Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (123)

Search Parameters:
Keywords = feeder cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 3389 KB  
Article
Kinetics of MM1.S Multiple Myeloma Cells in a 3D Polymer Particle Culture System with Bone Marrow Stromal Cells and Bortezomib
by Shin Aizawa, Miyuki Yuda, Shuichi Hirai, Isao Tsuboi, Takashi Koike, Yoshihiro Hatta, Katsuhiro Miura and Masahiro Yasuda
Pharmaceuticals 2026, 19(1), 122; https://doi.org/10.3390/ph19010122 - 10 Jan 2026
Viewed by 223
Abstract
Background: Three-dimensional (3D) culture systems use polymer particles with a bone marrow stroma cell feeder layer to reproduce a biostructural hematopoiesis state more effectively than in conventional two-dimensional (2D) culture methods. The 3D culture maintains normal hematopoiesis, resulting in prolongation of hematopoietic [...] Read more.
Background: Three-dimensional (3D) culture systems use polymer particles with a bone marrow stroma cell feeder layer to reproduce a biostructural hematopoiesis state more effectively than in conventional two-dimensional (2D) culture methods. The 3D culture maintains normal hematopoiesis, resulting in prolongation of hematopoietic stem cell proliferation and differentiation, while the bone marrow stromal cells in the culture alter the growth of leukemic cells and protect them from anticancer agents. However, the effect of stromal cells on hematopoietic stem cell proliferation and differentiation and neoplastic cells, including leukemia, in 3D culture is still a point of contention. Methods: We assessed the mechanism of two different bone-marrow-derived stromal cells (i.e., MS-5 and Tst-4) with different characteristics by using a feeder layer in the 3D culture to compare their supportive action on leukemic cells, focusing on the role of 3D cultures constructed with bone marrow stromal cells in leukemic cell growth. Multiple myeloma cells are strongly related to stromal cells in their proliferation; hence, cloned MM1.S cells derived from multiple myeloma were cocultured in 3D, and their cell growth was examined. We also examined the effect of the antineoplastic agent bortezomib, a proteasome inhibitor, in the 3D culture system with a different stromal cell feeder. Results and Conclusions: When MM1.S myeloma cells were cultured with MS-5 stroma in 3D conditions, cell growth was found to be slow compared with that in 2D culture, as well as with those in both the 2D and 3D cocultures with Tst-4 stroma. Additionally, the MS-5 cells in the 3D culture protected the MM1.S cells from the cytocidal effect of the bortezomib treatment. Different MM1.S cell kinetics were observed depending on the stromal cells used, suggesting their inherent and complicated characteristics. Full article
(This article belongs to the Special Issue 2D and 3D Culture Systems: Current Trends and Biomedical Applications)
Show Figures

Graphical abstract

16 pages, 3518 KB  
Article
Chemically Defined, Efficient Megakaryocyte Production from Human Pluripotent Stem Cells
by Jae Eun Kim, Yeonmi Lee, Yonghee Kim, Sae-Byeok Hwang, Yoo Bin Choi, Jongsuk Han, Juyeol Jung, Jae-woo Song, Je-Gun Joung, Jeong-Jae Ko and Eunju Kang
Cells 2025, 14(22), 1835; https://doi.org/10.3390/cells14221835 - 20 Nov 2025
Viewed by 780
Abstract
Platelet shortage poses a significant barrier to research and transfusion therapies because native megakaryocytes (MKs) are scarce in blood. To overcome this limitation, pluripotent stem cell–derived MKs (PSC-MKs) offer a standardized, donor-independent platform for research and therapeutic development, including disease modeling and ex [...] Read more.
Platelet shortage poses a significant barrier to research and transfusion therapies because native megakaryocytes (MKs) are scarce in blood. To overcome this limitation, pluripotent stem cell–derived MKs (PSC-MKs) offer a standardized, donor-independent platform for research and therapeutic development, including disease modeling and ex vivo platelet production. Here, we report a chemically defined, feeder-free protocol to generate MKs from human pluripotent stem cells (hPSCs). The protocol combines the small molecule MPL agonist Butyzamide, macrophage colony-stimulating factor (M-CSF), and three-dimensional (3D) suspension culture, achieving high efficiency and reproducibility. Butyzamide replaced recombinant thrombopoietin (TPO), yielding comparable CD41+/CD42b+ populations and enhanced polyploidization. M-CSF accelerated nuclear lobulation and induced 4N MKs, while 3D culture increased yield, cell size, and substrate detachment. Multiple independent assays confirmed mature MK hallmarks, multi-nuclei, demarcation membranes, granules, and elevated mitochondrial respiration. Single-cell RNA sequencing outlined a continuous trajectory from early progenitors to functionally specialized MK subsets. This platform enables reliable MK supply for mechanistic studies and in vitro platelet production, advancing both basic research and therapeutic development. Full article
(This article belongs to the Special Issue Immune Cells from Pluripotent Stem Cells)
Show Figures

Figure 1

22 pages, 10459 KB  
Article
Effect of Extracellular Matrix Derived from Porcine Tissue on Stemness of Porcine Spermatogonial Stem Cells
by Donghyeon Kim, Min-Gi Han, Yoseop Jeon, Hyoyoung Maeng, Youngseok Choi, Kwonho Hong, Jeong Tae Do and Hyuk Song
Int. J. Mol. Sci. 2025, 26(20), 9937; https://doi.org/10.3390/ijms26209937 - 13 Oct 2025
Cited by 1 | Viewed by 904
Abstract
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine [...] Read more.
The extracellular matrix (ECM) supports spermatogonial stem cell (SSC) function by mimicking biochemical and structural features of the native niche. However, optimal feeder systems and ECM materials remain key limitations in porcine SSC (pSSC) cultures. We developed a porcine-derived ECM (pECM) from porcine feet and evaluated its effectiveness in supporting pSSC maintenance and proliferation under feeder-dependent conditions. We examined protein molecular weight distribution and pECM extract composition. Surface characterization was performed using scanning electron microscopy and atomic force microscopy. We compared pECM with conventional coatings, including gelatin and non-coated controls, using morphological analysis, WST-1 assay, cell cycle analysis, and gene/protein expression of SSC markers. pECM promoted larger, well-defined pSSC colonies and enhanced stemness-related marker expression, including PGP9.5, Thy-1, PLZF, GFRA1, NANOG, and VASA. Additionally, pECM facilitated active pSSC proliferation while suppressing feeder overgrowth, contributing to a stable and functional co-culture environment. Conversely, gelatin supported early feeder proliferation but led to growth saturation, whereas N/C showed delayed attachment and reduced viability. These findings suggest that pECM mimics the native SSC niche and improves pSSC culture. The dual function of pECM in regulating feeder behavior and enhancing pSSC maintenance highlights its potential as a biomaterial for species lacking established feeder-free protocols. Full article
(This article belongs to the Special Issue Molecular Research in Animal Reproduction)
Show Figures

Figure 1

13 pages, 983 KB  
Article
Insights for Deriving Induced Pluripotent Stem Cells in Marsh Deer (Blastocerus dichotomus)
by Luciana Diniz Rola, Fabiana Fernandes Bressan, Eluzai Dinai Pinto Sandoval, Jacinthe Therrien, Lawrence Charles Smith and José Maurício Barbanti Duarte
J. Zool. Bot. Gard. 2025, 6(3), 43; https://doi.org/10.3390/jzbg6030043 - 19 Aug 2025
Viewed by 1426
Abstract
The capability to generate induced pluripotent stem cells (iPSCs) from adult somatic cells, enabling them to differentiate into any cell type, has been demonstrated in several studies. In humans and mice, iPSCs have been shown to differentiate into primordial germ cells (PGCs), spermatozoa, [...] Read more.
The capability to generate induced pluripotent stem cells (iPSCs) from adult somatic cells, enabling them to differentiate into any cell type, has been demonstrated in several studies. In humans and mice, iPSCs have been shown to differentiate into primordial germ cells (PGCs), spermatozoa, and oocytes. However, research on iPSCs in deer is novel. Despite the necessity for establishing germplasm banks from endangered cervid species, the collection and cryopreservation of gametes and embryos have proven complex for this group. Therefore, the focus of this study was to establish protocols for deriving stable iPSC lines from Blastocerus dichotomus (Marsh deer) using primary cells derived from antler, adipose tissue, or skin, with the ultimate goal of producing viable gametes in the future. To achieve this, two main reprogramming approaches were tested: (1) transfection using PiggyBac transposons (plasmid PB-TET-MKOS) delivered via electroporation and (2) lentiviral transduction using the STEMCCA system with either human (hOSKM) or murine (mOSKM) reprogramming factors. Both systems utilized murine embryonic fibroblasts (MEFs) as feeder cells. The PiggyBac system was further supplemented with a culture medium containing small molecules to aid reprogramming, including a GSK inhibitor, MEK inhibitor, ALK/TGF inhibitor, and thiazovivin. Initial colony formation was observed; however, these colonies failed to expand post-selection. Despite these challenges, important insights were gained that will inform and guide future studies toward the successful generation of iPSCs in deer. Full article
Show Figures

Graphical abstract

20 pages, 3338 KB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 838
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

15 pages, 5607 KB  
Article
Constructive Neuroengineering of Crossing Multi-Neurite Wiring Using Modifiable Agarose Gel Platforms
by Soya Hagiwara, Kazuhiro Tsuneishi, Naoya Takada and Kenji Yasuda
Gels 2025, 11(6), 419; https://doi.org/10.3390/gels11060419 - 30 May 2025
Cited by 1 | Viewed by 796
Abstract
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. [...] Read more.
Constructing stable and flexible neuronal networks with multi-neurite wiring is essential for the in vitro modeling of brain function, connectivity, and neuroplasticity. However, most existing neuroengineering platforms rely on static microfabrication techniques, which limit the ability to dynamically control circuit architecture during cultivation. In this study, we developed a modifiable agarose gel-based platform that enables real-time microstructure fabrication using an infrared (IR) laser system under live-cell conditions. This approach allows for the stepwise construction of directional neurite paths, including sequential microchannel formation, cell chamber fabrication, and controlled neurite–neurite crossings. To support long-term neuronal health and network integrity in agarose microstructures, we incorporated direct glial co-culture into the system. A comparative analysis showed that co-culture significantly enhanced neuronal adhesion, neurite outgrowth, and survival over several weeks. The feeder layer configuration provided localized trophic support while maintaining a clear separation between glial and neuronal populations. Dynamic wiring experiments further confirmed the platform’s precision and compatibility. Neurites extended through newly fabricated channels and crossed pre-existing neurites without morphological damage, even when laser fabrication occurred after initial outgrowth. Time-lapse imaging showed a temporary growth cone stalling at crossing points, followed by successful elongation in all tested samples. Furthermore, the direct laser irradiation of extending neurites during microstructure modification did not visibly impair neurite elongation, suggesting minimal morphological damage under the applied conditions. However, potential effects on molecular signaling and electrophysiological function remain to be evaluated in future studies. Together, these findings establish a powerful, flexible system for constructive neuroengineering. The platform supports long-term culture, real-time modification, and multidirectional wiring, offering new opportunities for studying neural development, synaptic integration, and regeneration in vitro. Full article
(This article belongs to the Special Issue Gel Formation Processes and Materials for Functional Thin Films)
Show Figures

Figure 1

21 pages, 1061 KB  
Review
Emerging Frontiers in Zebrafish Embryonic and Adult-Derived Cell Lines
by Álvaro J. Arana, Laura González-Llera, Antón Barreiro-Iglesias and Laura Sánchez
Int. J. Mol. Sci. 2025, 26(9), 4351; https://doi.org/10.3390/ijms26094351 - 3 May 2025
Cited by 2 | Viewed by 3330
Abstract
Zebrafish (Danio rerio) has become a pivotal vertebrate model in biomedical research, renowned for its genetic similarity to humans, optical transparency, rapid embryonic development, and amenability to experimental manipulation. In recent years, the derivation of cell lines from zebrafish embryos has [...] Read more.
Zebrafish (Danio rerio) has become a pivotal vertebrate model in biomedical research, renowned for its genetic similarity to humans, optical transparency, rapid embryonic development, and amenability to experimental manipulation. In recent years, the derivation of cell lines from zebrafish embryos has unlocked new possibilities for in vitro studies across developmental biology, toxicology, disease modeling, and genetic engineering. These embryo-derived cultures offer scalable, reproducible, and ethically favorable alternatives to in vivo approaches, enabling high-throughput screening and mechanistic exploration under defined conditions. This review provides a comprehensive overview of protocols for establishing and maintaining zebrafish embryonic cell lines, emphasizing culture conditions, pluripotency features, transfection strategies, and recent innovations such as genotype-defined mutant lines generated via CRISPR/Cas9 and feeder-free systems. We also highlight emerging applications in oncology, regenerative medicine, and functional genomics, positioning zebrafish cell lines as versatile platforms bridging animal models and next-generation in vitro systems. Its continued optimization holds promise for improved reproducibility, reduced animal use, and expanded translational impact in biomedical research. Full article
(This article belongs to the Special Issue The Zebrafish Model in Animal and Human Health Research, 2nd Edition)
Show Figures

Figure 1

8 pages, 394 KB  
Article
Benchmark for Setting ACTH Cell Dosage in Clinical Regenerative Medicine for Post-Operative Hypopituitarism
by Tatsuma Kondo, Hidetaka Suga, Kazuhito Takeuchi, Yutaro Fuse, Yoshiki Sato, Toshiaki Hirose, Harada Hideyuki, Yuichi Nagata and Ryuta Saito
Diseases 2025, 13(4), 112; https://doi.org/10.3390/diseases13040112 - 10 Apr 2025
Viewed by 1301
Abstract
Background/Objectives: Our objective is to develop hormone-producing pituitary cells that can function in the same manner as the human body and provide more effective treatments than current hormone replacement therapy. We have already established a technique for generating hypothalamic–pituitary organoids using feeder-free human [...] Read more.
Background/Objectives: Our objective is to develop hormone-producing pituitary cells that can function in the same manner as the human body and provide more effective treatments than current hormone replacement therapy. We have already established a technique for generating hypothalamic–pituitary organoids using feeder-free human pluripotent stem cells (hPSCs) and demonstrated their effectiveness in vivo through transplantation into hypopituitary mouse models. To prospectively determine the upper limit of transplanting adenohypophyseal cells into humans, we investigated the human maximum secretion capacity of adrenocorticotropic hormone (ACTH) and growth hormone (GH). Methods: We analyzed data from 28 patients with pituitary adenomas, among whom 16 evinced no abnormality of ACTH secretion and 12 showed no GH secretion on corticotropin-releasing hormone (CRH) and growth hormone-releasing hormone-2 (GHRP-2) stimulation testing. Results: The average ACTH peak value after CRH stimulation tests was 97.2 pg/mL, and the average GH peak value after GHRP-2 stimulation tests was 25.1 ng/mL. Conclusions: These data will likely serve as benchmarks of ACTH and GH secretion when transplanting cultured cells into humans. Full article
Show Figures

Figure 1

14 pages, 3533 KB  
Article
Establishing Bovine Embryonic Stem Cells and Dissecting Their Self-Renewal Mechanisms
by Ningxiao Li, Zhen Yang, Yue Su, Wei Ma, Jianglin Zhao, Xiangyan Wang, Wenjing Wan, Shengcan Xie, Heqiang Li, Ming Wang, Yiyu Zhao, Shiyao Han, Tianle Li, Shuangyi Xiehe, Jintong Guo, Linxiu Yue, Xiaoting Li, Ahui Wang, Fenfen Jiang, Suzhu Qing, Xinfeng Liu, Jun Liu, Anmin Lei and Young Tangadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(8), 3536; https://doi.org/10.3390/ijms26083536 - 9 Apr 2025
Cited by 2 | Viewed by 1782
Abstract
Bovine pluripotent stem cells (PSCs) hold significant potential for diverse applications in agriculture, reproductive biotechnology, and biomedical research. However, challenges persist in establishing stable bovine PSC lines and understanding the mechanisms underlying their pluripotency maintenance. Here, we derived bovine embryonic stem cells (bESCs) [...] Read more.
Bovine pluripotent stem cells (PSCs) hold significant potential for diverse applications in agriculture, reproductive biotechnology, and biomedical research. However, challenges persist in establishing stable bovine PSC lines and understanding the mechanisms underlying their pluripotency maintenance. Here, we derived bovine embryonic stem cells (bESCs) from Holstein cattle embryos. These cells exhibited robust differentiation capacity into three germ layers in vitro and in vivo. Transcriptome analysis revealed distinct molecular profiles compared to primed-state bESCs. Notably, bESC proliferation ceased on methanol-treated feeder cells, in contrast to mouse ESCs (mESCs), which proliferated normally. Pathway analysis identified key signaling events critical for bESC survival and proliferation, highlighting species-specific regulatory mechanisms. Furthermore, the derived bESCs demonstrated chimerism capacity in early bovine embryos, underscoring their functional pluripotency. This work provides a foundation for advancing bovine embryology research and stem cell-based biotechnologies in livestock. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

14 pages, 3674 KB  
Article
Establishment and Characterization of OFT and OFO Cell Lines from Olive Flounder (Paralichthys olivaceus) for Use as Feeder Cells
by Ja Young Jo, Ju-Won Kim, Eun Soo Noh, Yong-Ok Kim, Seung Pyo Gong, Hee Jeong Kong and Jae Hoon Choi
Biology 2025, 14(3), 229; https://doi.org/10.3390/biology14030229 - 24 Feb 2025
Viewed by 1596
Abstract
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, [...] Read more.
Olive flounder (Paralichthys olivaceus) is a commercially important fish species in Japan, China, and the Republic of Korea. Despite numerous attempts to improve productivity, there have been no studies of in vitro germline stem cell (GSC) culture in this species. Here, olive flounder testicular and ovarian cell lines (OFT and OFO, respectively) were established and characterized. RT-PCR demonstrated that OFT and OFO expressed several gonadal somatic cell markers, including wt1 and fgf2, but lacked expression of germ cell markers, such as vasa, nanos2, and scp3. In addition, SNP analysis revealed that OFT originated from XY male P. olivaceus and OFO originated from XX female P. olivaceus. These results suggest that OFT was composed of Sertoli cells and OFO was composed of granulosa cells and theca cells. Finally, coculture of OFT or OFO with enriched male P. olivaceus GSCs isolated from the top 20% and 20–30% Percoll density gradient layers showed that GSCs were attached on both cell lines. In conclusion, we established P. olivaceus testicular and ovarian cell lines, which were expected to use for development of an in vitro GSC culture system. Full article
(This article belongs to the Section Developmental and Reproductive Biology)
Show Figures

Figure 1

14 pages, 3501 KB  
Article
Achieving Optimal Transfection Conditions in Chicken Primordial Germ Cells Under Feeder- and Serum-Free Medium
by Zhifeng Zhao, Xian Zou, Ying Zhu, Yanhua He, Endashaw Jebessa, Jiannan Zhang, Jian Ji, Peng Chen and Chenglong Luo
Animals 2025, 15(4), 590; https://doi.org/10.3390/ani15040590 - 18 Feb 2025
Cited by 3 | Viewed by 2185
Abstract
The successful application of primordial germ cells (PGCs) is an ideal method for generating gene-edited birds. However, barriers to efficient DNA transfection in PGCs lead to low transfection efficiency, limiting the generation of genetically modified chickens. The current study utilized chemical transfection and [...] Read more.
The successful application of primordial germ cells (PGCs) is an ideal method for generating gene-edited birds. However, barriers to efficient DNA transfection in PGCs lead to low transfection efficiency, limiting the generation of genetically modified chickens. The current study utilized chemical transfection and electroporation methods to determine the optimal transfection conditions for the PGC line under feeder- and serum-free medium. Among the tested methods, the Lonza electroporation system exhibited the highest transduction efficiency, with a previously unreported rate of 71.13 ± 1.26%. Optimal transfection conditions were achieved using 4 µg of DNA and 100 µL of EntransterTM-E in 1 × 106 PGCs. Furthermore, the optimal electroporation conditions resulted in low cell death and normal expression of pluripotency-related genes, highlighting the low cytotoxicity. The resulting electroporation models were then used to deliver the enhanced green fluorescent protein (EGFP) gene to the Z chromosome with a Cas9-gRNA plasmid, achieving a 7-day insertion efficiency of 14.63 ± 1.07%. Our study highlights the vast potential of electroporation technology for the transfection of PGCs. Full article
(This article belongs to the Special Issue Recent Advances in Reproductive Biotechnologies—Second Edition)
Show Figures

Figure 1

16 pages, 2367 KB  
Article
Effect of Filament Material and Printing Temperature on 3D Printing Extrusion Force
by Daša Krapež, Muhammed Jusufagić, Murčo Obućina, Manja Kitek Kuzman and Mirko Kariž
Appl. Sci. 2025, 15(4), 2046; https://doi.org/10.3390/app15042046 - 15 Feb 2025
Cited by 5 | Viewed by 3637
Abstract
In this study, a modified 3D printer hotend equipped with a load cell, attached to the feeding system, was used to evaluate the effects of filament material composition and printing parameters on the extrusion force required. Four different materials (commercial PLA, pure PLA, [...] Read more.
In this study, a modified 3D printer hotend equipped with a load cell, attached to the feeding system, was used to evaluate the effects of filament material composition and printing parameters on the extrusion force required. Four different materials (commercial PLA, pure PLA, wood-PLA with different ratios of wood particles, and wood-PLA with different ratios of thermally modified wood particles) were used for 3D printing, and the feeding resistance was measured. The filament feeder was connected to the extruder hotend via a load cell, which measured the forces required to push the filament through the extruder and the nozzle. Three printing nozzle temperatures of 200, 210, and 220 °C were used. The results show that the printing temperature and the material influence the required extrusion forces, which varied between 1 and 8 N, but the variation was high. With proper optimization and integration into the printer firmware, this setup could also be used to detect nozzle clogging during printing, modify printing parameters during the process, and prevent the uneven extrusion of composite filaments. Full article
(This article belongs to the Special Issue Recent Advances in 3D Printing and Additive Manufacturing Technology)
Show Figures

Figure 1

12 pages, 1889 KB  
Article
Silicon Effects Depend upon Insect Herbivore Guild and Has Limited Influence on Gall-Inducing Insects of Bauhinia brevipes
by Guilherme Ramos Demetrio, Henrique Venâncio, Janaina Correa Batista and Jean Carlos Santos
Plants 2025, 14(2), 250; https://doi.org/10.3390/plants14020250 - 17 Jan 2025
Viewed by 1422
Abstract
Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role [...] Read more.
Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role of silicon in Bauhinia brevipes, focusing on its effects on herbivory by insects. We hypothesize that while silicon strengthens plant tissues and reduces feeding by external herbivores, it may have a limited effect on internal feeders, such as gall-inducing insects. Our results indicate that silicon accumulation in leaves significantly reduces herbivory by chewing insects but has no direct effect on the occurrence of gall-inducing insects. Silicon content in galled tissues was lower compared to healthy leaves, suggesting that gall-inducing insects may manipulate silicon distribution to mitigate its defensive effects. Our results indicate that hypersensitivity reactions were positively influenced by silicon, highlighting the role of this element in enhancing localized defense mechanisms. Our findings reveal silicon’s tissue-specific roles in plant defense, emphasizing the need for more research on its nuanced interactions with endophytic herbivores and implications for ecological applications. This research contributes to the literature on silicon’s multifaceted role in plant–herbivore interactions and its potential applications in sustainable pest management. Full article
(This article belongs to the Special Issue Phytochemical Diversity and Interactions with Herbivores)
Show Figures

Figure 1

19 pages, 10617 KB  
Article
RNA-Seq and ATAC-Seq Reveal CYP26A1-Mediated Regulation of Retinoic Acid-Induced Meiosis in Chicken Primordial Germ Cells
by Zhaochuan Wang, Jiayi Chen, Jintian Wen, Siyu Zhang, Yantao Li, Jiali Wang and Zhenhui Li
Animals 2025, 15(1), 23; https://doi.org/10.3390/ani15010023 - 25 Dec 2024
Cited by 1 | Viewed by 1842
Abstract
Retinoic acid (RA) plays a critical role in initiating meiosis in primordial germ cells (PGC), yet the specific mechanisms of its interaction with PGC remain unclear. In this study, we used an in vitro feeder-free culture system with chicken PGC as a model [...] Read more.
Retinoic acid (RA) plays a critical role in initiating meiosis in primordial germ cells (PGC), yet the specific mechanisms of its interaction with PGC remain unclear. In this study, we used an in vitro feeder-free culture system with chicken PGC as a model to explore the mechanisms by which RA induces the entry of PGC into meiosis. Results demonstrated that exogenous RA treatment altered the cell cycle distribution of PGC, significantly increasing the proportion of cells in the G1 phase and decreasing those in the G2 phase, suggesting that RA may promote the transition of PGC from proliferation to differentiation. Giemsa staining further revealed that chromosomes in a subset of RA-treated PGC exhibited meiotic characteristics. Through combined RNA-seq and ATAC-seq analyses, we identified that CYP26A1, a gene involved in RA degradation, was significantly upregulated in the RA-treated group, with enhanced accessibility in its chromatin regions. This finding suggests a robust mechanism for self-regulation of RA levels within PGC, indicating that CYP26A1 may play a pivotal role in the degradation of exogenous RA in chicken PGC. This study elucidated the effects of RA on chicken PGC and provided new insights into the role of RA in germ cell differentiation. Full article
(This article belongs to the Collection Current Advances in Poultry Research)
Show Figures

Figure 1

17 pages, 6804 KB  
Article
Modelling Functional Thyroid Follicular Structures Using P19 Embryonal Carcinoma Cells
by Fatimah Najjar, Liming Milbauer, Chin-Wen Wei, Thomas Lerdall and Li-Na Wei
Cells 2024, 13(22), 1844; https://doi.org/10.3390/cells13221844 - 7 Nov 2024
Cited by 3 | Viewed by 1563
Abstract
Thyroid gland diseases remain clinical challenges due to the lack of reliable in vitro models to examine molecular pathways of thyrocytes development, maturation, and functional maintenance. This study aimed to develop in vitro thyrocytes model using a stem cell culture, P19 embryonal carcinoma [...] Read more.
Thyroid gland diseases remain clinical challenges due to the lack of reliable in vitro models to examine molecular pathways of thyrocytes development, maturation, and functional maintenance. This study aimed to develop in vitro thyrocytes model using a stem cell culture, P19 embryonal carcinoma which requires no feeder layer, differentiation into mature and functional thyrocytes that allow molecular and genetic manipulation for studying thyroid diseases. The procedure utilizes Activin A and thyroid stimulating hormone (TSH) to first induce embryoid body endoderm formation enriched in thyrocyte progenitors. Following dissociating embryoid bodies, thyrocyte progenitors are plated in Matrigel as monolayer cultures that allows thyrocyte progenitors mature to functional thyrocytes. These thyrocytes further maturate to form follicle-like structures expressing and accumulating thyroglobulin that can be secreted into the medium upon TSH stimulation. Thyrocyte differentiation-maturation process is monitored by the expression of essential transcriptional factors and thyrocyte-specific functional genes. Further, the applicability of this system is validated by introducing a siRNA control. Following molecular manipulation, the system can still be guided to differentiate into mature and functional thyrocytes. This system spans a time frame of 14 days, suitable for detailed molecular studies to dissect pathways and molecular players in thyrocytes development and functional maintenance. Full article
Show Figures

Figure 1

Back to TopTop