Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,674)

Search Parameters:
Keywords = feedback system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 2584 KiB  
Article
Precise and Continuous Biomass Measurement for Plant Growth Using a Low-Cost Sensor Setup
by Lukas Munser, Kiran Kumar Sathyanarayanan, Jonathan Raecke, Mohamed Mokhtar Mansour, Morgan Emily Uland and Stefan Streif
Sensors 2025, 25(15), 4770; https://doi.org/10.3390/s25154770 (registering DOI) - 2 Aug 2025
Abstract
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent [...] Read more.
Continuous and accurate biomass measurement is a critical enabler for control, decision making, and optimization in modern plant production systems. It supports the development of plant growth models for advanced control strategies like model predictive control, and enables responsive, data-driven, and plant state-dependent cultivation. Traditional biomass measurement methods, such as destructive sampling, are time-consuming and unsuitable for high-frequency monitoring. In contrast, image-based estimation using computer vision and deep learning requires frequent retraining and is sensitive to changes in lighting or plant morphology. This work introduces a low-cost, load-cell-based biomass monitoring system tailored for vertical farming applications. The system operates at the level of individual growing trays, offering a valuable middle ground between impractical plant-level sensing and overly coarse rack-level measurements. Tray-level data allow localized control actions, such as adjusting light spectrum and intensity per tray, thereby enhancing the utility of controllable LED systems. This granularity supports layer-specific optimization and anomaly detection, which are not feasible with rack-level feedback. The biomass sensor is easily scalable and can be retrofitted, addressing common challenges such as mechanical noise and thermal drift. It offers a practical and robust solution for biomass monitoring in dynamic, growing environments, enabling finer control and smarter decision making in both commercial and research-oriented vertical farming systems. The developed sensor was tested and validated against manual harvest data, demonstrating high agreement with actual plant biomass and confirming its suitability for integration into vertical farming systems. Full article
(This article belongs to the Special Issue Feature Papers in Smart Agriculture 2025)
Show Figures

Figure 1

32 pages, 2702 KiB  
Article
Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective
by Leian Zhang, Junwu Wang, Miaomiao Zhang and Jingyi Guo
Buildings 2025, 15(15), 2732; https://doi.org/10.3390/buildings15152732 (registering DOI) - 2 Aug 2025
Abstract
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and [...] Read more.
With the continuous increase in urban population, the subway is the main way to alleviate traffic congestion. However, the construction environment of subway stations is complex, and the safety risks are extremely high. Therefore, it is of great practical significance to scientifically and systematically evaluate the safety vulnerability of subway station construction. This paper takes the Chengdu subway project as an example, and establishes a metro station construction safety vulnerability evaluation index system based on the driving forces–pressures–state–impacts–responses (DPSIR) theory with 5 first-level indexes and 23 second-level indexes, and adopts the fuzzy hierarchical analysis method (FAHP) to calculate the subjective weights, and the improved Harris Hawks optimization–projection pursuit method (HHO-PPM) to determine the objective weights, combined with game theory to calculate the comprehensive weights of the indicators, and finally uses the improved cloud model of Bayesian feedback to determine the vulnerability level of subway station construction safety. The study found that the combined empowerment–improvement cloud model assessment method is reliable, and the case study verifies that the vulnerability level of the project is “very low risk”, and the investigations of safety hazards and the pressure of surrounding traffic are the key influencing factors, allowing for the proposal of more scientific and effective management strategies for the construction of subway stations. Full article
(This article belongs to the Section Construction Management, and Computers & Digitization)
Show Figures

Figure 1

20 pages, 15898 KiB  
Article
Design of a Humanoid Upper-Body Robot and Trajectory Tracking Control via ZNN with a Matrix Derivative Observer
by Hong Yin, Hongzhe Jin, Yuchen Peng, Zijian Wang, Jiaxiu Liu, Fengjia Ju and Jie Zhao
Biomimetics 2025, 10(8), 505; https://doi.org/10.3390/biomimetics10080505 (registering DOI) - 2 Aug 2025
Abstract
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by [...] Read more.
Humanoid robots have attracted considerable attention for their anthropomorphic structure, extended workspace, and versatile capabilities. This paper presents a novel humanoid upper-body robotic system comprising a pair of 8-degree-of-freedom (DOF) arms, a 3-DOF head, and a 3-DOF torso—yielding a 22-DOF architecture inspired by human biomechanics and implemented via standardized hollow joint modules. To overcome the critical reliance of zeroing neural network (ZNN)-based trajectory tracking on the Jacobian matrix derivative, we propose an integration-enhanced matrix derivative observer (IEMDO) that incorporates nonlinear feedback and integral correction. The observer is theoretically proven to ensure asymptotic convergence and enables accurate, real-time estimation of matrix derivatives, addressing a fundamental limitation in conventional ZNN solvers. Workspace analysis reveals that the proposed design achieves an 87.7% larger total workspace and a remarkable 3.683-fold expansion in common workspace compared to conventional dual-arm baselines. Furthermore, the observer demonstrates high estimation accuracy for high-dimensional matrices and strong robustness to noise. When integrated into the ZNN controller, the IEMDO achieves high-precision trajectory tracking in both simulation and real-world experiments. The proposed framework provides a practical and theoretically grounded approach for redundant humanoid arm control. Full article
(This article belongs to the Special Issue Bio-Inspired and Biomimetic Intelligence in Robotics: 2nd Edition)
Show Figures

Figure 1

20 pages, 1253 KiB  
Article
Multimodal Detection of Emotional and Cognitive States in E-Learning Through Deep Fusion of Visual and Textual Data with NLP
by Qamar El Maazouzi and Asmaa Retbi
Computers 2025, 14(8), 314; https://doi.org/10.3390/computers14080314 (registering DOI) - 2 Aug 2025
Abstract
In distance learning environments, learner engagement directly impacts attention, motivation, and academic performance. Signs of fatigue, negative affect, or critical remarks can warn of growing disengagement and potential dropout. However, most existing approaches rely on a single modality, visual or text-based, without providing [...] Read more.
In distance learning environments, learner engagement directly impacts attention, motivation, and academic performance. Signs of fatigue, negative affect, or critical remarks can warn of growing disengagement and potential dropout. However, most existing approaches rely on a single modality, visual or text-based, without providing a general view of learners’ cognitive and affective states. We propose a multimodal system that integrates three complementary analyzes: (1) a CNN-LSTM model augmented with warning signs such as PERCLOS and yawning frequency for fatigue detection, (2) facial emotion recognition by EmoNet and an LSTM to handle temporal dynamics, and (3) sentiment analysis of feedback by a fine-tuned BERT model. It was evaluated on three public benchmarks: DAiSEE for fatigue, AffectNet for emotion, and MOOC Review (Coursera) for sentiment analysis. The results show a precision of 88.5% for fatigue detection, 70% for emotion detection, and 91.5% for sentiment analysis. Aggregating these cues enables an accurate identification of disengagement periods and triggers individualized pedagogical interventions. These results, although based on independently sourced datasets, demonstrate the feasibility of an integrated approach to detecting disengagement and open the door to emotionally intelligent learning systems with potential for future work in real-time content personalization and adaptive learning assistance. Full article
(This article belongs to the Special Issue Present and Future of E-Learning Technologies (2nd Edition))
Show Figures

Figure 1

25 pages, 953 KiB  
Article
Command Redefined: Neural-Adaptive Leadership in the Age of Autonomous Intelligence
by Raul Ionuț Riti, Claudiu Ioan Abrudan, Laura Bacali and Nicolae Bâlc
AI 2025, 6(8), 176; https://doi.org/10.3390/ai6080176 (registering DOI) - 1 Aug 2025
Abstract
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will [...] Read more.
Artificial intelligence has taken a seat at the executive table and is threatening the fact that human beings are the only ones who should be in a position of power. This article gives conjectures on the future of leadership in which managers will collaborate with learning algorithms in the Neural Adaptive Artificial Intelligence Leadership Model, which is informed by the transformational literature on leadership and socio-technical systems, as well as the literature on algorithmic governance. We assessed the model with thirty in-depth interviews, system-level traces of behavior, and a verified survey, and we explored six hypotheses that relate to algorithmic delegation and ethical oversight, as well as human judgment versus machine insight in terms of agility and performance. We discovered that decisions are made quicker, change is more effective, and interaction is more vivid where agile practices and good digital understanding exist, and statistical tests propose that human flexibility and definite governance augment those benefits as well. It is single-industry research that contains self-reported measures, which causes research to be limited to other industries that contain more objective measures. Practitioners are provided with a practical playbook on how to make algorithmic jobs meaningful, introduce moral fail-safes, and build learning feedback to ensure people and machines are kept in line. Socially, the practice is capable of minimizing bias and establishing inclusion by visualizing accountability in the code and practice. Filling the gap between the theory of leadership and the reality of algorithms, the study provides a model of intelligent systems leading in organizations that can be reproduced. Full article
(This article belongs to the Section AI Systems: Theory and Applications)
45 pages, 10039 KiB  
Article
Design of an Interactive System by Combining Affective Computing Technology with Music for Stress Relief
by Chao-Ming Wang and Ching-Hsuan Lin
Electronics 2025, 14(15), 3087; https://doi.org/10.3390/electronics14153087 (registering DOI) - 1 Aug 2025
Abstract
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music [...] Read more.
In response to the stress commonly experienced by young people in high-pressure daily environments, a music-based stress-relief interactive system was developed by integrating music-assisted care with emotion-sensing technology. The design principles of the system were established through a literature review on stress, music listening, emotion detection, and interactive devices. A prototype was created accordingly and refined through interviews with four experts and eleven users participating in a preliminary experiment. The system is grounded in a four-stage guided imagery and music framework, along with a static activity model focused on relaxation-based stress management. Emotion detection was achieved using a wearable EEG device (NeuroSky’s MindWave Mobile device) and a two-dimensional emotion model, and the emotional states were translated into visual representations using seasonal and weather metaphors. A formal experiment involving 52 users was conducted. The system was evaluated, and its effectiveness confirmed, through user interviews and questionnaire surveys, with statistical analysis conducted using SPSS 26 and AMOS 23. The findings reveal that: (1) integrating emotion sensing with music listening creates a novel and engaging interactive experience; (2) emotional states can be effectively visualized using nature-inspired metaphors, enhancing user immersion and understanding; and (3) the combination of music listening, guided imagery, and real-time emotional feedback successfully promotes emotional relaxation and increases self-awareness. Full article
(This article belongs to the Special Issue New Trends in Human-Computer Interactions for Smart Devices)
Show Figures

Figure 1

17 pages, 3272 KiB  
Review
Timing Is Everything: The Fungal Circadian Clock as a Master Regulator of Stress Response and Pathogenesis
by Victor Coca-Ruiz and Daniel Boy-Ruiz
Stresses 2025, 5(3), 47; https://doi.org/10.3390/stresses5030047 (registering DOI) - 1 Aug 2025
Abstract
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological [...] Read more.
Fungi, from saprophytes to pathogens, face predictable daily fluctuations in light, temperature, humidity, and nutrient availability. To cope, they have evolved an internal circadian clock that confers a major adaptive advantage. This review critically synthesizes current knowledge on the molecular architecture and physiological relevance of fungal circadian systems, moving beyond the canonical Neurospora crassa model to explore the broader phylogenetic diversity of timekeeping mechanisms. We examine the core transcription-translation feedback loop (TTFL) centered on the FREQUENCY/WHITE COLLAR (FRQ/WCC) system and contrast it with divergent and non-canonical oscillators, including the metabolic rhythms of yeasts and the universally conserved peroxiredoxin (PRX) oxidation cycles. A central theme is the clock’s role in gating cellular defenses against oxidative, osmotic, and nutritional stress, enabling fungi to anticipate and withstand environmental insults through proactive regulation. We provide a detailed analysis of chrono-pathogenesis, where the circadian control of virulence factors aligns fungal attacks with windows of host vulnerability, with a focus on experimental evidence from pathogens like Botrytis cinerea, Fusarium oxysporum, and Magnaporthe oryzae. The review explores the downstream pathways—including transcriptional cascades, post-translational modifications, and epigenetic regulation—that translate temporal signals into physiological outputs such as developmental rhythms in conidiation and hyphal branching. Finally, we highlight critical knowledge gaps, particularly in understudied phyla like Basidiomycota, and discuss future research directions. This includes the exploration of novel clock architectures and the emerging, though speculative, hypothesis of “chrono-therapeutics”—interventions designed to disrupt fungal clocks—as a forward-looking concept for managing fungal infections. Full article
(This article belongs to the Collection Feature Papers in Plant and Photoautotrophic Stresses)
Show Figures

Figure 1

22 pages, 1470 KiB  
Article
An NMPC-ECBF Framework for Dynamic Motion Planning and Execution in Vision-Based Human–Robot Collaboration
by Dianhao Zhang, Mien Van, Pantelis Sopasakis and Seán McLoone
Machines 2025, 13(8), 672; https://doi.org/10.3390/machines13080672 (registering DOI) - 1 Aug 2025
Abstract
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes [...] Read more.
To enable safe and effective human–robot collaboration (HRC) in smart manufacturing, it is critical to seamlessly integrate sensing, cognition, and prediction into the robot controller for real-time awareness, response, and communication inside a heterogeneous environment (robots, humans, and equipment). The proposed approach takes advantage of the prediction capabilities of nonlinear model predictive control (NMPC) to execute safe path planning based on feedback from a vision system. To satisfy the requirements of real-time path planning, an embedded solver based on a penalty method is applied. However, due to tight sampling times, NMPC solutions are approximate; therefore, the safety of the system cannot be guaranteed. To address this, we formulate a novel safety-critical paradigm that uses an exponential control barrier function (ECBF) as a safety filter. Several common human–robot assembly subtasks have been integrated into a real-life HRC assembly task to validate the performance of the proposed controller and to investigate whether integrating human pose prediction can help with safe and efficient collaboration. The robot uses OptiTrack cameras for perception and dynamically generates collision-free trajectories to the predicted target interactive position. Results for a number of different configurations confirm the efficiency of the proposed motion planning and execution framework, with a 23.2% reduction in execution time achieved for the HRC task compared to an implementation without human motion prediction. Full article
(This article belongs to the Special Issue Visual Measurement and Intelligent Robotic Manufacturing)
Show Figures

Figure 1

25 pages, 17227 KiB  
Article
Distributed Online Voltage Control with Feedback Delays Under Coupled Constraints for Distribution Networks
by Jinxuan Liu, Yanjian Peng, Xiren Zhang, Zhihao Ning and Dingzhong Fan
Technologies 2025, 13(8), 327; https://doi.org/10.3390/technologies13080327 (registering DOI) - 31 Jul 2025
Abstract
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of [...] Read more.
High penetration of photovoltaic (PV) generation presents new challenges for voltage regulation in distribution networks (DNs), primarily due to output intermittency and constrained reactive power capabilities. This paper introduces a distributed voltage control method leveraging reactive power compensation from PV inverters. Instead of relying on centralized computation, the proposed method allows each inverter to make local decisions using real-time voltage measurements and delayed communication with neighboring PV nodes. To account for practical asynchronous communication and feedback delay, a Distributed Online Primal–Dual Push–Sum (DOPP) algorithm that integrates a fixed-step delay model into the push–sum coordination framework is developed. Through extensive case studies on a modified IEEE 123-bus system, it has been demonstrated that the proposed method maintains robust performance under both static and dynamic scenarios, even in the presence of fixed feedback delays. Specifically, in static scenarios, the proposed strategy rapidly eliminates voltage violations within 50–100 iterations, effectively regulating all nodal voltages into the acceptable range of [0.95, 1.05] p.u. even under feedback delays with a delay step of 10. In dynamic scenarios, the proposed strategy ensures 100% voltage compliance across all nodes, demonstrating superior voltage regulation and reactive power coordination performance over conventional droop and incremental control approaches. Full article
15 pages, 675 KiB  
Article
A Trusted Multi-Cloud Brokerage System for Validating Cloud Services Using Ranking Heuristics
by Rajganesh Nagarajan, Vinothiyalakshmi Palanichamy, Ramkumar Thirunavukarasu and J. Arun Pandian
Future Internet 2025, 17(8), 348; https://doi.org/10.3390/fi17080348 (registering DOI) - 31 Jul 2025
Viewed by 13
Abstract
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud [...] Read more.
Cloud computing offers a broad spectrum of services to users, particularly in multi-cloud environments where service-centric features are introduced to support users from multiple endpoints. To improve service availability and optimize the utilization of required services, cloud brokerage has been integrated into multi-cloud systems. The primary objective of a cloud broker is to ensure the quality and outcomes of services offered to customers. However, traditional cloud brokers face limitations in measuring service trust, ensuring validity, and anticipating future enhancements of services across different cloud platforms. To address these challenges, the proposed intelligent cloud broker integrates an intelligence mechanism that enhances decision-making within a multi-cloud environment. This broker performs a comprehensive validation and verification of service trustworthiness by analyzing various trust factors, including service response time, sustainability, suitability, accuracy, transparency, interoperability, availability, reliability, stability, cost, throughput, efficiency, and scalability. Customer feedback is also incorporated to assess these trust factors prior to service recommendation. The proposed model calculates service ranking (SR) values for available cloud services and dynamically includes newly introduced services during the validation process by mapping them with existing entries in the Service Collection Repository (SCR). Performance evaluation using the Google cluster-usage traces dataset demonstrates that the ICB outperforms existing approaches such as the Clustering-Based Trust Degree Computation (CBTDC) algorithm and the Service Context-Aware QoS Prediction and Recommendation (SCAQPR) model. Results confirm that the ICB significantly enhances the effectiveness and reliability of cloud service recommendations for users. Full article
Show Figures

Figure 1

26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 (registering DOI) - 31 Jul 2025
Viewed by 47
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

15 pages, 10795 KiB  
Article
DigiHortiRobot: An AI-Driven Digital Twin Architecture for Hydroponic Greenhouse Horticulture with Dual-Arm Robotic Automation
by Roemi Fernández, Eduardo Navas, Daniel Rodríguez-Nieto, Alain Antonio Rodríguez-González and Luis Emmi
Future Internet 2025, 17(8), 347; https://doi.org/10.3390/fi17080347 (registering DOI) - 31 Jul 2025
Viewed by 40
Abstract
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, [...] Read more.
The integration of digital twin technology with robotic automation holds significant promise for advancing sustainable horticulture in controlled environment agriculture. This article presents DigiHortiRobot, a novel AI-driven digital twin architecture tailored for hydroponic greenhouse systems. The proposed framework integrates real-time sensing, predictive modeling, task planning, and dual-arm robotic execution within a modular, IoT-enabled infrastructure. DigiHortiRobot is structured into three progressive implementation phases: (i) monitoring and data acquisition through a multimodal perception system; (ii) decision support and virtual simulation for scenario analysis and intervention planning; and (iii) autonomous execution with feedback-based model refinement. The Physical Layer encompasses crops, infrastructure, and a mobile dual-arm robot; the virtual layer incorporates semantic modeling and simulation environments; and the synchronization layer enables continuous bi-directional communication via a nine-tier IoT architecture inspired by FIWARE standards. A robot task assignment algorithm is introduced to support operational autonomy while maintaining human oversight. The system is designed to optimize horticultural workflows such as seeding and harvesting while allowing farmers to interact remotely through cloud-based interfaces. Compared to previous digital agriculture approaches, DigiHortiRobot enables closed-loop coordination among perception, simulation, and action, supporting real-time task adaptation in dynamic environments. Experimental validation in a hydroponic greenhouse confirmed robust performance in both seeding and harvesting operations, achieving over 90% accuracy in localizing target elements and successfully executing planned tasks. The platform thus provides a strong foundation for future research in predictive control, semantic environment modeling, and scalable deployment of autonomous systems for high-value crop production. Full article
(This article belongs to the Special Issue Advances in Smart Environments and Digital Twin Technologies)
Show Figures

Figure 1

18 pages, 5712 KiB  
Article
A Fractional Fourier Transform-Based Channel Estimation and Equalization Algorithm for Mud Pulse Telemetry
by Jingchen Zhang, Zitong Sha, Lei Wan, Yishan Su, Jiang Zhu and Fengzhong Qu
J. Mar. Sci. Eng. 2025, 13(8), 1468; https://doi.org/10.3390/jmse13081468 - 31 Jul 2025
Viewed by 131
Abstract
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, [...] Read more.
Mud pulse telemetry (MPT) systems are a promising approach to transmitting downhole data to the ground. During transmission, the amplitudes of pressure waves decay exponentially with distance, and the channel is often frequency-selective due to reflection and multipath effect. To address these issues, this work proposes a fractional Fourier transform (FrFT)-based channel estimation and equalization method. Leveraging the energy aggregation of linear frequency-modulated signals in the fractional Fourier domain, the time delay and attenuation parameters of the multipath channel can be estimated accurately. Furthermore, a fractional Fourier domain equalizer is proposed to pre-filter the frequency-selective fading channel using fractionally spaced decision feedback equalization. The effectiveness of the proposed method is evaluated through a simulation analysis and field experiments. The simulation results demonstrate that this method can significantly reduce multipath effects, effectively control the impact of noise, and facilitate subsequent demodulation. The field experiment results indicate that the demodulation of real data achieves advanced data rate communication (over 12 bit/s) and a low bit error rate (below 0.5%), which meets engineering requirements in a 3000 m drilling system. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

14 pages, 2200 KiB  
Article
Tree Species as Metabolic Indicators: A Comparative Simulation in Amman, Jordan
by Anas Tuffaha and Ágnes Sallay
Land 2025, 14(8), 1566; https://doi.org/10.3390/land14081566 - 31 Jul 2025
Viewed by 121
Abstract
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices [...] Read more.
Urban metabolism frameworks offer insight into flows of energy, materials, and services in cities, yet tree species selection is seldom treated as a metabolic indicator. In Amman, Jordan, we integrate spatial metabolic metrics to critique monocultural greening policies and demonstrate how species choices forecast long-term urban metabolic performance. Using ENVI-met 5.61 simulations, we compare Melia azedarach, Olea europaea, and Ceratonia siliqua, mainly assessing urban flow related elements like air temperature reduction, CO2 sequestration, and evapotranspiration alongside rooting depth, isoprene emissions, and biodiversity support. Melia delivers rapid cooling but shows other negatives like a low biodiversity value; Olea offers average cooling and sequestration but has allergenic pollen issues in people as a flow; Ceratonia provides scalable cooling, increased carbon uptake, and has a high ecological value. We propose a metabolic reframing of green infrastructure planning to choose urban species, guided by system feedback rather than aesthetics, to ensure long-term resilience in arid urban climates. Full article
Show Figures

Figure 1

16 pages, 2647 KiB  
Article
“Habari, Colleague!”: A Qualitative Exploration of the Perceptions of Primary School Mathematics Teachers in Tanzania Regarding the Use of Social Robots
by Edger P. Rutatola, Koen Stroeken and Tony Belpaeme
Appl. Sci. 2025, 15(15), 8483; https://doi.org/10.3390/app15158483 (registering DOI) - 30 Jul 2025
Viewed by 118
Abstract
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI [...] Read more.
The education sector in Tanzania faces significant challenges, especially in public primary schools. Unmanageably large classes and critical teacher–pupil ratios hinder the provision of tailored tutoring, impeding pupils’ educational growth. However, artificial intelligence (AI) could provide a way forward. Advances in generative AI can be leveraged to create interactive and effective intelligent tutoring systems, which have recently been built into embodied systems such as social robots. Motivated by the pivotal influence of teachers’ attitudes on the adoption of educational technologies, this study undertakes a qualitative investigation of Tanzanian primary school mathematics teachers’ perceptions of contextualised intelligent social robots. Thirteen teachers from six schools in both rural and urban settings observed pupils learning with a social robot. They reported their views during qualitative interviews. The results, analysed thematically, reveal a generally positive attitude towards using social robots in schools. While commended for their effective teaching and suitability for one-to-one tutoring, concerns were raised about incorrect and inconsistent feedback, language code-switching, response latency, and the lack of support infrastructure. We suggest actionable steps towards adopting tutoring systems and social robots in schools in Tanzania and similar low-resource countries, paving the way for their adoption to redress teachers’ workloads and improve educational outcomes. Full article
(This article belongs to the Special Issue Advances in Human–Machine Interaction)
Show Figures

Figure 1

Back to TopTop