Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Experimental Establishment
2.3. Data Collection
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pietroski, M.; Oliveira, R.; Caione, G. Foliar fertilization with nitrogen in Panicum maximum cv. Mombaça. Rev. Agric. Neotrop. 2015, 2, 49–53. [Google Scholar] [CrossRef]
- Nicchio, B.; Santos, G.A.; Lino, A.C.M.; Ramos, L.A.; Pereira, H.S.; Korndörfer, G.H. Foliar fertilization in ratoon sugarcane. Rev. Acta Iguazu 2020, 9, 10–24. [Google Scholar] [CrossRef]
- Borowski, E.; Michalek, S. The Effect of Foliar Nutrition of Spinach (Spinacia oleracea L.) with Magnesium Salts and Urea on Gas Exchange, Leaf Yield and Quality. Acta Agrobotânica 2010, 63, 77–85. [Google Scholar] [CrossRef]
- Santos, M.; Cerutti, P.; Wille, C.L. Foliar boron fertilization under no-tillage system in soybean crop. Rev. Científica Rural 2019, 21, 1–11. [Google Scholar] [CrossRef]
- Borges, G.S.; Oliveira, D.H.A.M.; Oliveira, D.M.; Felisbino, D.G.; Rocha, G.O.; Carvalho, B.H.R.; Santos, M.E.R. Foliar fertilization at the establishment of marandu, mavuno, mulato and ypyporã grasses. Veterinária Notícias 2022, 28, 1–12. [Google Scholar]
- Wang, Y.; Li, M.; Guo, H.; Yan, H.; Yan, X. Responses of alfalfa growth and nitrogen utilization to foliar fertilization with different urea concentrations. J. Plant Growth Regul. 2023, 42, 5507–5522. [Google Scholar] [CrossRef]
- Andrade, J.J.; Oliveira, E.C.A.; Lima, A.M.S.; Amorim, G.P.S.; Oliveira, E.S.; Freire, F.J.; Adelino, W.S.M.; Oliveira Filho, E.C.A. Foliar Fertilization Improves the Nitrogen Nutrition of Sugarcane. Agriculture 2024, 14, 1984. [Google Scholar] [CrossRef]
- Hube, S.; Salazar, F.; Rodríguez, M.; Mejías, J.; Alfaro, M. Dynamics of nitrogen gaseous losses following the application of foliar nanoformulations to grasslands. J. Soil Sci. Plant Nutr. 2022, 22, 1758–1767. [Google Scholar] [CrossRef]
- Petkova, M.; Bozhanska, T.; Bozhanski, B.; Iliev, M. Impact of foliar fertilization on the yield and bioproductive parameters of perennial ryegrass (Lolium perenne L.). Ecol. Balk. 2023, 15, 164–172. [Google Scholar]
- Jank, L.; Santos, M.F.; Braga, G.J. O Capim-BRS Zuri (Panicum maximum Jacq.) na Diversificação e Intensificação das Pastagens; Embrapa: Brasília, DF, Brazil, 2022. [Google Scholar]
- Valle, C.B.; Euclides, V.B.P.; Montagner, D.B.; Valério, J.R.; Mendes-Bonato, A.B.; Verzignassi, J.R.; Torres, F.Z.V.; Macedo, M.C.M.; Fernades, C.D.; Lima-Barrios, S.C.; et al. BRS Ipyporã (“belo começo” em guarani): Híbrido de Brachiaria da Embrapa; Embrapa: Brasília, DF, Brasil, 2017. [Google Scholar]
- Cabral, C.E.A.; Cabral, L.S.; Bonfim-Silva, E.M.; Carvalho, K.S.; Abreu, J.G.; Cabral, C.H.A. Reactive natural phosphate and nitrogen fertilizers in Marandu grass fertilization. Comun. Sci. 2018, 9, 729–736. [Google Scholar] [CrossRef]
- Pereira, L.E.T.; Herling, V.R.; Tech, A.R.B. Current scenario and perspectives for nitrogen fertilization strategies on tropical perennial grass pastures: A review. Agronomy 2022, 12, 2079. [Google Scholar] [CrossRef]
- Oliveira, J.K.S.; Corrêa, D.C.C.; Cunha, A.M.Q.; Rêgo, A.C.; Faturi, C.; Silva, W.L.; Domingues, F.N. Effect of Nitrogen Fertilization on Production, Chemical Composition and Morphogenesis of Guinea Grass in the Humid Tropics. Agronomy 2020, 10, 1840. [Google Scholar] [CrossRef]
- Lage Filho, N.M.; Santos, A.C.; Silva, S.L.S.; Oliveira, J.V.C.; Macedo, V.H.M.; Cunha, A.M.Q.; Rêgo, A.C.; Cândido, E.P. Morphogenesis, Structure, and Tillering Dynamics of Tanzania Grass under Nitrogen Fertilization in the Amazon Region. Grasses 2024, 3, 154–162. [Google Scholar] [CrossRef]
- Sbrissia, A.F.; Silva, S.C. Compensação tamanho/densidade populacional de perfilhos em pastos de capim-marandu. Rev. Bras. Zootec. 2008, 37, 35–47. [Google Scholar] [CrossRef]
- Vialet-Chabrand, S.; Matthews, J.S.A.; Simkin, A.J.; Raines, C.A.; Lawson, T. Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol. 2017, 173, 2163–2179. [Google Scholar] [CrossRef] [PubMed]
- Martuscello, J.A.; Silva, L.P.; Cunha, D.N.F.V.; Batista, A.C.S.; Braz, T.G.S.; Ferreira, P.S. Adubação nitrogenada em capim-massai: Morfogênese e produção. Ciência Anim. Bras. 2015, 16, 1–13. [Google Scholar] [CrossRef]
- Brunetto, G.; Kaminski, J.; Melo, G.W.B.; Gatiboni, L.C.; Urquiaga, S. Absorção e redistribuição do nitrogênio aplicado via foliar em videiras jovens. Rev. Bras. Frutic. 2005, 27, 110–114. [Google Scholar] [CrossRef]
- Andrade, R.A.; Brito, R.S.; Carvalho, C.A.; Silva, S.B.; Silva, M.A.D.; Moraes, K.N.O. Nutrient accumulation in the leaves and production of Tamani grass inoculated with Azospirillum brasilense. Rev. Verde 2022, 17, 77–85. [Google Scholar] [CrossRef]
- Ruggieri, A.C.; Cardoso, A.S.; Ongaratto, F.; Casagrande, D.R.; Barbero, R.P.; Brito, L.d.F.; Azenha, M.V.; Oliveira, A.A.; Koscheck, J.F.W.; Reis, R.A. Grazing intensity impacts on herbage mass, sward structure, greenhouse gas emissions, and animal performance: Analysis of brachiaria pastureland. Agronomy 2020, 10, 1750. [Google Scholar] [CrossRef]
- de Almeida, C.; de Carvalho, M.A.C.; Arf, O.; de Sá, M.E.; Buzetti, S. Ureia em cobertura e via foliar em feijoeiro. Sci. Agric. 2000, 57, 293–298. [Google Scholar] [CrossRef]
pH | P * | K | Ca + Mg | Al + H | CEC | V | M | Sand | Silt | Clay |
---|---|---|---|---|---|---|---|---|---|---|
CaCl2 | cmolc dm−3 | % | % | |||||||
6.0 | 3.4 | 117 | 4.3 | 1.7 | 6.3 | 73 | 0 | 57.5 | 5.0 | 37.5 |
Variables | Number of Leaves After Defoliation | Contrast | Regression | CV (%) | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Control | With Foliar × Without Foliar | L | Q | ||
Low N fertilization in the soil | |||||||||
Height (cm) | 32.87 | 33.50 | 30.75 | 31.12 | 35.62 | 0.115 | 0.362 | 0.942 | 16.98 |
TPD (tiller pot−1) | 55.62 | 55.62 | 48.37 | 53.50 | 50.00 | 0.312 | 0.324 | 0.406 | 15.38 |
LN (leaves pot−1) | 109 | 115.75 | 100.87 | 113.62 | 103.62 | 0.389 | 0.939 | 0.611 | 16.74 |
FDM (g pot−1) | 20.97 | 19.64 | 19.57 | 20.72 | 21.70 | 0.286 | 0.866 | 0.260 | 16.82 |
ILM (g) | 0.19 | 0.17 | 0.19 | 0.18 | 0.21 | 0.090 | 0.878 | 0.632 | 14.62 |
Leaves per tiller | 2.01 | 2.09 | 2.11 | 2.16 | 2.09 | 0.979 | 0.519 | 0.942 | 21.02 |
Without N fertilization in the soil | |||||||||
Height (cm) | 37.87 | 33.62 | 32.37 | 35.00 | 38.25 | 0.281 | 0.445 | 0.238 | 23.04 |
TPD (tiller pot−1) | 30.75 | 36.37 | 38.50 | 35.87 | 34.25 | 0.613 | 0.066 | 0.053 | 15.84 |
LN (leaves pot−1) | 70.00 | 71.62 | 79.87 | 75.50 | 65.25 | 0.221 | 0.451 | 0.693 | 25.70 |
FDM (g pot−1) | 16.09 | 17.06 | 15.57 | 16.15 | 15.29 | 0.312 | 0.764 | 0.799 | 14.11 |
ILM (g) | 0.23 | 0.24 | 0.21 | 0.21 | 0.24 | 0.299 | 0.197 | 0.892 | 17.82 |
Leaves per tiller | 2.38 | 1.98 | 2.04 | 2.11 | 1.91 | 0.327 | 0.388 | 0.225 | 25.78 |
Variables | Number of Leaves After Defoliation | Contrast | Regression | CV (%) | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Control | With Foliar × Without Foliar | L | Q | ||
High N fertilization in the soil | |||||||||
Height (cm) | 40.25 | 39.87 | 43.87 | 39.12 | 39.50 | 0.083 | 0.641 | 0.208 | 10.55 |
TPD (tiller pot−1) | 74 | 75 | 72 | 67 | 62 | 0.069 | 0.047 1 | 0.413 | 19.62 |
LN (leaves pot−1) | 140.87 | 141.00 | 152.62 | 140.37 | 115.87 | 0.036 * | 0.169 | 0.095 | 23.31 |
FDM (g pot−1) | 27.50 | 31.14 | 29.55 | 31.08 | 25.95 | 0.096 | 0.665 | 0.072 | 19.67 |
ILM (g) | 0.70 | 0.78 | 0.69 | 0.78 | 0.65 | 0.091 | 0.788 | 0.590 | 18.50 |
Leaves per tiller | 0.30 | 0.30 | 0.33 | 0.28 | 0.42 | 0.979 | 0.519 | 0.942 | 21.02 |
Without N fertilization in the soil | |||||||||
Height (cm) | 34.25 | 35.12 | 36.00 | 37.87 | 33.87 | 0.319 | 0.715 | 0.182 | 13.69 |
TPD (tiller pot−1) | 34 | 39 | 40 | 39 | 36 | 0.297 | 0.527 | 0.012 2 | 14.79 |
LN (leaves pot−1) | 69.62 | 68.87 | 72.25 | 61.50 | 74.25 | 0.322 | 0.915 | 0.537 | 22.50 |
FDM (g pot−1) | 18.59 | 19.88 | 18.45 | 19.49 | 19.34 | 0.839 | 0.741 | 0.920 | 15.49 |
ILM (g) | 0.27 | 0.30 | 0.27 | 0.32 | 0.28 | 0.669 | 0.788 | 0.597 | 27.48 |
Leaves per tiller | 2.11 | 1.78 | 1.83 | 1.57 | 2.05 | 0.274 | 0.588 | 0.065 | 27.75 |
Variables | Number of Leaves After Defoliation | Contrast | Regression | CV (%) | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Control | With Foliar × Without Foliar | L | Q | ||
Low N fertilization in the soil | |||||||||
Height (cm) | 62 | 62 | 57 | 63 | 54 | 0.290 | 0.806 | 0.322 | 12.49 |
TPD (tiller pot−1) | 46 | 46 | 46 | 40 | 40 | 0.136 | 0.068 | 0.213 | 16.02 |
LN (leaves pot−1) | 52 | 46 | 37 | 42 | 42 | 0.469 | 0.011 1 | 0.085 | 19.12 |
FDM (g pot−1) | 24.87 | 23.09 | 21.04 | 24.74 | 22.15 | 0.994 | 0.766 | 0.144 | 21.12 |
ILM (g) | 0.22 | 0.24 | 0.30 | 0.28 | 0.26 | 0.835 | 0.030 2 | 0.472 | 23.1 |
Leaves per tiller | 2.30 | 2.04 | 1.69 | 2.15 | 2.12 | 0.691 | 0.273 | 0.036 | 21.86 |
Without N fertilization in the soil | |||||||||
Height (cm) | 56 | 59 | 57 | 59 | 59 | 0.572 | 0.396 | 0.832 | 8.64 |
TPD (tiller pot−1) | 26 | 21 | 20 | 27 | 24 | 0.677 | 0.820 | 0.030 3 | 26.33 |
LN (leaves pot−1) | 20 | 19 | 19 | 21 | 38 | 0.736 | 0.775 | 0.525 | 30.66 |
FDM (g pot−1) | 13.45 | 15.46 | 13.04 | 13.33 | 25.27 | 0.206 | 0.448 | 0.296 | 17.14 |
ILM (g) | 0.38 | 0.41 | 0.35 | 0.32 | 0.36 | 0.935 | 0.184 | 0.530 | 32.53 |
Leaves per tiller | 1.69 | 1.85 | 1.88 | 1.71 | 1.56 | 0.356 | 0.932 | 0.495 | 33.91 |
Variables | Number of Leaves After Defoliation | Contrast | Regression | CV (%) | |||||
---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | Control | With Foliar × Without Foliar | L | Q | ||
High N fertilization in the soil | |||||||||
Height (cm) | 85.00 | 84.75 | 82.37 | 89.25 | 85.12 | 0.927 | 0.274 | 0.098 | 7.03 |
TPD (tiller pot−1) | 52 | 55 | 43 | 48 | 47 | 0.536 | 0.199 | 0.852 | 22.34 |
LN (leaves pot−1) | 129 | 100 | 92 | 103 | 85 | 0.012 * | 0.015 1 | 0.014 2 | 19.31 |
FDM (g pot−1) | 36.2 | 28.4 | 28.1 | 36.1 | 33.8 | 0.914 | 0.826 | 0.013 3 | 17.58 |
ILM (g) | 0.289 | 0.306 | 0.333 | 0.353 | 0.396 | 0.002 * | 0.014 4 | 0.907 | 15.98 |
Leaves per tiller | 2.55 | 1.86 | 2.49 | 2.23 | 1.83 | 0.821 | 0.844 | 0.560 | 45.08 |
Without N fertilization in the soil | |||||||||
Height (cm) | 79.00 | 74.50 | 70.87 | 76.12 | 71.50 | 0.150 | 0.222 | 0.035 5 | 8.37 |
TPD (tiller pot−1) | 25 | 20 | 20 | 21 | 25 | 0.4797 | 0.089 | 0.155 | 21.75 |
LN (leaves pot−1) | 29 | 27 | 24 | 27 | 28 | 0.758 | 0.376 | 0.312 | 26.17 |
FDM (g pot−1) | 14.2 | 12.6 | 12.9 | 14.5 | 13.7 | 0.895 | 0.793 | 0.128 | 21.08 |
ILM (g) | 0.478 | 0.500 | 0.530 | 0.540 | 0.497 | 0.769 | 0.261 | 0.837 | 24.22 |
Leaves per tiller | 1.28 | 1.43 | 1.27 | 1.39 | 1.38 | 0.826 | 0.766 | 0.898 | 28.92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moura, A.B.O.; Silva, G.B.A.; Paimel, A.C.C.; Silva, E.S.O.; Mota, L.G.; Duarte, C.F.D.; Cabral, C.H.A.; Cabral, C.E.A. Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses? Agrochemicals 2025, 4, 9. https://doi.org/10.3390/agrochemicals4020009
Moura ABO, Silva GBA, Paimel ACC, Silva ESO, Mota LG, Duarte CFD, Cabral CHA, Cabral CEA. Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses? Agrochemicals. 2025; 4(2):9. https://doi.org/10.3390/agrochemicals4020009
Chicago/Turabian StyleMoura, Anna B. O., Gustavo B. A. Silva, Anna C. C. Paimel, Eildson S. O. Silva, Lucas G. Mota, Camila F. D. Duarte, Carla H. A. Cabral, and Carlos E. A. Cabral. 2025. "Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses?" Agrochemicals 4, no. 2: 9. https://doi.org/10.3390/agrochemicals4020009
APA StyleMoura, A. B. O., Silva, G. B. A., Paimel, A. C. C., Silva, E. S. O., Mota, L. G., Duarte, C. F. D., Cabral, C. H. A., & Cabral, C. E. A. (2025). Do Foliar Fertilizers Promote Increased Productivity of Tropical Grasses? Agrochemicals, 4(2), 9. https://doi.org/10.3390/agrochemicals4020009