Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (58)

Search Parameters:
Keywords = fatty acid-binding protein 12

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 11148 KiB  
Article
Rapid Dereplication of Trunk Bark Constituents of Croton sylvaticus and Molecular Docking of Terpenoids from Three Congolese Croton Species
by Bienvenu Kamalandua Mvingu, Tienabe Nsiama, Obed Nsemi Kanga, Kalulu Muzele Taba, Jason Thambwe Kilembe, Jean-Noël Kanyinda Mputu, Sarah Garifo, Céline Henoumont, Dya Fita Dibwe, Blaise Mavinga Mbala and Sophie Laurent
Int. J. Mol. Sci. 2025, 26(9), 4305; https://doi.org/10.3390/ijms26094305 - 1 May 2025
Viewed by 495
Abstract
Phytochemical investigation and bioactivity evaluation of terpenoids from the Croton species were conducted. The chemical composition of C. sylvaticus was explored using chemical phytochemical screening techniques and dereplication of 13C NMR data using MixONat software (v. 1.0.1). Natural products with diverse structural [...] Read more.
Phytochemical investigation and bioactivity evaluation of terpenoids from the Croton species were conducted. The chemical composition of C. sylvaticus was explored using chemical phytochemical screening techniques and dereplication of 13C NMR data using MixONat software (v. 1.0.1). Natural products with diverse structural features were identified in the dichloromethane extract of trunk bark. These include monoterpenoids, sesquiterpenoids, diterpenoids, triterpenoids, along with other minor metabolites, such as steroids, saponins, and fatty acids. Further purification of this extract led to the isolation of three major secondary metabolites, acetyl aleuritolic acid, caryophyllene oxide, and phytol. These secondary metabolites were reported for the first time in C. sylvaticus. The isolated compounds were structurally compared to known anticancer terpenoids previously identified in two other Congolese Croton species. Through molecular docking studies, the predicted binding affinities of the identified compounds were assessed, and possible structure–activity relationships (SAR) were proposed. Two structurally characterized receptors—the human androgen receptor (HAR, PDB ID: 1E3G) and hypoxia-inducible factor 1-alpha (HIF-1α, PDB ID: 3KCX), known for their involvement in cancer-related pathways, were used for molecular docking investigations. Among the tested compounds, 1, 2, 3, and 12 were identified as having strong-to-moderate predicted binding affinities to both protein targets, along with favorable drug-like properties according to the ADMET analysis. This investigation could justify the use of Croton plants in traditional medicine. In addition, our study highlights the potential of the Congolese Croton species as sources of bioactive secondary metabolites. Full article
Show Figures

Figure 1

19 pages, 2696 KiB  
Article
Diagnostic and Prognostic Evaluation of Novel Biomarkers Compared to ESC 0/1 h and 0/3 h Algorithms in Patients with Suspected Non-ST-Elevation Myocardial Infarction
by Mustafa Yildirim, Christian Salbach, Matthias Mueller-Hennessen, Norbert Frey and Evangelos Giannitsis
J. Clin. Med. 2025, 14(9), 2957; https://doi.org/10.3390/jcm14092957 - 24 Apr 2025
Viewed by 846
Abstract
(1) Background: Prompt acute coronary syndrome (ACS) recognition remains challenging. This study evaluated the diagnostic and prognostic performance of novel biomarkers for non-ST-elevation myocardial infarction (NSTEMI). (2) Methods: Patients with suspected ACS presenting to Heidelberg University Hospital’s Emergency Department between August 2014 and [...] Read more.
(1) Background: Prompt acute coronary syndrome (ACS) recognition remains challenging. This study evaluated the diagnostic and prognostic performance of novel biomarkers for non-ST-elevation myocardial infarction (NSTEMI). (2) Methods: Patients with suspected ACS presenting to Heidelberg University Hospital’s Emergency Department between August 2014 and February 2023 were analyzed. The biomarker panel included high-sensitivity cardiac troponin T (hs-cTnT), cardiac myosin-binding protein C (cMyBP-C), pro-B-type natriuretic peptide (proBNP), total N-terminal pro-B-type natriuretic peptide (t-NtproBNP), Angiotensin II (Ang2), Bone morphogenetic protein 10 (BMP10), Endothelial cell-specific molecule 1 (ESM1), fatty acid-binding protein 3 (FABP3), Fibroblast growth factor 23 (FGF23), Growth differentiation factor 15 (GDF15), and Copeptin. Negative predictive values (NPVs), sensitivities, and area under the curve (AUC) values were calculated for NSTEMI discrimination. Effectiveness and prognostic performance were assessed based on cardiovascular events at 30 days and 1 year. (3) Results: Of 1765 patients, 212 (12%) were diagnosed with NSTEMI. The European Society of Cardiology (ESC) 0/1 h and 0/3 h algorithms achieved sensitivities of 100% and 96.8%, NPVs of 100% and 99.3%, and effectiveness values of 54.8% and 66.0%. Hs-cTnT (AUC: 0.922) and cMyBP-C (AUC: 0.917) exhibited the highest diagnostic accuracy, followed by FABP3 (AUC: 0.759) and Copeptin (AUC: 0.624). Other biomarkers had lower performance (AUC: 0.516–0.617). At 1 year, event rates ranged from 0.0% to 3.4%, with the ESC algorithms demonstrating superior prognostic performance (0.8%, 2.4%). (4) Conclusions: The ESC 0/1 h and 0/3 h algorithms remain the most effective NSTEMI diagnostic strategies, balancing high sensitivity, prognostic reliability, and effectiveness. Among novel biomarkers, only cMyBP-C demonstrated comparable accuracy to hs-cTnT, supporting its potential as an adjunct to troponin assays. Full article
(This article belongs to the Section Cardiology)
Show Figures

Figure 1

16 pages, 2567 KiB  
Article
Fecal Microbiota and Associated Metabolites Are Minimally Affected by Ten Weeks of Resistance Training in Younger and Older Adults
by Anthony Agyin-Birikorang, Sarah Lennon, Kristen S. Smith, William Van Der Pol, Morgan A. Smith, Casey L. Sexton, Donald A. Lamb, Kaelin C. Young, Christopher Brooks Mobley, Kevin W. Huggins, Michael D. Roberts and Andrew Dandridge Frugé
Sports 2025, 13(4), 98; https://doi.org/10.3390/sports13040098 - 26 Mar 2025
Cited by 1 | Viewed by 975
Abstract
Preclinical evidence suggests that short chain fatty acids (SCFAs) produced by gut microbiota may impact body composition and muscle growth. While aging is implicated in negative alterations to the gut microbiome, exercise may mitigate these changes. Limited human evidence indicates that resistance training [...] Read more.
Preclinical evidence suggests that short chain fatty acids (SCFAs) produced by gut microbiota may impact body composition and muscle growth. While aging is implicated in negative alterations to the gut microbiome, exercise may mitigate these changes. Limited human evidence indicates that resistance training (RT) does not appreciably alter the gut microbiome in older adults, and no human study has examined whether resistance training differentially alters the gut microbiome and associated SCFAs between younger and older individuals. Therefore, we examined whether 10 weeks of RT differentially altered fecal microbiota composition, fecal and circulating SCFAs, and serum markers associated with gastrointestinal integrity in two cohorts of adults. Fecal and serum samples were obtained from untrained younger (22 ± 2 years, n = 12) and older (58 ± 8 years, n = 12) participants prior to and following 10 weeks of supervised twice-weekly full-body RT. Outcome measures immediately before (PRE) and after the intervention (POST) included dual X-ray absorptiometry for body composition, ultrasound for vastus lateralis (VL) thickness, 16S rRNA gene sequencing fecal microbiome data, serum and fecal SCFAs measured by gas chromatography, and serum intestinal fatty acid-binding protein 2 (FABP2), lipopolysaccharide-binding protein (LBP), and leucine-rich alpha-2 glycoprotein (LRG-1) quantified by enzyme-linked immunosorbent assays. Main effects and interactions were measured by repeated measures analysis of variance (group × time; G × T) for all dependent variables, and Spearman correlations were used to explore relationships among changes in relevant outcomes. The intervention significantly increased VL thickness and lean body mass (p < 0.05) equally in both groups. Although group differences in microbiome beta diversity were identified, no effects of age, time, or their interaction were observed for the alpha diversity measures. Seven SCFAs were detected in the fecal samples, albeit no significant age, time, or interaction effects were evident. In serum, acetic acid was the only SCFA detected, with no significant age, time, or interaction effects. Serum LRG1 decreased for all participants (p = 0.007) with higher levels in younger adults (p = 0.015), but no G × T interactions were observed for this marker, serum FABP2, or LBP. No significant correlations were observed among RT-induced changes in muscle mass-related outcomes and changes in fecal microbiome diversity, total or individual SCFAs, or serum FABP2/LBP/LRG-1. These results highlight that 10 weeks of RT largely does not affect fecal microbiota, associated SCFAs, or select markers of gastrointestinal integrity in untrained younger or older adults. Full article
(This article belongs to the Special Issue Strategies to Improve Modifiable Factors of Athletic Success)
Show Figures

Figure 1

23 pages, 2715 KiB  
Article
The Sm14+GLA-SE Recombinant Vaccine Against Schistosoma mansoni and S. haematobium in Adults and School Children: Phase II Clinical Trials in West Africa
by Amadou Tidjani Ly, Doudou Diop, Modou Diop, Anne-Marie Schacht, Abdoulaye Mbengue, Rokhaya Diagne, Marieme Guisse, Jean-Pierre Dompnier, Carolina Messias, Rhea N. Coler, Celso R. Ramos, Jacques-Noël Tendeng, Seynabou Ndiaye, Miryam Marroquin-Quelopana, Juçara de Carvalho Parra, Tatiane dos Santos, Marília Sirianni dos Santos Almeida, Daniella Arêas Mendes-da-Cruz, Steven Reed, Wilson Savino, Gilles Riveau and Miriam Tendleradd Show full author list remove Hide full author list
Vaccines 2025, 13(3), 316; https://doi.org/10.3390/vaccines13030316 - 16 Mar 2025
Viewed by 1434
Abstract
Background/Objectives: Following previous successful Phase I clinical trials conducted in men and women in a non-endemic area for schistosomiasis in Brazil, the Sm14 vaccine was evaluated in an endemic region in Senegal. We report successful clinical trials in adults (Phase IIa) and school [...] Read more.
Background/Objectives: Following previous successful Phase I clinical trials conducted in men and women in a non-endemic area for schistosomiasis in Brazil, the Sm14 vaccine was evaluated in an endemic region in Senegal. We report successful clinical trials in adults (Phase IIa) and school children (Phase IIb), respectively, of a Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) vaccine + a glucopyranosyl lipid A (GLA-SE) adjuvant. Methods: Participants were evaluated based on clinical assessments, laboratory tests (including hematologic and biochemical analyses of renal and hepatic functions), and immunological parameters (humoral and cellular responses) up to 12 months after the first vaccination dose in the Phase IIa trial and after 120 days in the Phase IIb trial. Results: The results showed strong immunogenic responses and good tolerance in both adults and children, with no major adverse effects. Importantly, significant increases in Sm14-specific total IgG (IgG1 and IgG3) were observed as early as 30 days after the first vaccination, with high titres remaining at least 120 days afterwards. Sm14-specific total IgG serum levels were also significantly enhanced in adults and in both infected and non-infected, vaccinated children and elicited robust cytokine responses with increased TNFα, IFN-γ, and IL-2 profiles. Conclusions: Overall, the Sm14+GLA-SE vaccine is safe and highly immunogenic, with a clearly protective potential against schistosomiasis, supporting progression to the next Phase III clinical trials. Full article
(This article belongs to the Special Issue The Development of Vaccine Against Parasite Infection)
Show Figures

Figure 1

22 pages, 6312 KiB  
Article
Tissue-Specific Ablation of Liver Fatty Acid-Binding Protein Induces a Metabolically Healthy Obese Phenotype in Female Mice
by Hiba Radhwan Tawfeeq, Atreju I. Lackey, Yinxiu Zhou, Anastasia Diolintzi, Sophia M. Zacharisen, Yin Hei Lau, Loredana Quadro and Judith Storch
Nutrients 2025, 17(5), 753; https://doi.org/10.3390/nu17050753 - 21 Feb 2025
Cited by 1 | Viewed by 942
Abstract
Background/Objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high-fat (HF)-fed LFABP knockout (LFABP [...] Read more.
Background/Objectives: Obesity is associated with numerous metabolic complications including insulin resistance, dyslipidemia, and a reduced capacity for physical activity. Whole-body ablation of liver fatty acid-binding protein (LFABP) in mice was shown to alleviate several of these metabolic complications; high-fat (HF)-fed LFABP knockout (LFABP-/-) mice developed higher fat mass than their wild-type (WT) counterparts but displayed a metabolically healthy obese (MHO) phenotype with normoglycemia, normoinsulinemia, and reduced hepatic steatosis compared with WT. Since LFABP is expressed in both liver and intestine, in the present study, we generated LFABP conditional knockout (cKO) mice to determine the contributions of LFABP specifically within the liver or within the intestine, to the whole-body phenotype of the global knockout. Methods: Female liver-specific LFABP knockout (LFABPliv-/-), intestine-specific LFABP knockout (LFABPint-/-), and “floxed” LFABP (LFABPfl/fl) control mice were fed a 45% Kcal fat semipurified HF diet for 12 weeks. Results: While not as dramatic as found for whole-body LFABP-/- mice, both LFABPliv-/- and LFABPint-/- mice had significantly higher body weights and fat mass compared with LFABPfl/fl control mice. As with the global LFABP nulls, both LFABPliv-/- and LFABPint-/- mice remained normoglycemic and normoinsulinemic. Despite their greater fat mass, the LFABPliv-/- mice did not develop hepatic steatosis. Additionally, LFABPliv-/- and LFABPint-/- mice had higher endurance exercise capacity when compared with LFABPfl/fl control mice. Conclusions: The results suggest, therefore, that either liver-specific or intestine-specific ablation of LFABP in female mice is sufficient to induce, at least in part, the MHO phenotype observed following whole-body ablation of LFABP. Full article
(This article belongs to the Special Issue Association Between Lipid Metabolism and Obesity)
Show Figures

Figure 1

14 pages, 1425 KiB  
Article
Limited Diagnostic Value of miRNAs in Early Trauma-Induced Liver Injury: Only miRNA-122 Emerges as a Late-Phase Marker
by Jason-Alexander Hörauf, Amit Singh, Maika Voth, Hamed Moheimani, Cora Rebecca Schindler, Borna Relja, Liudmila Leppik, Ingo Marzi and Dirk Henrich
Diagnostics 2025, 15(2), 179; https://doi.org/10.3390/diagnostics15020179 - 14 Jan 2025
Viewed by 832
Abstract
Background/Objectives: Liver injury is common after abdominal trauma. However, the established biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), lack accuracy. This study investigates whether specific liver-related microRNAs (miRNAs) are released into the circulation in trauma patients [...] Read more.
Background/Objectives: Liver injury is common after abdominal trauma. However, the established biomarkers of liver injury, such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST), lack accuracy. This study investigates whether specific liver-related microRNAs (miRNAs) are released into the circulation in trauma patients with liver injury and whether they can indicate liver damage in the early phase after major trauma. Methods: A retrospective analysis of prospectively collected data and blood samples from 26 trauma patients was conducted. The levels of miRNA-21-5p, -122-5p, -191-5p, -192-3p, and -212-3p were measured in patients with computed tomography-confirmed liver trauma (LT group, n = 12) and polytrauma patients without liver trauma (PT group, n = 14) upon emergency room (ER) admission, and 24 and 48 h after trauma. Additionally, liver-type fatty acid binding protein (L-FABP) was measured, as it has recently been discussed in the context of abdominal trauma. Results: Only miRNA-122-5p showed a significant increase in the LT group compared to the PT group, but only at the 48 h time point (p = 0.032). Conversely, L-FABP (p = 0.018) and ALT (p = 0.05) were significantly elevated in the LT group compared to the PT group at the time of ER admission. There was a moderate correlation between miRNA-122-5p and AISAbdomen (p = 0.056) and transfused red blood cell concentrates (p = 0.055). L-FABP correlated strongly with the ALT levels (p = 0.0009) and the length of stay in the ICU (p = 0.0086). Conclusions: In this study, the liver-specific miRNA-122-5p did not effectively indicate liver injury in the early acute post-traumatic phase. Future research with a large sample size should investigate whether other miRNAs can more accurately predict liver injury and the extent of hepatocellular injury, particularly in the acute post-traumatic phase. Full article
Show Figures

Figure 1

14 pages, 3142 KiB  
Article
Docetaxel-Induced Cell Death Is Regulated by a Fatty Acid-Binding Protein 12-Slug-Survivin Pathway in Prostate Cancer Cells
by Rong-Zong Liu, Mansi Garg, Xiao-Hong Yang and Roseline Godbout
Int. J. Mol. Sci. 2024, 25(17), 9669; https://doi.org/10.3390/ijms25179669 - 6 Sep 2024
Cited by 1 | Viewed by 1304
Abstract
Chemotherapy is an important treatment option for advanced prostate cancer, especially for metastatic prostate cancer (PCa). Resistance to first-line chemotherapeutic drugs such as docetaxel often accompanies prostate cancer progression. Attempts to overcome resistance to docetaxel by combining docetaxel with other biological agents have [...] Read more.
Chemotherapy is an important treatment option for advanced prostate cancer, especially for metastatic prostate cancer (PCa). Resistance to first-line chemotherapeutic drugs such as docetaxel often accompanies prostate cancer progression. Attempts to overcome resistance to docetaxel by combining docetaxel with other biological agents have been mostly unsuccessful. A better understanding of the mechanisms underlying docetaxel resistance may provide new avenues for the treatment of advanced PCa. We have previously found that the fatty acid-binding protein 12 (FABP12)-PPARγ pathway modulates lipid-related bioenergetics and PCa metastatic transformation through induction of Slug, a master driver of epithelial-to-mesenchymal transition (EMT). Here, we report that the FABP12-Slug axis also underlies chemoresistance in PCa cells. Cell sensitivity to docetaxel is markedly suppressed in FABP12-expressing cells, along with induction of Survivin, a typical apoptosis inhibitor, and inhibition of cleaved PARP, a hallmark of programmed cell death. Importantly, Slug depletion down-regulates Survivin and restores cell sensitivity to docetaxel in FABP12-expressing cells. Finally, we also show that high levels of Survivin are associated with poor prognosis in PCa patients, with FABP12 status determining its prognostic significance. Our research identifies a FABP12-Slug-Survivin pathway driving docetaxel resistance in PCa cells, suggesting that targeting FABP12 may be a precision approach to improve chemodrug efficacy and curb metastatic progression in PCa. Full article
(This article belongs to the Special Issue Molecular Research on Prostate Cancer)
Show Figures

Figure 1

14 pages, 1897 KiB  
Article
The Association between IL-1β and IL-18 Levels, Gut Barrier Disruption, and Monocyte Activation during Chronic Simian Immunodeficiency Virus Infection and Long-Term Suppressive Antiretroviral Therapy
by Siva Thirugnanam, Chenxiao Wang, Chen Zheng, Brooke F. Grasperge, Prasun K. Datta, Jay Rappaport, Xuebin Qin and Namita Rout
Int. J. Mol. Sci. 2024, 25(16), 8702; https://doi.org/10.3390/ijms25168702 - 9 Aug 2024
Viewed by 1801
Abstract
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this [...] Read more.
HIV-induced persistent immune activation is a key mediator of inflammatory comorbidities such as cardiovascular disease (CVD) and neurocognitive disorders. While a preponderance of data indicate that gut barrier disruption and microbial translocation are drivers of chronic immune activation, the molecular mechanisms of this persistent inflammatory state remain poorly understood. Here, utilizing the nonhuman primate model of Human Immunodeficiency Virus (HIV) infection with suppressive antiretroviral therapy (ART), we investigated activation of inflammasome pathways and their association with intestinal epithelial barrier disruption (IEBD). Longitudinal blood samples obtained from rhesus macaques with chronic SIV infection and long-term suppressive ART were evaluated for IEBD biomarkers, inflammasome activation (IL-1β and IL-18), inflammatory cytokines, and triglyceride (TG) levels. Activated monocyte subpopulations and glycolytic potential were investigated in peripheral blood mononuclear cells (PBMCs). During the chronic phase of treated SIV infection, elevated levels of plasma IL-1β and IL-18 were observed following the hallmark increase in IEBD biomarkers, intestinal fatty acid-binding protein (IFABP) and LPS-binding protein (LBP). Further, significant correlations of plasma IFABP levels with IL-1β and IL-18 were observed between 10 and 12 months of ART. Higher levels of sCD14, IL-6, and GM-CSF, among other inflammatory mediators, were also observed only during the long-term SIV + ART phase along with a trend of increase in the frequencies of activated CD14+CD16+ intermediate monocyte subpopulations. Lastly, we found elevated levels of blood TG and higher glycolytic capacity in PBMCs of chronic SIV-infected macaques with long-term ART. The increase in circulating IL-18 and IL-1β following IEBD and their significant positive correlation with IFABP suggest a connection between gut barrier disruption and inflammasome activation during chronic SIV infection, despite viral suppression with ART. Additionally, the increase in markers of monocyte activation, along with elevated TG and enhanced glycolytic pathway activity, indicates metabolic remodeling that could fuel metabolic syndrome. Further research is needed to understand the mechanisms by which gut dysfunction and inflammasome activation contribute to HIV-associated metabolic complications, enabling targeted interventions in people with HIV. Full article
Show Figures

Figure 1

14 pages, 3628 KiB  
Article
Lindera obtusiloba Blume Alleviates Non-Alcoholic Fatty Liver Disease Promoted by Nε-(carboxymethyl)lysine
by Jin-Ah Lee, Min Ji Gu, Yu Ra Lee, Yoonsook Kim, Inwook Choi, Donghwan Kim and Sang Keun Ha
Nutrients 2024, 16(14), 2330; https://doi.org/10.3390/nu16142330 - 19 Jul 2024
Cited by 1 | Viewed by 1696
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a major issue because it is closely associated with metabolic diseases. Advanced glycation end products (AGEs) are implicated as risk factors for steatosis during NAFLD progression. AGEs influence NAFLD progression through a receptor-independent pathway involving AGE cross-link formation and a receptor-dependent pathway that binds to receptors like receptors for advanced glycation end products (RAGE). The objectives of this study are to examine the effect of Lindera obtusiloba Blume (LO) on NAFLD promoted by Nε-(carboxymethyl)lysine (CML), one of the most common dietary AGEs. The anti-glycation effects of LO were evaluated by inhibiting the AGEs formation and AGEs-collagen cross-links breaking. The efficacy of LO against NAFLD promoted by CML was assessed using both in vitro and in vivo models. NAFLD was induced in mice by feeding a high-fat diet and orally administering CML over a period of 12 weeks, and the effects of LO on lipid metabolism and its regulatory mechanisms were investigated. LO showed the effect of inhibited AGEs formation and breakage, and collagen cross-linking. Fed a high-fat diet with administered CML by gavage, LO administration resulted in a reduction in body weight, fat mass, serum triglycerides, total cholesterol, and low-density lipoprotein cholesterol levels. LO reduced hepatic CML accumulation and RAGE expression in mice fed a high-fat diet and orally administered CML. LO alleviated hepatic steatosis accompanied by lipid accumulation and histological damage by suppressing the expression of sterol regulatory element-binding protein 1c, carbohydrate response element binding protein, fatty acid synthase, stearoyl-CoA desaturase1, tumor necrosis factor-α, and interleukin-1β. LO alleviated the MAPK/NF-κB expression by attenuating CML and RAGE expression. Taken together, our results demonstrate that LO alleviates the progression of NAFLD by lowering the levels of AGEs by downregulating CML/RAGE expression. Full article
(This article belongs to the Special Issue Natural Products and Health: 2nd Edition)
Show Figures

Figure 1

13 pages, 663 KiB  
Article
Meat Characteristics, Expression of Myosin Heavy Chain and Metabolism-Related Genes in Thai Native Pigs
by Chanporn Chaosap, Kamon Chaweewan, Kazeem D. Adeyemi, Netanong Phonkate and Ronachai Sitthigripong
Foods 2024, 13(10), 1502; https://doi.org/10.3390/foods13101502 - 13 May 2024
Viewed by 1516
Abstract
This study investigated the meat quality, expression of myosin heavy chain (MyHC) and metabolism-related genes, ribonucleotides and fatty acids in Longissimus thoracis of Thai native pigs (TNPs) from different geographical regions (GR). Forty-one 9–10-month-old castrated TNPs (BW 60 kg), consisting of 18, 11 [...] Read more.
This study investigated the meat quality, expression of myosin heavy chain (MyHC) and metabolism-related genes, ribonucleotides and fatty acids in Longissimus thoracis of Thai native pigs (TNPs) from different geographical regions (GR). Forty-one 9–10-month-old castrated TNPs (BW 60 kg), consisting of 18, 11 and 12 pigs from Northern (NT), Southern (ST) and Northeastern (NE) regions, respectively, were slaughtered. GR did not affect (p > 0.05) the expression of MyHC, phosphoglycerate mutase 1, cytosolic glycerol-3-phosphate dehydrogenase, triosephosphate isomerase 1 and adipocyte fatty acid binding protein genes. The trend of MyHC was MyHC IIx > MyHC IIb > MyHC IIa > MyHC I. The NT loin had higher (p < 0.05) glycogen, C18:2n6, C20:4n6 and cooking loss, lower inosine, inosine monophosphate and hypoxanthine and a shorter sarcomere length than the ST and NE loins. The ST loin had a lower (p < 0.05) a* compared to other loins. Principal component analysis established significant relationships between the TNP and specific meat quality traits. This finding suggests that GR affected the meat quality, ribonucleotides and selected fatty acids in TNPs. These results provide relevant information that can be used to optimize the use of Thai native pork. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

14 pages, 1288 KiB  
Review
Urinary L-FABP as an Early Biomarker for Pediatric Acute Kidney Injury Following Cardiac Surgery with Cardiopulmonary Bypass: A Systematic Review and Meta-Analysis
by Bruno Wilnes, Beatriz Castello-Branco, Bárbara Castello Branco, André Sanglard, Pedro Alves Soares Vaz de Castro and Ana Cristina Simões-e-Silva
Int. J. Mol. Sci. 2024, 25(9), 4912; https://doi.org/10.3390/ijms25094912 - 30 Apr 2024
Cited by 4 | Viewed by 2250
Abstract
Acute kidney injury (AKI) following surgery with cardiopulmonary bypass (CPB-AKI) is common in pediatrics. Urinary liver-type fatty acid binding protein (uL-FABP) increases in some kidney diseases and may indicate CPB-AKI earlier than current methods. The aim of this systematic review with meta-analysis was [...] Read more.
Acute kidney injury (AKI) following surgery with cardiopulmonary bypass (CPB-AKI) is common in pediatrics. Urinary liver-type fatty acid binding protein (uL-FABP) increases in some kidney diseases and may indicate CPB-AKI earlier than current methods. The aim of this systematic review with meta-analysis was to evaluate the potential role of uL-FABP in the early diagnosis and prediction of CPB-AKI. Databases Pubmed/MEDLINE, Scopus, and Web of Science were searched on 12 November 2023, using the MeSH terms “Children”, “CPB”, “L-FABP”, and “Acute Kidney Injury”. Included papers were revised. AUC values from similar studies were pooled by meta-analysis, performed using random- and fixed-effect models, with p < 0.05. Of 508 studies assessed, nine were included, comprising 1658 children, of whom 561 (33.8%) developed CPB-AKI. Significantly higher uL-FABP levels in AKI versus non-AKI patients first manifested at baseline to 6 h post-CPB. At 6 h, uL-FABP correlated with CPB duration (r = 0.498, p = 0.036), postoperative serum creatinine (r = 0.567, p < 0.010), and length of hospital stay (r = 0.722, p < 0.0001). Importantly, uL-FABP at baseline (AUC = 0.77, 95% CI: 0.64–0.89, n = 365), 2 h (AUC = 0.71, 95% CI: 0.52–0.90, n = 509), and 6 h (AUC = 0.76, 95% CI: 0.72–0.80, n = 509) diagnosed CPB-AKI earlier. Hence, higher uL-FABP levels associate with worse clinical parameters and may diagnose and predict CPB-AKI earlier. Full article
(This article belongs to the Special Issue Advanced Molecular Insights into Renal Disorders)
Show Figures

Figure 1

13 pages, 2018 KiB  
Article
The Effects of Short-Chain Fatty Acids in Gut Immune and Oxidative Responses of European Sea Bass (Dicentrarchus labrax): An Ex Vivo Approach
by Filipa Fontinha, Nicole Martins, Gabriel Campos, Helena Peres and Aires Oliva-Teles
Animals 2024, 14(9), 1360; https://doi.org/10.3390/ani14091360 - 30 Apr 2024
Cited by 5 | Viewed by 2413
Abstract
This study aimed to evaluate the intestinal interactions between three short-chain fatty acids (SCFA), namely, acetate, propionate, and butyrate, and pathogenic bacteria (Vibrio anguillarum) in intestinal explants of European sea bass (Dicentrarchus labrax) juveniles. The anterior intestine of 12 [...] Read more.
This study aimed to evaluate the intestinal interactions between three short-chain fatty acids (SCFA), namely, acetate, propionate, and butyrate, and pathogenic bacteria (Vibrio anguillarum) in intestinal explants of European sea bass (Dicentrarchus labrax) juveniles. The anterior intestine of 12 fish with an average weight of 100 g (killed by excess anesthesia with 2-phenoxyethanol) were sampled and placed in 24-well plates. The experimental treatments consisted of a control medium and a control plus 1 mM or 10 mM of sodium acetate (SA), sodium butyrate (SB), and sodium propionate (SP). After 2 h of incubation, the explants were challenged with Vibrio anguillarum at 1 × 107 CFU/mL for 2 h. After the bacterial challenge, and regardless of the SCFA treatment, the oxidative stress-related genus catalase (cat) and superoxide dismutase (sod) were down-regulated and glutathione peroxidase (gpx) was up-regulated. Furthermore, the immune-related genes, i.e., the tumor necrosis factor (TNF-α), interleukin 8 (IL-8), transforming growth factor (TGF-β), and nuclear factor (NF-Kβ) were also up-regulated, and interleukin 10 (IL-10) was down-regulated. During the pre-challenge, sodium propionate and sodium butyrate seemed to bind the G-protein coupled receptor (grp40L), increasing its expression. During the challenge, citrate synthase (cs) was down-regulated, indicating that the SCFAs were used as an energy source to increase the immune and oxidative responses. Overall, our results suggest that sodium propionate and sodium butyrate may boost European sea bass immune response at the intestine level. Full article
(This article belongs to the Special Issue Research Progress in Growth, Health and Metabolism of Fishes)
Show Figures

Figure 1

19 pages, 893 KiB  
Article
Effects of Dietary Eucommia ulmoides Leaf Extract Supplementation on Growth Performance, Meat Quality, Antioxidant Capacity, and Lipid Metabolism of Finishing Pigs
by Mengmeng Han, Yunju Yin, Saiming Gong, Hanjing Shi, Qilong Li, Xiao Lian, Yehui Duan, Fengna Li and Qiuping Guo
Antioxidants 2024, 13(3), 320; https://doi.org/10.3390/antiox13030320 - 6 Mar 2024
Cited by 6 | Viewed by 2752
Abstract
This study aimed to investigate the effects of dietary Eucommia ulmoides leaf extract (ELE) on meat quality, antioxidant capacity, and lipid metabolism in finishing pigs. A total of 240 “Duroc × Landrace × Yorkshire” crossbred pigs with an initial weight of 74.70 ± [...] Read more.
This study aimed to investigate the effects of dietary Eucommia ulmoides leaf extract (ELE) on meat quality, antioxidant capacity, and lipid metabolism in finishing pigs. A total of 240 “Duroc × Landrace × Yorkshire” crossbred pigs with an initial weight of 74.70 ± 0.77 kg were randomly assigned to two groups: control group and 0.2% ELE group, with each group containing 10 replicates of 12 pigs per pen (half barrows and half gilts). The data showed dietary 0.2% ELE supplementation did not affect growth performance but tended to reduce the backfat thickness of the finishing pigs (p = 0.07). ELE diets increased pH value (p < 0.05) and meat color score (p = 0.01) and decreased 45 min L* value (p < 0.05), 24 h L* value (p = 0.01), pressurization loss (p = 0.01), and 24 h drip loss (p < 0.05) in longissimus dorsi (LD) muscle, accompanied by an increased (p < 0.05) proportion of monounsaturated fatty acids (MUFA) and decreased polyunsaturated fatty acids (PUFA) (p = 0.06) and n-6/n-3 PUFA ratio (p = 0.05) compared to controls. In addition, ELE supplementation increased inosine monophosphate (IMP) (p = 0.01), sweet amino acids (AAs) (p < 0.05), and total free AA content (p = 0.05) in LD. Meanwhile, increased activity of glutathione peroxidase (p < 0.05) and superoxide dismutase (p < 0.01) in both serum and LD muscle and decreased malondialdehyde content (p < 0.01) in LD muscle were detected with ELE treatment. Moreover, pigs fed ELE had a higher total protein (p < 0.01), albumin (p < 0.05), and high-density lipoprotein cholesterol (p < 0.05) and a lower total cholesterol (p < 0.01) and triacylglycerols (p = 0.06) in serum. Consistently, significant effects of dietary ELE were observed on the relative mRNA expression of lipid metabolism in the backfat and the LD muscle, respectively. ELE attenuated lipogenic processes in backfat, decreasing the relative expression of acetyl-CoA carboxylase and upregulating the relative expression of adipose triacyl glyceride lipase, carnitine palmitoyl transferase 1B, and fatty acid-binding protein 4 (p < 0.05). ELE also decreased the relative expression of CCAAT/enhancer-binding protein α (p < 0.05), fatty acid translocase (p < 0.05), carnitine palmitoyl transferase 1B (p < 0.01), and adipose triacyl glyceride lipase (p < 0.05) in LD muscle (p < 0.05). More specifically, lipogenesis appeared to be inhibited in both LD muscle and backfat, with the difference being that lipolysis was enhanced in backfat and inhibited in LD muscle. In conclusion, dietary ELE supplementation can potentially enhance carcass traits, sensory quality, and nutritional value of pork without negatively affecting intramuscular fat content. The underlying mechanism for these positive effects may be linked to the alterations in lipid metabolism and increased antioxidant capacity induced by ELE. Full article
(This article belongs to the Special Issue Redox Homeostasis in Poultry/Animal Production)
Show Figures

Graphical abstract

21 pages, 12584 KiB  
Article
Circadian Rhythm Alteration of the Core Clock Genes and the Lipid Metabolism Genes Induced by High-Fat Diet (HFD) in the Liver Tissue of the Chinese Soft-Shelled Turtle (Trionyx sinensis)
by Li Liu, Lingli Liu, Shiming Deng, Li Zou, Yong He, Xin Zhu, Honghui Li, Yazhou Hu, Wuying Chu and Xiaoqing Wang
Genes 2024, 15(2), 157; https://doi.org/10.3390/genes15020157 - 25 Jan 2024
Cited by 5 | Viewed by 3212
Abstract
Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their [...] Read more.
Physiology disorders of the liver, as it is an important tissue in lipid metabolism, can cause fatty liver disease. The mechanism might be regulated by 17 circadian clock genes and 18 fat metabolism genes, together with a high-fat diet (HFD). Due to their rich nutritional and medicinal value, Chinese soft-shelled turtles (Trionyx sinensis) are very popular among the Chinese people. In the study, we aimed to investigate the influence of an HFD on the daily expression of both the core clock genes and the lipid metabolism genes in the liver tissue of the turtles. The two diets were formulated with 7.98% lipid (the CON group) and 13.86% lipid (the HFD group) to feed 180 juvenile turtles, which were randomly divided into two groups with three replicates per group and 30 turtles in each replicate for six weeks, and the diet experiment was administrated with a photophase regimen of a 24 h light/dark (12L:12D) cycle. At the end of the experiment, the liver tissue samples were collected from nine turtles per group every 3 h (zeitgeber time: ZT 0, 3, 6, 9, 12, 15, 18, 21 and 24) for 24 h to investigate the daily expression and correlation analysis of these genes. The results showed that 11 core clock genes [i.e., circadian locomotor output cycles kaput (Clock), brain and muscle arnt-like protein 1 and 2 (Bmal1/2), timeless (Tim), cryptochrome 1 (Cry2), period2 (Per2), nuclear factor IL-3 gene (Nfil3), nuclear receptor subfamily 1, treatment D, member 1 and 2 (Nr1d1/2) and retinoic acid related orphan receptor α/β/γ β and γ (Rorβ/γ)] exhibited circadian oscillation, but 6 genes did not, including neuronal PAS domain protein 2 (Npas2), Per1, Cry1, basic helix-loop-helix family, member E40 (Bhlhe40), Rorα and D-binding protein (Dbp), and 16 lipid metabolism genes including fatty acid synthase (Fas), diacylglycerol acyltransferase 1 (Dgat1), 3-hydroxy-3-methylglutaryl-CoA reductase (Hmgcr), Low-density lipoprotein receptor-related protein 1-like (Ldlr1), Lipin 1 (Lipin1), Carnitine palmitoyltransferase 1A (Cpt1a), Peroxisome proliferator activation receptor α, β and γ (Pparα/β/γ), Sirtuin 1 (Sirt1), Apoa (Apoa1), Apolipoprotein B (Apob), Pyruvate Dehydrogenase kinase 4 (Pdk4), Acyl-CoA synthase long-chain1 (Acsl1), Liver X receptors α (Lxrα) and Retinoid X receptor, α (Rxra) also demonstrated circadian oscillations, but 2 genes did not, Scd and Acaca, in the liver tissues of the CON group. However, in the HFD group, the circadian rhythms’ expressional patterns were disrupted for the eight core clock genes, Clock, Cry2, Per2, Nfil3, Nr1d1/2 and Rorβ/γ, and the peak expression of Bmal1/2 and Tim showed delayed or advanced phases. Furthermore, four genes (Cry1, Per1, Dbp and Rorα) displayed no diurnal rhythm in the CON group; instead, significant circadian rhythms appeared in the HFD group. Meanwhile, the HFD disrupted the circadian rhythm expressions of seven fat metabolism genes (Fas, Cpt1a, Sirt1, Apoa1, Apob, Pdk4 and Acsl1). Meanwhile, the other nine genes in the HFD group also showed advanced or delayed expression peaks compared to the CON group. Most importantly of all, there were remarkably positive or negative correlations between the core clock genes and the lipid metabolism genes, and their correlation relationships were altered by the HFD. To sum up, circadian rhythm alterations of the core clock genes and the lipid metabolism genes were induced by the high-fat diet (HFD) in the liver tissues of T. sinensis. This result provides experimental and theoretical data for the mass breeding and production of T. sinensis in our country. Full article
(This article belongs to the Special Issue Fisheries and Aquaculture Gene Expression)
Show Figures

Figure 1

11 pages, 2413 KiB  
Article
Effects of Curcumin on the Egg Quality and Hepatic Lipid Metabolism of Laying Hens
by Chenxuan Li, Jiang Gao, Shihui Guo, Bin He and Wenqiang Ma
Animals 2024, 14(1), 138; https://doi.org/10.3390/ani14010138 - 30 Dec 2023
Cited by 5 | Viewed by 2885
Abstract
Curcumin, the major active compound of turmeric, has shown potential benefits for poultry health and production in various studies. However, its specific role in enhancing the egg quality and liver health of laying hens, as well as its underlying mechanisms, have yet to [...] Read more.
Curcumin, the major active compound of turmeric, has shown potential benefits for poultry health and production in various studies. However, its specific role in enhancing the egg quality and liver health of laying hens, as well as its underlying mechanisms, have yet to be determined. Here, a total of 600 Su Qin No.1 Laying hens, aged 55 weeks and with similar laying rates, were randomly placed into five groups, with 10 replicates of 12 hens each. Curcumin doses of 0, 100, 200, 400, and 800 mg/kg were added to the basal diet to form the experimental groups. After an 8-week feeding period, no significant changes were observed in the production performance of laying hens due to curcumin supplementation. However, additional tests revealed that a 200 mg/kg curcumin supplementation improved albumen height, yolk color, Haugh unit, and eggshell thickness, while reducing the thin albumen’s weight and proportion. This was accompanied by a significant down-regulation of the mRNA expression level of the Prolactin Receptor (Prlr) in the oviduct magnum. Furthermore, the number of hepatic lipid droplets and the hepatic triglyceride (TG) content, as well as malondialdehyde (MDA) levels were significantly reduced, indicating improved hepatic lipid metabolism and oxidative status. This was accompanied by a significant reduction in the expressions of sterol regulatory element binding protein-1 gene (Srebp-1), fatty acid synthase gene (Fasn), as well as fatty acid synthase (FASN), which are closely related to fatty acid synthesis in the liver. Overall, these findings suggest that curcumin supplementation at a dosage of 200 mg/kg could lead to significant improvements in egg quality and hepatic lipid metabolism. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

Back to TopTop