Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,200)

Search Parameters:
Keywords = fatigue strain

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1540 KiB  
Article
Molecular and Clinical Characterization of Crimean–Congo Hemorrhagic Fever in Bulgaria, 2015–2024
by Kim Ngoc, Ivan Stoikov, Ivelina Trifonova, Elitsa Panayotova, Evgenia Taseva, Iva Trifonova and Iva Christova
Pathogens 2025, 14(8), 785; https://doi.org/10.3390/pathogens14080785 - 6 Aug 2025
Abstract
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 [...] Read more.
Crimean–Congo hemorrhagic fever (CCHF) is a zoonotic viral disease endemic to parts of Africa, Asia and southeastern Europe. Bulgaria is one of the few European countries with the consistent annual reporting of human CCHF cases. This study provides a descriptive overview of 24 confirmed CCHF cases in Bulgaria between 2015 and 2024. Laboratory confirmation was performed by an enzyme-linked immunosorbent assay (ELISA) and/or real-time reverse transcriptase polymerase chain reaction (RT-qPCR) testing. Common findings included fever, fatigue, gastrointestinal symptoms, thrombocytopenia, leukopenia, liver dysfunction and coagulopathy. Two fatal cases were recorded. Two samples collected in 2016 and 2024 were subjected to whole-genome sequencing. Phylogenetic analysis showed that both strains clustered within the Turkish branch of the Europe 1 genotype and shared high genetic similarity with previous Bulgarian strains, as well as strains from neighboring countries. These findings suggest the long-term persistence of a genetically stable viral lineage in the region. Continuous molecular and clinical surveillance is necessary to monitor the evolution and public health impact of CCHFV in endemic areas. Full article
16 pages, 1391 KiB  
Article
Running-Induced Fatigue Exacerbates Anteromedial ACL Bundle Stress in Females with Genu Valgum: A Biomechanical Comparison with Healthy Controls
by Xiaoyu Jian, Dong Sun, Yufan Xu, Chengyuan Zhu, Xuanzhen Cen, Yang Song, Gusztáv Fekete, Danica Janicijevic, Monèm Jemni and Yaodong Gu
Sensors 2025, 25(15), 4814; https://doi.org/10.3390/s25154814 - 5 Aug 2025
Abstract
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. [...] Read more.
Genu valgum (GV) is a common lower limb deformity that may increase the risk of anterior cruciate ligament (ACL) injury. This study used OpenSim musculoskeletal modeling and kinematic analysis to investigate the mechanical responses of the ACL under fatigue in females with GV. Eight females with GV and eight healthy controls completed a running-induced fatigue protocol. Lower limb kinematic and kinetic data were collected and used to simulate stress and strain in the anteromedial ACL (A–ACL) and posterolateral ACL (P–ACL) bundles, as well as peak joint angles and knee joint stiffness. The results showed a significant interaction effect between group and fatigue condition on A–ACL stress. In the GV group, A–ACL stress was significantly higher than in the healthy group both before and after fatigue (p < 0.001) and further increased following fatigue (p < 0.001). In the pre-fatigued state, A–ACL strain was significantly higher during the late stance phase in the GV group (p = 0.036), while P–ACL strain significantly decreased post-fatigue (p = 0.005). Additionally, post-fatigue peak hip extension and knee flexion angles, as well as pre-fatigue knee abduction angles, showed significant differences between groups. Fatigue also led to substantial changes in knee flexion, adduction, abduction, and hip/knee external rotation angles within the GV group. Notably, knee joint stiffness in this group was significantly lower than in controls and decreased further post-fatigue. These findings suggest that the structural characteristics of GV, combined with exercise-induced fatigue, exacerbate A–ACL loading and compromise knee joint stability, indicating a higher risk of ACL injury in fatigued females with GV. Full article
(This article belongs to the Special Issue Sensors for Human Posture and Movement)
Show Figures

Figure 1

27 pages, 5743 KiB  
Article
In-Field Load Acquisitions on a Variable Chamber Round Baler Using Instrumented Hub Carriers and a Dynamometric Towing Pin
by Filippo Coppola, Andrea Ruffin and Giovanni Meneghetti
Appl. Sci. 2025, 15(15), 8579; https://doi.org/10.3390/app15158579 (registering DOI) - 1 Aug 2025
Viewed by 121
Abstract
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately [...] Read more.
In this work, the load spectra acting in the vertical direction on the hub carriers and in the horizontal longitudinal direction on the drawbar of a trailed variable chamber round baler were evaluated. To this end, each hub carrier was instrumented with appropriately calibrated strain gauge bridges. Similarly, the baler was equipped with a dynamometric towing pin, instrumented with strain gauge sensors and calibrated in the laboratory, which replaced the original pin connecting the baler and the tractor during the in-field load acquisitions. In both cases, the calibration tests returned the relationship between applied forces and output signals of the strain gauge bridges. Multiple in-field load acquisitions were carried out under typical maneuvers and operating conditions. The synchronous acquisition of a video via an onboard camera and Global Positioning System (GPS) signal allowed to observe the behaviour of the baler in correspondence of particular trends of the vertical and horizontal loads and to point out the most demanding maneuver in view of the fatigue resistance of the baler. Finally, through the application of a rainflow cycle counting algorithm according to ASTM E1049-85, the load spectrum for each maneuver was derived. Full article
(This article belongs to the Section Mechanical Engineering)
24 pages, 4287 KiB  
Article
Integrated Design of Materials and Structures for Flexible Base Asphalt Pavement
by Bin Huang, Qinxue Pan, Xiaolong Chen, Jia Hu and Songtao Lv
Materials 2025, 18(15), 3602; https://doi.org/10.3390/ma18153602 - 31 Jul 2025
Viewed by 246
Abstract
Current asphalt pavement structural design methods often lack a strong quantitative link to materials’ mixtures and mechanical properties and typically ignore the significant tensile–compressive disparities of materials, resulting in notable analysis errors. This study employed the dual-modulus theory to numerically analyze flexible base [...] Read more.
Current asphalt pavement structural design methods often lack a strong quantitative link to materials’ mixtures and mechanical properties and typically ignore the significant tensile–compressive disparities of materials, resulting in notable analysis errors. This study employed the dual-modulus theory to numerically analyze flexible base asphalt pavements under varied configurations, revealing how critical structural responses and fatigue life evolve. This examination also determined optimal layer mixes through mechanical parameter modeling for integrated material–structure design. The results showed that fundamental responses and fatigue life vary nonlinearly with thickness and modulus. The effect of modulus outweighed that of thickness, with the effects of the tensile modulus being more pronounced than compressive ones, and surface transverse strain being most sensitive to both. The recommended compressive–tensile modulus ratios were about 1.5, 2.0, and 1.2 for upper, lower, and base layers, respectively. By using this integrated design method, the optimized pavement structures achieved superior stress distribution, significantly extending the base service life. As a result, more realistic design lifetimes were obtained. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 4217 KiB  
Article
Contact Load Measurement and Validation for Tapered Rollers in Wind Turbine Main Bearing
by Zhenggang Guo, Jingqi Yu, Wanxiu Hao and Yuming Niu
Sensors 2025, 25(15), 4726; https://doi.org/10.3390/s25154726 - 31 Jul 2025
Viewed by 248
Abstract
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain [...] Read more.
Addressing the need for contact load detection in wind turbine main bearings during service, a roller contact load measurement method is proposed. An analytical model characterizes the contact load-to-inner bore strain mapping relationship. To overcome the inherent low sensitivity of direct bore strain measurement, bore-to-measurement-point sensitivity analysis was optimized. Multiple structurally optimized sensor brackets were designed to enhance strain measurement sensitivity, and their performance was comparatively evaluated via simulation. To mitigate sensitivity fluctuations caused by roller rotation phase variations, a strain–phase–load calculation method incorporating real-time phase compensation was developed and verified through simulation analysis. A dedicated roller contact load testing system was constructed and experimental validation was conducted. Results demonstrate 95% accuracy in contact load acquisition. This method accurately obtains roller contact loads in wind turbine main bearings, proving crucial for studying bearing mechanical behavior, predicting fatigue life, optimizing structural design, and enhancing reliability. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

23 pages, 6098 KiB  
Article
Performance Optimization of Stacked Weld in Hydrogen Production Reactor Based on Response Surface Methodology–Genetic Algorithm
by Yu Liu, Hongtao Gu, Jincheng Zhang, Zhiyi Leng, Ziguang Wang and Shengfang Zhang
Coatings 2025, 15(8), 889; https://doi.org/10.3390/coatings15080889 (registering DOI) - 31 Jul 2025
Viewed by 306
Abstract
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials [...] Read more.
To address the issues of hydrogen embrittlement, creep, and fatigue that commonly occur in the welds of hydrogen production reactor operating under hydrogen exposure, high temperature and high pressure, this study proposes adding Si and Mo as reinforcing elements to the welding materials to enhance weld performance. Given the varying performance requirements of different weld layers in the stacked weld, a gradient performance optimization method for the stacked weld of hydrogen production reactors based on the response surface methodology (RSM)–genetic algorithm (GA) is proposed. Using tensile strength, the hydrogen embrittlement sensitivity index, fatigue strain strength, creep rate and weld performance evaluation indices, a high-precision regression model for Si and Mo contents and weld performance indices was established through RSM and analysis of variance (ANOVA). A multi-objective optimization mathematical model for gradient improvement of the stacked weld was also established. This model was solved using a GA to obtain the optimal element content combination added to the welding wire and the optimal weld thickness for each weld layer. Finally, submerged arc welding experiments of the stacked weld were conducted according to the optimization results. The results show that the tensile strength of the base layer, filling layer and cover layer of the stacked weld increased by 5.60%, 6.16% and 4.53%, respectively. Hydrogen embrittlement resistance increased by 70.56%, 52.40% and 45.16%, respectively. The fatigue and creep resistance were also improved. The experimental results validate the feasibility and accuracy of the proposed optimization method. Full article
Show Figures

Figure 1

15 pages, 2217 KiB  
Article
Energy-Based Approach for Fatigue Life Prediction of Additively Manufactured ABS/GNP Composites
by Soran Hassanifard and Kamran Behdinan
Polymers 2025, 17(15), 2032; https://doi.org/10.3390/polym17152032 - 25 Jul 2025
Viewed by 272
Abstract
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. [...] Read more.
This study examines the effectiveness of energy-based models for fatigue life prediction of additively manufactured acrylonitrile butadiene styrene (ABS)/graphene nanoplatelet (GNP) composites. The effects of varying GNP weight percentages and filament raster orientations on the fatigue life of the samples were investigated theoretically. The required stress and strain values for use in energy-based models were obtained by solving two sets of Neuber and Ramberg–Osgood equations, utilizing the available values of notch strength reduction factors at each load level and the average Young modulus for each composite material. Results revealed that none of the studied energy-based models could accurately predict the fatigue life of the samples across the entire high- and low-cycle fatigue regimes, with strong dependence on the stress ratio (R). Instead, a novel fatigue life prediction model was developed by combining two existing energy-based models, incorporating stress ratio dependence for cases with negative mean stress. This model was tested for R values roughly between −0.22 and 0. Results showed that, for all samples at each raster orientation, most of the predicted fatigue lives fell within the upper and lower bounds, with a factor of ±2 across the entire range of load levels. These findings highlight the reliability of the proposed model for a wide range of R values when mean stress is negative. Full article
Show Figures

Figure 1

21 pages, 11034 KiB  
Article
Effect of Pre-Hoop Expansion Deformation on High-Temperature Mechanical Properties of Zirconium Plate at 400 °C
by Haidong Qi, Li You and Xiping Song
Metals 2025, 15(8), 827; https://doi.org/10.3390/met15080827 - 23 Jul 2025
Viewed by 222
Abstract
The role of pre-hoop expansion deformation on high-temperature mechanical properties of zirconium at 400 °C was investigated. The results showed that with the increase in the pre-strain, the yield strength and ultimate strength increased while the elongation decreased, all in a linear way. [...] Read more.
The role of pre-hoop expansion deformation on high-temperature mechanical properties of zirconium at 400 °C was investigated. The results showed that with the increase in the pre-strain, the yield strength and ultimate strength increased while the elongation decreased, all in a linear way. The creep life had a significant decrease as the creep stress exceeded 276 MPa. The fatigue–creep results indicated that as the stress ratio was less than 0.7, the deformation process was dominated by fatigue (the fatigue–creep life first increased and then decreased), while as the stress ratio was higher than 0.7, the deformation process was dominated by creep (the fatigue–creep life decreased monotonically). The dwell time had a negative effect on the fatigue–creep life. The stress field simulation results indicated that there existed a compressive stress zone, a stress transition zone, and a tensile stress zone around the pre-hoop expansion deformation zone. The compressive stress was beneficial while the tensile stress was harmful for the high-temperature mechanical properties of the zirconium plate. Full article
Show Figures

Figure 1

24 pages, 4283 KiB  
Review
Review on Upper-Limb Exoskeletons
by André Pires, Filipe Neves dos Santos and Vítor Tinoco
Machines 2025, 13(8), 642; https://doi.org/10.3390/machines13080642 - 23 Jul 2025
Viewed by 308
Abstract
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the [...] Read more.
Even for the strongest human being, maintaining an elevated arm position for an extended duration represents a significant challenge, as fatigue inevitably accumulates over time. The physical strain is further intensified when the individual is engaged in repetitive tasks, particularly those involving the use of tools or heavy equipment. Such activities increase the probability of developing muscle fatigue or injuries due to overuse or improper posture. Over time, this can result in the development of chronic conditions, which may impair the individual’s ability to perform tasks effectively and potentially lead to long-term physical impairment. Exoskeletons play a transformative role by reducing the perceived load on the muscles and providing mechanical support, mitigating the risk of injuries and alleviating the physical burden associated with strenuous activities. In addition to injury prevention, these devices also promise to facilitate the rehabilitation of individuals who have sustained musculoskeletal injuries. This document examines the various types of exoskeletons, investigating their design, functionality, and applications. The objective of this study is to present a comprehensive understanding of the current state of these devices, highlighting advancements in the field and evaluating their real-world impact. Furthermore, it analyzes the crucial insights obtained by other researchers, and by summarizing these findings, this work aims to contribute to the ongoing efforts to enhance exoskeleton performance and expand their accessibility across different sectors, including agriculture, healthcare, industrial work, and beyond. Full article
(This article belongs to the Special Issue Design and Control of Assistive Robots)
Show Figures

Figure 1

16 pages, 2566 KiB  
Article
Human Responses to Different Built Hyperthermal Environments After Short-Term Heat Acclimation
by Shuai Zhang, Qingqin Wang, Haizhu Zhou, Tianyang Wang and Guanguan Jia
Buildings 2025, 15(14), 2581; https://doi.org/10.3390/buildings15142581 - 21 Jul 2025
Viewed by 254
Abstract
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments [...] Read more.
Hyperthermal environments are encountered in many situations, and significant heat stress can exacerbate the fatigue perception of individuals and potentially threaten their safety. Heat acclimation (HA) interventions have many benefits in preventing the risk of incidents. However, whether HA interventions in specific environments can cope with other different hyperthermal environments remains uncertain. In this study, forty-three young male participants were heat-acclimated over 10 days of training on a motorized treadmill in a fixed hyperthermal environment, and they were tested in different hyperthermal environments. Physiological indices (rectal temperature (Tr), heart rate (HR), skin temperature (Tsk), and total sweat loss (Msl)) and subjective perception (rating of perceived exertion (RPE) and thermal sensation votes (TSVs)) were measured during both the heat stress test (HST) sessions and HA training sessions. The results show that HR and Tsk significantly differed between pre- and post-heat acclimation (p < 0.05 for all) following the acclimation program. However, after heat acclimation training, the reduction in Tr (ΔTr) was more notable in lower-ET* environments, and Msl showed distinct changes in different ET* environments. The RPE and TSV decreased after HA interventions, although the difference was not significant. The results indicate that HA can effectively reduce the peak of physiological parameters. However, when subjected to stronger heat stress, the improvement effects of heat acclimation on human responses will be affected. In addition, HA can alleviate physiological thermal strain, thereby reducing the adverse effects on mobility, but it has no effect on the supervisor’s ability to perceive the environment. This study suggests that additional HA training can reduce the risk of activities in high-temperature environments but exhibits different effects under different environmental conditions, indicating that hot acclimation suits have selective effects on the environment. This study provides recommendations for additional HA training before high-temperature activities. Full article
(This article belongs to the Special Issue Low-Carbon Urban Areas and Neighbourhoods)
Show Figures

Figure 1

24 pages, 3928 KiB  
Article
Performance Degradation and Fatigue Life Prediction of Hot Recycled Asphalt Mixture Under the Coupling Effect of Ultraviolet Radiation and Freeze–Thaw Cycle
by Tangxin Xie, Zhongming He, Yuetan Ma, Huanan Yu, Zhichen Wang, Chao Huang, Feiyu Yang and Pengxu Wang
Coatings 2025, 15(7), 849; https://doi.org/10.3390/coatings15070849 - 19 Jul 2025
Viewed by 518
Abstract
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles [...] Read more.
In actual service, asphalt pavement is subjected to freeze–thaw cycles and ultraviolet radiation (UV) over the long term, which can easily lead to mixture aging, enhanced brittleness, and structural damage, thereby reducing pavement durability. This study focuses on the influence of freeze–thaw cycles and ultraviolet aging on the performance of recycled asphalt mixtures. Systematic indoor road performance tests were carried out, and a fatigue prediction model was established to explore the comprehensive effects of recycled asphalt pavement (RAP) content, environmental action (ultraviolet radiation + freeze–thaw cycle), and other factors on the performance of recycled asphalt mixtures. The results show that the high-temperature stability of recycled asphalt mixtures decreases with the increase in environmental action days, while higher RAP content contributes to better high-temperature stability. The higher the proportion of old materials, the more significant the environmental impact on the mixture; both the flexural tensile strain and flexural tensile strength decrease with the increase in environmental action time. When the RAP content increased from 30% to 50%, the bending strain continued to decline. With the extension of environmental action days, the decrease in the immersion Marshall residual stability and the freeze–thaw splitting strength became more pronounced. Although the increase in RAP content can improve the forming stability, the residual stability decreases, and the freeze–thaw splitting strength is lower than that before the freeze–thaw. Based on the fatigue test results, a fatigue life prediction model with RAP content and freeze–thaw cycles as independent variables was constructed using the multiple nonlinear regression method. Verification shows that the established prediction model is basically consistent with the change trend of the test data. The research results provide a theoretical basis and optimization strategy for the performance improvement and engineering application of recycled asphalt materials. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

21 pages, 5973 KiB  
Article
Soft Conductive Textile Sensors: Characterization Methodology and Behavioral Analysis
by Giulia Gamberini, Selene Tognarelli and Arianna Menciassi
Sensors 2025, 25(14), 4448; https://doi.org/10.3390/s25144448 - 17 Jul 2025
Viewed by 394
Abstract
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize [...] Read more.
Resistive stretching sensors are currently used in healthcare robotics due to their ability to vary electrical resistance when subjected to mechanical strain. However, commercial sensors often lack the softness required for integration into soft structures. This study presents a detailed methodology to characterize fabric-based resistive stretching sensors, focusing on both static and dynamic performance, for application in a smart vascular simulator for surgical training. Five sensors, called #1–#5, were developed using conductive fabrics integrated into soft silicone. Stability and fatigue tests were performed to evaluate their behavior. The surface structure and fiber distribution were analyzed using digital microscopy and scanning electron microscopy, while element analysis was performed via Energy-Dispersive X-ray Spectroscopy. Sensors #1 and #3 are the most stable with a low relative standard deviation and good sensitivity at low strains. Sensor #3 showed the lowest hysteresis, while sensor #1 had the widest operating range (0–30% strain). Although all sensors showed non-monotonic behavior across 0–100% strain, deeper investigation suggested that the sensor response depends on the configuration of conductive paths within and between fabric layers. Soft fabric-based resistive sensors represent a promising technical solution for physical simulators for surgical training. Full article
(This article belongs to the Special Issue Sensor Technology in Robotic Surgery)
Show Figures

Graphical abstract

20 pages, 5430 KiB  
Article
Life Prediction Model for High-Cycle and Very-High-Cycle Fatigue of Ti-6Al-4V Titanium Alloy Under Symmetrical Loading
by Xi Fu, Lina Zhang, Wenzhao Yang, Zhaoming Yin, Jiakang Zhou and Hongwei Wang
Materials 2025, 18(14), 3354; https://doi.org/10.3390/ma18143354 - 17 Jul 2025
Viewed by 290
Abstract
The Ti-6Al-4V alloy is a typical α + β type titanium alloy and is widely used in the manufacture of aero-engine fans, compressor discs and blades. The working life of modern aero-engine components is usually required to reach more than 108 cycles, [...] Read more.
The Ti-6Al-4V alloy is a typical α + β type titanium alloy and is widely used in the manufacture of aero-engine fans, compressor discs and blades. The working life of modern aero-engine components is usually required to reach more than 108 cycles, which makes the infinite life design based on the traditional fatigue limit unsafe. In this study, through symmetrical loading high-cycle fatigue tests on Ti-6Al-4V titanium alloy, a nonlinear cumulative damage life prediction model was established. Further very-high-cycle fatigue tests of titanium alloys were carried out. The variation law of plastic strain energy in the evolution process of very-high-cycle fatigue damage of titanium alloy materials was described by introducing the internal stress parameter. A prediction model for the very-high-cycle fatigue life of titanium alloys was established, and the sensitivity analysis of model parameters was carried out. The results show that the established high-cycle/very-high-cycle fatigue models can fit the test data well. Moreover, based on the optimized model parameters through sensitivity analysis, the average error of the prediction results has decreased from 59% to 38%. The research aims to provide a model or method for predicting the engineering life of titanium alloys in the high-cycle/very-high-cycle range. Full article
(This article belongs to the Special Issue Fatigue Damage, Fracture Mechanics of Structures and Materials)
Show Figures

Figure 1

17 pages, 4663 KiB  
Article
Low-Cycle Fatigue Behavior of Nuclear-Grade Austenitic Stainless Steel Fabricated by Additive Manufacturing
by Jianhui Shi, Huiqiang Liu, Zhengping Liu, Runzhong Wang, Huanchun Wu, Haitao Dong, Xinming Meng and Min Yu
Crystals 2025, 15(7), 644; https://doi.org/10.3390/cryst15070644 - 13 Jul 2025
Viewed by 339
Abstract
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy [...] Read more.
The application of additive manufacturing technology in the field of nuclear power is becoming increasingly promising. The low-cycle fatigue behavior of Z2CN19-10 controlled-nitrogen-content stainless steel (SS) was investigated by fatigue equipment, scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and transmission electron microscopy (TEM), including additive manufactured (AM) and forged materials. The results showed that the microstructure of the AM material exhibited anisotropy for the X, Y, and Z directions. The tensile and impact properties of the X, Y, and Z directions in AM material were similar. The fatigue life (Nf) of X- and Y-direction specimens was better than that of Z-direction specimens. The tensile, impact, and fatigue properties of all AM materials were lower than those of the forged specimens. The Z direction specimens of AM material showed the best plastic strain by the highest transition fatigue life (NT) during the fatigue strain amplitude at 0.3% to 0.6%. The forged specimens showed the best fatigue properties under the plastic strain amplitude control mode. Fatigue fracture surfaces of AM and forged materials exhibited multi- and single-fatigue crack initiation sites, respectively. This could be attributed to the presence of incompletely melted particles and manufacturing defects inside the AM specimens. The dislocation morphology of AM and forged fatigue specimens was observed to study the low-cycle fatigue behaviors in depth. Full article
Show Figures

Figure 1

22 pages, 260894 KiB  
Article
Effects of Aging on Mode I Fatigue Crack Growth Characterization of Double Cantilever Beam Specimens with Thick Adhesive Bondline for Marine Applications
by Rahul Iyer Kumar and Wim De Waele
Materials 2025, 18(14), 3286; https://doi.org/10.3390/ma18143286 - 11 Jul 2025
Viewed by 335
Abstract
The use of adhesive joints in naval applications requires a thorough understanding of their fatigue performance. This paper reports on the fatigue experiments performed on double cantilever beam specimens with thick adhesive bondline manufactured under shipyard conditions. The specimens have an initial crack [...] Read more.
The use of adhesive joints in naval applications requires a thorough understanding of their fatigue performance. This paper reports on the fatigue experiments performed on double cantilever beam specimens with thick adhesive bondline manufactured under shipyard conditions. The specimens have an initial crack at the steel–adhesive interface and are tested in unaged, salt-spray-aged and immersion-aged conditions to determine the interface mode I fatigue properties. The strain energy release rate is calculated using the Kanninen–Penado model, and the fatigue crack growth curve is determined using a power law model. The crack growth rate slope for salt-spray-aged specimens is 16.5% lower than for unaged specimens, while that for immersion-aged specimens is 66.1% lower and is shown to be significantly different. The fracture surfaces are analyzed to identify the failure mechanisms and the influence of the aging process on the interface properties. Since the specimens are manufactured under shipyard conditions, the presence of voids and discontinuities in the adhesive bondline is observed and as a result leads to scatter. Hence, Bayesian linear regression is performed in addition to the ordinary least squares regression to account for the scatter and provide a distribution of plausible values for the power law coefficients. The results highlight the impact of aging on the fatigue property, underscoring the importance of considering environmental effects in the qualification of such joints for marine applications. Full article
Show Figures

Graphical abstract

Back to TopTop