15 improved grain yield. In Lambari, most variables were grouped with Zn+Se, except grain yield and free amino acids in the grain. In Lavras, variables associated with Se, proteins, free amino acids in the polished grain, hulling in whole and polished grain, and milling yield were grouped under the treatment Zn+Se. We recommend the genotype CMG ERF 85-15 based on the results for foliar biofortification with Zn+Se. Full article
Show Figures

Graphical abstract

24 pages, 5103 KiB  
Article
Optimizing Cotton Irrigation Strategies in Arid Regions Under Water–Salt–Nitrogen Interactions and Projected Climate Impacts
by Fuchu Zhang, Ziqi Zhang, Tong Heng and Xinlin He
Agronomy 2025, 15(6), 1305; https://doi.org/10.3390/agronomy15061305 - 27 May 2025
Viewed by 591
Abstract
Optimizing irrigation and nitrogen (N) management in saline soils is critical for sustainable cotton production in arid regions that have been subjected to climate change. In this study, a two-year factorial field experiment (3 salinity levels × 3 N rates × 3 irrigation [...] Read more.
Optimizing irrigation and nitrogen (N) management in saline soils is critical for sustainable cotton production in arid regions that have been subjected to climate change. In this study, a two-year factorial field experiment (3 salinity levels × 3 N rates × 3 irrigation quotas) is integrated with the RZWQM2 model to (1) identify water–N–salinity thresholds for cotton yield and (2) to project climate change impacts under SSP2.4-5 and SSP5.8-5 scenarios (2031–2090) in Xinjiang, China, a global cotton production hub. The results demonstrated that a moderate salinity (6 dS/m) combined with a reduced irrigation (3600 m3/hm2) and N input (210 kg/hm2) achieved a near-maximum yield (6918 kg/hm2), saving 20% more water and 33% more fertilizer compared to conventional practices. The model exhibited a robust performance (NRMSE: 5.94–12.88% for soil–crop variables) and revealed that warming shortened the cotton growing season by 1.2–9.5 days per decade. However, elevated CO2 (832 ppm by 2090) levels under SSP5.8-5 increased yields by 22.6–42.1%, offsetting heat-induced declines through enhanced water use efficiency (WUE↑27.5%) and biomass accumulation. Critically, high-salinity soils (9 dS/m) required 25% additional irrigation (4500 m3/hm2) and a full N input (315 kg/hm2) to maintain yield stability. These findings provide actionable strategies for farmers to optimize irrigation schedules and nitrogen application, balancing water conservation with yield stability in saline-affected arid agroecosystems that have been subjected to climate change. Full article
Show Figures

Figure 1

15 pages, 1594 KiB  
Article
Effects of Organic, Organomineral, and Mineral Fertilization on Soil Macronutrients in Chrysanthemum Cultivar Singelo Cultivation
by Luana Aparecida Menegaz Meneghetti, Edna Maria Bonfim-Silva, Tonny José Araújo da Silva, Niclene Ponce Rodrigues de Oliveira, Alisson Silva Costa Custódio, Ivis Andrei Campos e Silva, Tallys Henrique Bonfim-Silva, Rosana Andreia da Silva Rocha, Alessana Franciele Schlichting, Salomão Lima Guimarães, Marcio Koetz, Deborah de Amorim Teixeira Santos, Paulo Otávio Aldaves dos Santos Guedes and Patrícia Ferreira da Silva
Horticulturae 2025, 11(6), 567; https://doi.org/10.3390/horticulturae11060567 - 22 May 2025
Viewed by 447
Abstract
The use of agro-industrial waste, such as wood ash or biomass ash, has been adopted as an alternative to synthetic fertilizers for providing nutrients to plants. This study aimed to evaluate the levels of primary and secondary macronutrients in soil cultivated with chrysanthemum [...] Read more.
The use of agro-industrial waste, such as wood ash or biomass ash, has been adopted as an alternative to synthetic fertilizers for providing nutrients to plants. This study aimed to evaluate the levels of primary and secondary macronutrients in soil cultivated with chrysanthemum under different types of fertilization management: organic, organomineral, and mineral, with and without liming. The experiment was conducted in a greenhouse for 185 days, using a randomized blocks design in a 5 × 2 factorial scheme: five fertilization types (incubated and unincubated wood ash, organomineral fertilizer, mineral fertilizer, and control) and two levels of liming (without liming and 70% base saturation) with five replicates. The soil used was Oxisol. The phosphorus, potassium, calcium, magnesium, and sulfur contents in the soil after cultivation were analyzed. There was a 77% increase in potassium in treatments with ash compared to treatments without ash. The corrected soil presented 173.2 mg dm−3 of potassium, compared to 153.6 mg dm−3 in the uncorrected soil, an increase of 11.6%. The calcium levels increased by 60% with the application of ash (incubated or not) and organomineral fertilizer, compared to soils without ash. Liming increased calcium by 1.12 cmolc dm−3. Fertilizers with ash associated with liming resulted in higher magnesium levels. The sulfur content varied according to the fertilizer, with non-incubated ash showing the highest value (69.11 mg dm−3) compared to the control (11.08 mg dm−3), a difference of 83.96%. Organomineral fertilizer is an alternative for increasing the availability of macronutrients in the soil, allowing a second cropping cycle without the need to manage soil fertility, contributing to sustainable agriculture, encouraging the reuse of waste, and reducing the use of mineral fertilizers. Full article
(This article belongs to the Special Issue Irrigation and Fertilization Management in Horticultural Production)
Show Figures

Graphical abstract

Back to TopTop