Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = ferrite magnet synchronous reluctance motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 19193 KiB  
Article
Design of a Novel Nine-Phase Ferrite-Assisted Synchronous Reluctance Machine with Skewed Stator Slots
by Hongliang Guo, Tianci Wang, Hongwu Chen, Zaixin Song and Chunhua Liu
Energies 2025, 18(9), 2323; https://doi.org/10.3390/en18092323 - 2 May 2025
Viewed by 521
Abstract
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from [...] Read more.
This paper proposes a novel nine-phase ferrite-assisted synchronous reluctance machine (FA-SynRM) featuring skewed stator slots to address challenges related to harmonic distortion, torque ripple, and material sustainability which are prevalent in conventional permanent magnet-assisted synchronous reluctance motors (PMa-SynRMs). Existing PMa-SynRMs often suffer from increased torque ripples and harmonic distortion, while reliance on rare-earth materials raises cost and sustainability concerns. To address these issues, the proposed design incorporates low-cost ferrite magnets embedded within the rotor flux barriers to achieve a flux-concentrated effect and enhanced torque production. The nine-phase winding configuration is utilized to improve fault tolerance, reduce harmonic distortion, and enable smoother torque output compared with conventional three-phase counterparts. In addition, the skewed stator slot design further minimizes harmonic components, reducing overall distortion. The proposed machine is validated through finite element analysis (FEA), and experimental verification is obtained by measuring the inductance characteristics and back-EMF of the nine-phase winding, confirming the feasibility of the electromagnetic design. The results demonstrate significant reductions in harmonic distortion and torque ripples, verifying the potential of this design. Full article
(This article belongs to the Special Issue Advanced Technologies for Electrified Transportation and Robotics)
Show Figures

Figure 1

18 pages, 13398 KiB  
Article
An Investigation of Parameter Dimension Reduction Optimization of PMA-Synrm
by Zhongqi Liu, Guiyuan Zhang and Guanghui Du
Appl. Sci. 2025, 15(3), 1529; https://doi.org/10.3390/app15031529 - 3 Feb 2025
Cited by 1 | Viewed by 1038
Abstract
The rotor of a permanent magnet-assisted synchronous reluctance (PMA-Synrm) motor mostly adopts the structure of a multi-layer magnetic barrier and multi-layer ferrite, which leads to the design parameters of this kind of motor increase with the increase in the number of magnetic barrier [...] Read more.
The rotor of a permanent magnet-assisted synchronous reluctance (PMA-Synrm) motor mostly adopts the structure of a multi-layer magnetic barrier and multi-layer ferrite, which leads to the design parameters of this kind of motor increase with the increase in the number of magnetic barrier layers. A large number of design parameters are coupled with each other, which makes the optimization design of a permanent magnet-assisted synchronous reluctance motor particularly difficult. In this paper, a 7.5 kW, 1500 rpm permanent magnet-assisted synchronous reluctance motor is taken as the research object, and the optimization design of parameter dimension reduction is studied. The rotor structure of the motor is a combination of five layers of magnetic barrier and five layers of ferrite. By using the parameter dimension reduction method proposed in this paper, the number of parameters involved in the optimization is reduced from 26 to 7, which greatly improves the optimization efficiency of this kind of motor and realizes the comprehensive global optimization design of a permanent magnet-assisted synchronous reluctance motor. This paper provides a reference for the optimization of a permanent magnet-assisted synchronous reluctance motor. Full article
Show Figures

Figure 1

18 pages, 6841 KiB  
Article
Permanent Magnet Assisted Synchronous Reluctance Motor for Subway Trains
by Vladimir Dmitrievskii, Vadim Kazakbaev, Vladimir Prakht and Alecksey Anuchin
World Electr. Veh. J. 2024, 15(9), 417; https://doi.org/10.3390/wevj15090417 - 13 Sep 2024
Viewed by 3072
Abstract
With the growing demand and projected shortage of rare earth elements in the near future, the urgent task of developing energy-efficient electrical equipment with less dependence on rare earth magnets has become paramount. The use of permanent magnet-assisted synchronous reluctance motors (PMaSynRMs), which [...] Read more.
With the growing demand and projected shortage of rare earth elements in the near future, the urgent task of developing energy-efficient electrical equipment with less dependence on rare earth magnets has become paramount. The use of permanent magnet-assisted synchronous reluctance motors (PMaSynRMs), which reduce the consumption of rare earth magnets, can help solve this problem. This article presents a theoretical analysis of the characteristics of PMaSynRM in a subway train drive. Options with rare earth and ferrite magnets are considered. Optimization of the motor designs considering the train movement cycle is carried out using the Nelder-Mead method. Characteristics of the motors, such as losses, torque ripple, and inverter power rating, as well as the mass and cost of active materials, are compared. Full article
Show Figures

Figure 1

27 pages, 5448 KiB  
Article
Analytical Approach for Estimating the Average Torque of Synchronous Motors by Using the Flux Density in the Air Gap
by Zheng-Feng Li, Lin-Wei Huang, Shih-Gang Chen, Yu-Tse Hsu, Jun-Ming Hsu and Ming-Shi Huang
Energies 2023, 16(23), 7832; https://doi.org/10.3390/en16237832 - 28 Nov 2023
Cited by 1 | Viewed by 2562
Abstract
In this study, a generalized torque estimation method is proposed for synchronous motors, including surface permanent magnet synchronous motors (SPMSMs), synchronous reluctance motors (SynRMs), and interior permanent magnet synchronous motors (IPMSMs) for building the analytical motor model. The average motor torque is estimated [...] Read more.
In this study, a generalized torque estimation method is proposed for synchronous motors, including surface permanent magnet synchronous motors (SPMSMs), synchronous reluctance motors (SynRMs), and interior permanent magnet synchronous motors (IPMSMs) for building the analytical motor model. The average motor torque is estimated using the Lorentz force by the generated flux density in the air gap to determine the relationships among torque, flux density, and injected current. In the proposed method, the generated flux density is derived step by step by considering the effects of magnetic flux saturation, the stator slot, the rotor barrier, and permanent magnets (PMs) to ensure that the generated average torque complies with the operating condition of the motor. To verify the proposed method, the output torque of finite element analysis (FEA), Maxwell 2D, is compared to the proposed method in a SPMSM. Moreover, a phasor diagram is plotted to determine the mechanism through which torque is generated in SynRMs and IPMSMs. A SynRM and an IPMSM with ferrites PMs are analyzed using the proposed method, FEA, and the experimental results of this study indicate the effectiveness. Full article
Show Figures

Figure 1

22 pages, 8920 KiB  
Article
Performance Comparison of Traction Synchronous Motors with Ferrite Magnets for a Subway Train: Reluctance versus Homopolar Variants
by Vladimir Dmitrievskii, Vadim Kazakbaev and Vladimir Prakht
Appl. Sci. 2023, 13(17), 9988; https://doi.org/10.3390/app13179988 - 4 Sep 2023
Cited by 3 | Viewed by 2166
Abstract
Due to the high cost and the predicted shortage of rare earth elements in the near future, the task of developing energy-efficient electric machines without rare earth magnets is of great importance. This article presents a comparative analysis of optimized designs of a [...] Read more.
Due to the high cost and the predicted shortage of rare earth elements in the near future, the task of developing energy-efficient electric machines without rare earth magnets is of great importance. This article presents a comparative analysis of optimized designs of a ferrite-assisted synchronous reluctance machine (FaSynRM) and a ferrite-assisted synchronous homopolar machine (FaSHM) in a 370-kW subway train drive. The objectives of optimizing these traction machines are to reduce their losses, maximum armature current, and torque ripple. The optimization considers the characteristics of the machines in the subway train moving cycle. The problem of the risk of irreversible demagnetization of ferrites in the FaSynRM and FaSHM is also considered. To reduce the computational burden, the Nelder-Mead method is used for the optimization. It is shown that the FaSHM demonstrates better field weakening capability, which can reduce the maximum current, power, and cost of the inverter power modules. At the same time, the FaSynRM requires less permanent magnet mass for the same torque density and is more resistant to irreversible demagnetization, which can reduce costs and improve the reliability of the electric machine. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

18 pages, 10929 KiB  
Article
Comprehensive Comparative Study on Permanent-Magnet-Assisted Synchronous Reluctance Motors and Other Types of Motor
by Guanghui Du, Guiyuan Zhang, Hui Li and Chengshuai Hu
Appl. Sci. 2023, 13(14), 8557; https://doi.org/10.3390/app13148557 - 24 Jul 2023
Cited by 14 | Viewed by 6194
Abstract
At present, the induction motor (IM), synchronous reluctance motor (SynRM), ferrite-assisted synchronous reluctance motor (ferrite-assisted SynRM) and interior permanent magnet motor (IPM) are research hotspots, but comprehensive comparative research on the four motors is still rare. This paper mainly compares the four motors [...] Read more.
At present, the induction motor (IM), synchronous reluctance motor (SynRM), ferrite-assisted synchronous reluctance motor (ferrite-assisted SynRM) and interior permanent magnet motor (IPM) are research hotspots, but comprehensive comparative research on the four motors is still rare. This paper mainly compares the four motors from the aspects of electromagnetic performance, material cost and temperature distribution. Firstly, the volume of the four motors is ensured to be the same. The influence of the rotor design parameters of the SynRM, ferrite-assisted SynRM and IPM on the electromagnetic properties of the machine is analyzed. Secondly, based on the effects of each parameter, the overall design parameters of the four motors are determined. The electromagnetic performance, material cost and temperature of the four motors are compared and discussed. Finally, the comparison results are summarized, and the advantages of the four motors are analyzed. In different applications, the electromagnetic performance, heat dissipation and cost requirements of the four motors are different. Therefore, this paper makes a comprehensive comparison of the four motors to provide a reference for the selection of motors for different applications. Full article
Show Figures

Figure 1

14 pages, 4527 KiB  
Article
Direct Drive Applications: Possible Replacement of Rare-Earth Permanent Magnet Motors
by Chaelim Jeong, Luca Cinti and Nicola Bianchi
Energies 2021, 14(23), 8058; https://doi.org/10.3390/en14238058 - 2 Dec 2021
Cited by 9 | Viewed by 2512
Abstract
This paper deals with the possibility to replace rare-earth permanent magnet (PM) motors in direct drive applications. According to previous researches, there are alternatives such as surface-mounted PM motors and spoke-type motors adopting Ferrite PMs, synchronous reluctance motors, with or without the assistance [...] Read more.
This paper deals with the possibility to replace rare-earth permanent magnet (PM) motors in direct drive applications. According to previous researches, there are alternatives such as surface-mounted PM motors and spoke-type motors adopting Ferrite PMs, synchronous reluctance motors, with or without the assistance of low-energy PMs. Few studies have been carried out to compare all models at once, thus it is hard to choose which type motor is to be preferred as a valid alternative of rare-earth PM motors in direct drive applications. In this paper, the representative candidates listed above are analyzed and the results are compared with that of a rare-earth PM motor, which is considered as a reference motor. Additionally, the demagnetization phenomenon of the motors with Ferrite PMs is deeply analyzed because this kind of PM may be easily demagnetized by the stator flux. Finally, both strengths and weaknesses of each alternative motors are highlighted. Full article
(This article belongs to the Special Issue High Performance Permanent Magnet Synchronous Motor Drives)
Show Figures

Figure 1

18 pages, 6887 KiB  
Article
Design of External Rotor Ferrite-Assisted Synchronous Reluctance Motor for High Power Density
by Md. Zakirul Islam, Seungdeog Choi, Malik E. Elbuluk, Sai Sudheer Reddy Bonthu, Akm Arafat and Jeihoon Baek
Appl. Sci. 2021, 11(7), 3102; https://doi.org/10.3390/app11073102 - 31 Mar 2021
Cited by 8 | Viewed by 4782
Abstract
The rare-earth (RE) permanent magnets (PM) have been increasingly adopted in traction motor application. However, the RE PM is expensive, less abundant, and has cost uncertainties due to limited market suppliers. This paper presents a new design of a RE-free five-phase ferrite permanent [...] Read more.
The rare-earth (RE) permanent magnets (PM) have been increasingly adopted in traction motor application. However, the RE PM is expensive, less abundant, and has cost uncertainties due to limited market suppliers. This paper presents a new design of a RE-free five-phase ferrite permanent magnet-assisted synchronous reluctance motor (Fe-PMaSynRM) with the external rotor architecture with a high saliency ratio. In such architecture, the low magnetic coercivity and demagnetization risk of the ferrite PM is the challenge. This limits the number of flux barriers, saliency ratio, and reluctance torque. A precise analytical design procedure of rotor and stator configuration is presented with differential evolution numerical optimizations by utilizing a lumped parameter model. A 3.7 kW prototype is fabricated to validate the proposed idea. Full article
(This article belongs to the Special Issue Design and Analysis of Electrical Machines and Drives)
Show Figures

Figure 1

14 pages, 9177 KiB  
Article
A Study on Core Skew Considering Manufacturability of Double-Layer Spoke-Type PMSM
by Dong-Woo Nam, Kang-Been Lee, Hyun-Jo Pyo, Min-Jae Jeong, Seo-Hee Yang, Won-Ho Kim and Hyung-Kwan Jang
Energies 2021, 14(3), 610; https://doi.org/10.3390/en14030610 - 26 Jan 2021
Cited by 12 | Viewed by 3141
Abstract
The spoke-type permanent magnet synchronous motor (PMSM), which is a general ferrite magnetic flux-concentrated motor, has a low portion of reluctance torque at the total torque magnitude. Therefore, as a way to increase the reluctance torque, there is a double-layer spoke-type PMSM that [...] Read more.
The spoke-type permanent magnet synchronous motor (PMSM), which is a general ferrite magnetic flux-concentrated motor, has a low portion of reluctance torque at the total torque magnitude. Therefore, as a way to increase the reluctance torque, there is a double-layer spoke-type PMSM that can maximize the difference in inductance between the d-axis and the q-axis. However, in the double-layer spoke-type PMSM, cogging torque, torque ripple, and total harmonic distortion (THD) increase with reluctance torque, which is the main cause of vibration and noise. In this paper, a method is proposed that provides the same effect as skew without dividing stages of the permanent magnet by dividing the core of the rotor into two types so that it is easy to manufacture according to the number of stages, unlike extant skew methods. Based on the method, the reduction in cogging torque and THD was verified by finite element analysis (FEA). Full article
(This article belongs to the Special Issue New Advances in Permanent Magnet Electrical Machines)
Show Figures

Figure 1

17 pages, 7892 KiB  
Article
Modelling and Design Methodology of an Improved Performance Photovoltaic Pumping System Employing Ferrite Magnet Synchronous Reluctance Motors
by Mohamed N. Ibrahim, Hegazy Rezk, Mujahed Al-Dhaifallah and Peter Sergeant
Mathematics 2020, 8(9), 1429; https://doi.org/10.3390/math8091429 - 26 Aug 2020
Cited by 10 | Viewed by 2699
Abstract
This paper proposes a novel photovoltaic water pumping system (PVWPS) with an improved performance and cost. This system doesn’t contain a DC-DC converter, batteries nor rare-earth motors. Removing the aforementioned components will reduce the whole cost and increase the reliability of the system. [...] Read more.
This paper proposes a novel photovoltaic water pumping system (PVWPS) with an improved performance and cost. This system doesn’t contain a DC-DC converter, batteries nor rare-earth motors. Removing the aforementioned components will reduce the whole cost and increase the reliability of the system. For enhancing the performance of the PVWPS, a ferrite magnet synchronous reluctance motor (FMSynRM) is employed. Besides, the motor inverter is utilized to drive the motor properly and to extract the maximum available power of the PV system. This is performed using a suggested control strategy that controls the motor inverter. Furthermore, to show the effectiveness of the proposed PVWPS, the performance of the proposed system is benchmarked with a PVWPS that is employing a pure SynRM. Moreover, the complete mathematical model of the system components and the control is reported. It is proved that the flow rate employing the proposed system is increased by about 29.5% at a low irradiation level (0.25 kW/m2) and 15% at a high irradiation level (1 kW/m2) compared to the conventional solar system using a pure synchronous reluctance motor (SynRM). An experimental laboratory test bench is built to validate the theoretical results presented in this research work. Good agreement between the theoretical and the experimental results is proved. Full article
Show Figures

Figure 1

17 pages, 2934 KiB  
Article
Detection of Partial Demagnetization Faults in Five-Phase Permanent Magnet Assisted Synchronous Reluctance Machines
by Carlos Candelo-Zuluaga, Jordi-Roger Riba, Dinesh V. Thangamuthu and Antoni Garcia
Energies 2020, 13(13), 3496; https://doi.org/10.3390/en13133496 - 6 Jul 2020
Cited by 10 | Viewed by 4255
Abstract
This paper analyzes partial demagnetization faults in a five-phase permanent magnet assisted synchronous reluctance motor (fPMa-SynRM) incorporating ferrite permanent magnets (PMs). These faults are relevant because of the application of field weakening, or due to high operating temperatures or short circuit currents, the [...] Read more.
This paper analyzes partial demagnetization faults in a five-phase permanent magnet assisted synchronous reluctance motor (fPMa-SynRM) incorporating ferrite permanent magnets (PMs). These faults are relevant because of the application of field weakening, or due to high operating temperatures or short circuit currents, the PMs can become irreversibly demagnetized, thus affecting the performance and safe operation of the machine. This paper proposes fault indicators to detect such fault modes with low demagnetization levels between 5.0% to 16.7% relative demagnetization. Four partial demagnetization fault detection methods are tested, which are based on the analysis of the harmonic content of the electromotive force (EMF) under no load conditions, the harmonic content of the line currents, the harmonic content of the zero-sequence voltage component (ZSVC) and the analysis of the power factor (PF). This work also compares the sensitivity and performance of the proposed detection methods. According to the fault indicators proposed in this paper, the results show that the analysis of the EMF, ZSVC and PF are the most sensitive detection methods. Experimental results are presented to validate finite element analysis (FEA) simulations. Full article
(This article belongs to the Special Issue Electrical Machine Design 2020)
Show Figures

Graphical abstract

15 pages, 2948 KiB  
Article
Detection of Inter-Turn Faults in Multi-Phase Ferrite-PM Assisted Synchronous Reluctance Machines
by Carlos Candelo-Zuluaga, Jordi-Roger Riba, Carlos López-Torres and Antoni Garcia
Energies 2019, 12(14), 2733; https://doi.org/10.3390/en12142733 - 17 Jul 2019
Cited by 10 | Viewed by 2977
Abstract
Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes [...] Read more.
Inter-turn winding faults in five-phase ferrite-permanent magnet-assisted synchronous reluctance motors (fPMa-SynRMs) can lead to catastrophic consequences if not detected in a timely manner, since they can quickly progress into more severe short-circuit faults, such as coil-to-coil, phase-to-ground or phase-to-phase faults. This paper analyzes the feasibility of detecting such harmful faults in their early stage, with only one short-circuited turn, since there is a lack of works related to this topic in multi-phase fPMa-SynRMs. Two methods are tested for this purpose, the analysis of the spectral content of the zero-sequence voltage component (ZSVC) and the analysis of the stator current spectra, also known as motor current signature analysis (MCSA), which is a well-known fault diagnosis method. This paper compares the performance and sensitivity of both methods under different operating conditions. It is proven that inter-turn faults can be detected in the early stage, with the ZSVC providing more sensitivity than the MCSA method. It is also proven that the working conditions have little effect on the sensitivity of both methods. To conclude, this paper proposes two inter-turn fault indicators and the threshold values to detect such faults in the early stage, which are calculated from the spectral information of the ZSVC and the line currents. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

18 pages, 10337 KiB  
Article
Performance Comparison of Conventional Synchronous Reluctance Machines and PM-Assisted Types with Combined Star–Delta Winding
by Mohamed Nabil Fathy Ibrahim, Essam Rashad and Peter Sergeant
Energies 2017, 10(10), 1500; https://doi.org/10.3390/en10101500 - 27 Sep 2017
Cited by 26 | Viewed by 7280
Abstract
This paper compares four prototype Synchronous Reluctance Motors (SynRMs) having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors [...] Read more.
This paper compares four prototype Synchronous Reluctance Motors (SynRMs) having an identical geometry of iron lamination stacks in the stator and rotor. Two different stator winding layouts are employed: a conventional three-phase star connection and a combined star–delta winding. In addition, two rotors are considered: a conventional rotor without magnets and a rotor with ferrite magnets. The performance of the four SynRMs is evaluated using a two-dimensional (2D) Finite Element Model (FEM). For the same copper volume and current, the combined star–delta-connected stator with Permanent Magnets (PMs) in the rotor corresponds to an approximately 22% increase in the output torque at rated current and speed compared to the conventional machine. This improvement is mainly thanks to adding ferrite PMs in the rotor as well as to the improved winding factor of the combined star–delta winding. The torque gain increases up to 150% for low current. Moreover, the rated efficiency is 93.60% compared to 92.10% for the conventional machine. On the other hand, the impact on the power factor and losses of SynRM when using the star–delta windings instead of the star windings is merely negligible. The theoretical results are experimentally validated using four identical prototype machines with identical lamination stacks but different rotors and winding layouts. Full article
(This article belongs to the Special Issue Electric Machines and Drives for Renewable Energy Harvesting 2017)
Show Figures

Figure 1

14 pages, 2749 KiB  
Article
Detection of Eccentricity Faults in Five-Phase Ferrite-PM Assisted Synchronous Reluctance Machines
by Carlos López-Torres, Jordi-Roger Riba, Antonio Garcia and Luís Romeral
Appl. Sci. 2017, 7(6), 565; https://doi.org/10.3390/app7060565 - 31 May 2017
Cited by 12 | Viewed by 5763
Abstract
Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs) tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component). However, there is a [...] Read more.
Air gap eccentricity faults in five-phase ferrite-assisted synchronous reluctance motors (fPMa-SynRMs) tend to distort the magnetic flux in the air gap, which in turn affects the spectral content of both the stator currents and the ZSVC (zero-sequence voltage component). However, there is a lack of research dealing with the topic of fault diagnosis in multi-phase PMa-SynRMs, and in particular, those focused on detecting eccentricity faults. An analysis of the spectral components of the line currents and the ZSVC allows the development of fault diagnosis algorithms to detect eccentricity faults. The effect of the operating conditions is also analyzed, since this paper shows that it has a non-negligible impact on the effectivity and sensitivity of the diagnosis based on an analysis of the stator currents and the ZSVC. To this end, different operating conditions are analyzed. The paper also evaluates the influence of the operating conditions on the harmonic content of the line currents and the ZSVC, and determines the most suitable operating conditions to enhance the sensitivity of the analyzed methods. Finally, fault indicators employed to detect eccentricity faults, which are based on the spectral content of the stator currents and the ZSVC, are derived and their performance is assessed. The approach presented in this work may be useful for developing fault diagnosis strategies based on the acquisition and subsequent analysis and interpretation of the spectral content of the line currents and the ZSVC. Full article
(This article belongs to the Special Issue Deep Learning Based Machine Fault Diagnosis and Prognosis)
Show Figures

Figure 1

Back to TopTop