Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = fast spectral kurtosis method

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3287 KiB  
Article
Effective Denoising of Multi-Source Partial Discharge Signals via an Improved Power Spectrum Segmentation Method Based on Normalized Spectral Kurtosis
by Baojia Chen, Kaiwen Li and Yipeng Guo
Sensors 2025, 25(12), 3798; https://doi.org/10.3390/s25123798 - 18 Jun 2025
Viewed by 334
Abstract
In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this [...] Read more.
In the field of partial discharge (PD) analysis, traditional methods typically employ single-source PD signal-processing techniques. However, these approaches exhibit significant limitations when applied to transformers with relatively complex structures. To overcome these limitations and achieve precise characterization of composite PD signatures, this study proposes an improved power spectrum segmentation method (IPSK) based on spectral kurtosis. Firstly, normalized power spectral kurtosis is used to select the appropriate parameters. Then, through the improved power spectrum segmentation method, the segmentation frequency band with the least noise is obtained. Finally, the instantaneous signal components with physical significance are obtained by reconstructing each frequency band through inverse fast Fourier transform. By analyzing the simulated signals and measured data of partial discharge, the proposed method is compared with EWT, AEFD, VMD, and CEEMDAN. The results show that IPSK has a good suppression effect on noise interference. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

21 pages, 16720 KiB  
Article
An Enhanced Spectral Amplitude Modulation Method for Fault Diagnosis of Rolling Bearings
by Zongcai Ma, Yongqi Chen, Tao Zhang and Ziyang Liao
Machines 2024, 12(11), 779; https://doi.org/10.3390/machines12110779 - 6 Nov 2024
Cited by 1 | Viewed by 785
Abstract
As a classic nonlinear filtering method, Spectral Amplitude Modulation (SAM) is widely used in the field of bearing fault characteristic frequency identification. However, when the vibration signal contains high-intensity noise interference, the accuracy of SAM in identifying fault characteristic frequencies is greatly reduced. [...] Read more.
As a classic nonlinear filtering method, Spectral Amplitude Modulation (SAM) is widely used in the field of bearing fault characteristic frequency identification. However, when the vibration signal contains high-intensity noise interference, the accuracy of SAM in identifying fault characteristic frequencies is greatly reduced. To solve the above problems, a Data Enhancement Spectral Amplitude Modulation (DA-SAM) method is proposed. This method further processes the modified signal through improved wavelet transform (IWT), calculates its logarithmic maximum square envelope spectrum to replace the original square envelope spectrum, and finally completes SAM. By highlighting signal characteristics and strengthening feature information, interference information can be minimized, thereby improving the robustness of the SAM method. In this paper, this method is verified through fault data sets. The research results show that this method can effectively reduce the interference of noise on fault diagnosis, and the fault characteristic information obtained is clearer. The superiority of this method compared with the SAM method, Autogram method, and fast spectral kurtosis diagram method is proved. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

16 pages, 4445 KiB  
Article
Rolling Bearing Composite Fault Diagnosis Method Based on Enhanced Harmonic Vector Analysis
by Jiantao Lu, Qitao Yin and Shunming Li
Sensors 2023, 23(11), 5115; https://doi.org/10.3390/s23115115 - 27 May 2023
Cited by 5 | Viewed by 1517
Abstract
Composite fault diagnosis of rolling bearings is very challenging work, especially when the characteristic frequency ranges of different fault types overlap. To solve this problem, an enhanced harmonic vector analysis (EHVA) method was proposed. Firstly, the wavelet threshold (WT) denoising method is used [...] Read more.
Composite fault diagnosis of rolling bearings is very challenging work, especially when the characteristic frequency ranges of different fault types overlap. To solve this problem, an enhanced harmonic vector analysis (EHVA) method was proposed. Firstly, the wavelet threshold (WT) denoising method is used to denoise the collected vibration signals to reduce the influence of noise. Next, harmonic vector analysis (HVA) is used to remove the convolution effect of the signal transmission path, and blind separation of fault signals is carried out. The cepstrum threshold is used in HVA to enhance the harmonic structure of the signal, and a Wiener-like mask will be constructed to make the separated signals more independent in each iteration. Then, the backward projection technique is used to align the frequency scale of the separated signals, and each fault signal can be obtained from composite fault diagnosis signals. Finally, to make the fault characteristics more prominent, a kurtogram was used to find the resonant frequency band of the separated signals by calculating its spectral kurtosis. Semi-physical simulation experiments are conducted using the rolling bearing fault experiment data to verify the effectiveness of the proposed method. The results show that the proposed method, EHVA, can effectively extract the composite faults of rolling bearings. Compared to fast independent component analysis (FICA) and traditional HVA, EHVA improves separation accuracy, enhances fault characteristics, and has higher accuracy and efficiency compared to fast multichannel blind deconvolution (FMBD). Full article
(This article belongs to the Special Issue Fault Diagnosis and Vibration Signal Processing in Rotor Systems)
Show Figures

Figure 1

24 pages, 9977 KiB  
Article
Research on Root Strain Response Characteristics of Inner Ring of Planetary Gear Transmission System with Crack Fault
by Lan Chen, Xiangfeng Zhang and Lizhong Wang
Sensors 2023, 23(1), 253; https://doi.org/10.3390/s23010253 - 26 Dec 2022
Cited by 9 | Viewed by 2252
Abstract
This paper established the system dynamics model for two kinds of tooth cracks of different depths of the sun gear and inner gear ring to study the influence mechanism of crack failure on the tooth root strain of the planetary gear transmission system. [...] Read more.
This paper established the system dynamics model for two kinds of tooth cracks of different depths of the sun gear and inner gear ring to study the influence mechanism of crack failure on the tooth root strain of the planetary gear transmission system. Combined with the finite element model of the inner gear ring, the tooth root strain of the ring was solved. Experiments verified the correctness of the solution method. The root strain under the crack fault of the sun gear and the tooth crack fault of the inner gear ring is analyzed, and the following conclusions are drawn: Periodic fault impact occurs in the strain signal of the tooth root of the inner gear ring during the crack fault of the sun gear root. The fault can be extracted by the fast spectral kurtosis method (FSK), and the fault components are used to determine whether the sun gear cracks. The Lempel–Ziv index showed a tendency to increase gradually during the process of solar wheel crack deepening, which could be used as the damage index of crack depth. The results can provide a basis and reference for fault diagnosis. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

18 pages, 6310 KiB  
Article
Feature Extraction of Bearing Weak Fault Based on Sparse Coding Theory and Adaptive EWT
by Qing Chen, Sheng Zheng, Xing Wu and Tao Liu
Appl. Sci. 2022, 12(21), 10807; https://doi.org/10.3390/app122110807 - 25 Oct 2022
Cited by 3 | Viewed by 1767
Abstract
In industry, early fault signals of rolling bearings are submerged in strong background noise, causing a low signal-to-noise ratio (SNR) and difficult diagnosis. This paper proposes a fault feature extraction method based on an optimized Laplacian wavelet dictionary (LWD) and the feature symbol [...] Read more.
In industry, early fault signals of rolling bearings are submerged in strong background noise, causing a low signal-to-noise ratio (SNR) and difficult diagnosis. This paper proposes a fault feature extraction method based on an optimized Laplacian wavelet dictionary (LWD) and the feature symbol search (FSS) algorithm to extract early fault characteristic frequencies of bearings under low SNR. As the morphological parameters of the Laplace wavelet dictionary and sparse coefficients are not easy to obtain, this method uses the adaptive empirical wavelet transform (AEWT) to determine the morphological parameters of the Laplace wavelet. Firstly, AEWT is applied to obtain the different frequency components, and the combination index is utilized for optimal component selection. Then, the morphological parameters of LWD are determined by AEWT processing, by which the overcomplete dictionary that best matches the signal can be obtained. Finally, the optimal sparse representation of the component signal in the dictionary is calculated by FSS, which helps to achieve sparse denoising and enhance the impact features. The effectiveness of the method is verified by simulation. The effectiveness and advantages of LWDFSS-AEWT are verified by experiment in comparison with methods such as fast spectral kurtosis (FSK), correlation filtering (CF), shift-invariant sparse coding (SISC), base pursuit denoising (BPDN) and wavelet packet transform Kurtogram (WPT Kurtogram). Full article
Show Figures

Figure 1

21 pages, 7379 KiB  
Article
Bearing Fault Diagnosis of Hot-Rolling Mill Utilizing Intelligent Optimized Self-Adaptive Deep Belief Network with Limited Samples
by Rongrong Peng, Xingzhong Zhang and Peiming Shi
Sensors 2022, 22(20), 7815; https://doi.org/10.3390/s22207815 - 14 Oct 2022
Cited by 6 | Viewed by 4686
Abstract
Given the complexity of the operating conditions of rolling bearings in the actual rolling process of a hot mill and the difficulty in collecting data pertinent to fault bearings comprehensively, this paper proposes an approach that diagnoses the faults of a rolling mill [...] Read more.
Given the complexity of the operating conditions of rolling bearings in the actual rolling process of a hot mill and the difficulty in collecting data pertinent to fault bearings comprehensively, this paper proposes an approach that diagnoses the faults of a rolling mill bearing by employing the improved sparrow search algorithm deep belief network (ISAA-DBN) with limited data samples. First, the fast spectral kurtosis approach is adopted to convert the non-stationary original vibration signals collected by the acceleration sensors installed at the axial and radial ends of the rolling mill bearings into two-dimensional (2D) spectral kurtosis time–frequency images with higher feature recognition, and the principal component analysis (PCA) technique is used to decrease the dimension of the data in order to achieve a high diagnosis rate with a limited number of samples. Subsequently, the sparrow search algorithm (SSA) is used to realize the intelligent optimized self-adaptive function of a deep belief network (DBN). Furthermore, the firefly disturbance algorithm is employed to improve the spatial search capability and robustness of SSA-DBN in order to achieve better performance of the ISSA-DBN method. Finally, the proposed approach is experimentally compared to other approaches used for diagnosis. The results show that the proposed approach not only retains the useful features of the data through dimension reduction but also improves the efficiency of the diagnosis and achieves the highest diagnosis accuracy with limited data samples. In addition, the optimal position of the sensor for diagnosing rolling mill roll faults is identified. Full article
Show Figures

Figure 1

17 pages, 4844 KiB  
Article
MobileNetV2 Combined with Fast Spectral Kurtosis Analysis for Bearing Fault Diagnosis
by Tian Xue, Huaiguang Wang and Dinghai Wu
Electronics 2022, 11(19), 3176; https://doi.org/10.3390/electronics11193176 - 3 Oct 2022
Cited by 10 | Viewed by 2794
Abstract
Bearings are an important component in mechanical equipment, and their health detection and fault diagnosis are of great significance. In order to meet the speed and recognition accuracy requirements of bearing fault diagnosis, this paper uses the lightweight MobileNetV2 network combined with fast [...] Read more.
Bearings are an important component in mechanical equipment, and their health detection and fault diagnosis are of great significance. In order to meet the speed and recognition accuracy requirements of bearing fault diagnosis, this paper uses the lightweight MobileNetV2 network combined with fast spectral kurtosis to diagnose bearing faults. On the basis of the original MobileNetV2 network, a progressive classifier is used to compress the feature information layer by layer with the network structure to achieve high-precision and rapid identification and classification. A cross-local connection structure is added to the network to increase the extracted feature information to improve accuracy. At the same time, the original fault signal of the bearing is a one-dimensional vibration signal, and the signal contains a large number of non-Gaussian noise and accidental shock defects. In order to extract fault features more efficiently, this paper uses the fast spectral kurtosis algorithm to process the signal, extract the center frequency of the original signal, and calculate the spectral kurtosis value. The kurtosis map generated by signal preprocessing is used as the input of the MobileNetV2 network for fault classification. In order to verify the effectiveness and generality of the proposed method, this paper uses the XJTU-SY bearing fault dataset and the CWRU bearing dataset to conduct experiments. Through data preprocessing methods, such as data expansion for different fault types in the original dataset, input data that meet the experimental requirements are generated and fault diagnosis experiments are carried out. At the same time, through the comparison with other typical classification networks, the paper proves that the proposed method has significant advantages in terms of accuracy, model size, training speed, etc., and, finally, proves the effectiveness and generality of the proposed network model in the field of fault diagnosis. Full article
(This article belongs to the Topic Machine and Deep Learning)
Show Figures

Figure 1

18 pages, 1435 KiB  
Article
The Detection of Motor Bearing Fault with Maximal Overlap Discrete Wavelet Packet Transform and Teager Energy Adaptive Spectral Kurtosis
by D.-M. Yang
Sensors 2021, 21(20), 6895; https://doi.org/10.3390/s21206895 - 18 Oct 2021
Cited by 20 | Viewed by 3108
Abstract
Motor bearings are one of the most critical components in rotating machinery. Envelope demodulation analysis has been widely used to demodulate bearing vibration signals to extract bearing defect frequency components but one of the main challenges is to accurately locate the major fault-induced [...] Read more.
Motor bearings are one of the most critical components in rotating machinery. Envelope demodulation analysis has been widely used to demodulate bearing vibration signals to extract bearing defect frequency components but one of the main challenges is to accurately locate the major fault-induced frequency band with a high signal-to-noise ratio (SNR) for demodulation. Hence, an enhanced fault detection method combining the maximal overlap discrete wavelet packet transform (MODWPT) and the Teager energy adaptive spectral kurtosis (TEASK) denoising algorithms is proposed for identifying the weak periodic impulses. The Teager energy power spectrum (TEPS) defines the sparse representation of the filtered signals of the MODWPT in the frequency domain via the Teager energy operator (TEO); the TEASK helps determine the most informative frequency band for demodulation. The methodology is compared in terms of performance with the fast Kurtogram and the Autogram methods. The simulation and practical application examples have shown that the proposed MODWPT-TEASK method outperforms the above two methods in diagnosing defects of motor bearings. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

15 pages, 5988 KiB  
Article
Sparse Low-Rank Based Signal Analysis Method for Bearing Fault Feature Extraction
by Baoxiang Wang, Yuhe Liao, Rongkai Duan and Xining Zhang
Appl. Sci. 2020, 10(7), 2358; https://doi.org/10.3390/app10072358 - 30 Mar 2020
Cited by 5 | Viewed by 2787
Abstract
The condition monitoring of rolling element bearings (REBs) is essential to maintain the reliable operation of rotating machinery, and the difficulty lies in how to estimate fault information from the raw signal that is always overwhelmed by severe background noise and other interferences. [...] Read more.
The condition monitoring of rolling element bearings (REBs) is essential to maintain the reliable operation of rotating machinery, and the difficulty lies in how to estimate fault information from the raw signal that is always overwhelmed by severe background noise and other interferences. The method based on a sparse model has attracted increasing attention because it can capture deep-level fault features. However, when processing a signal with complex components and weak fault features, the performance of sparse model-based methods is often not ideal. In this work, the fault information-based sparse low-rank algorithm (FISLRA) is proposed to abstract the fault information from a noisy signal interfered with by background noise and external interference. Concretely, a sparse and low-rank model is formulated in the time-frequency domain. Then, a fast-converging algorithm is derived based on the alternating direction method of multipliers (ADMM) to solve the formulated model. Moreover, to further highlight the periodical transients, a correlated kurtosis-based thresholding (CKT) scheme proposed in this paper is also incorporated to solve the proposed low-rank spares model. The superiority of the proposed FISLRA over the traditional sparse low-rank model (TSLRM) and spectral kurtosis (SK) is proved by simulation analysis. In addition, two experimental signals collected from a bearing test rig are utilized to demonstrate the efficiency of the proposed FISLRA in fault detection. The results illustrate that compared to the TSLRM method, FISLRA can effectively extract periodical fault transients even when harmonic components (HCs) are present in the noisy signal. Full article
Show Figures

Figure 1

27 pages, 11403 KiB  
Article
Clutter Elimination and Harmonic Suppression of Non-Stationary Life Signs for Long-Range and Through-Wall Human Subject Detection Using Spectral Kurtosis Analysis (SKA)-Based Windowed Fourier Transform (WFT) Method
by Shengying Yang, Huibin Qin, Xiaolin Liang and Thomas Aaron Gulliver
Appl. Sci. 2019, 9(2), 355; https://doi.org/10.3390/app9020355 - 21 Jan 2019
Cited by 16 | Viewed by 4249
Abstract
Life sign detection is important in many applications, such as locating disaster victims. This can be difficult in low signal to noise ratio (SNR) and through-wall conditions. This paper considers life sign detection using an impulse ultra-wideband (UWB) bio-radar with an improved sensing [...] Read more.
Life sign detection is important in many applications, such as locating disaster victims. This can be difficult in low signal to noise ratio (SNR) and through-wall conditions. This paper considers life sign detection using an impulse ultra-wideband (UWB) bio-radar with an improved sensing algorithm for clutter elimination, harmonic suppression and random-noise de-noising. To improve detection performance, two filters are used to improve SNR of these life signs. The automatic gain method is performed in fast time to improve the respiration signals. The spectral kurtosis analysis (SKA)-based windowed Fourier transform (WFT) method and an accumulator in the frequency domain are used to provide two distance estimates between the radar and human subject. Further, the accumulator can also provide the frequency estimate of the respiration signals. These estimates are used to determine if a human is present in the detection environment. Results are presented which show that the range and respiration frequency can be estimated accurately in low signal to noise and clutter ratio (SNCR) environments. In addition, the performance is better than with other techniques given in the literature. Full article
Show Figures

Figure 1

17 pages, 3388 KiB  
Article
Rolling Element Bearing Fault Diagnosis under Impulsive Noise Environment Based on Cyclic Correntropy Spectrum
by Xuejun Zhao, Yong Qin, Changbo He, Limin Jia and Linlin Kou
Entropy 2019, 21(1), 50; https://doi.org/10.3390/e21010050 - 10 Jan 2019
Cited by 39 | Viewed by 5355
Abstract
Rolling element bearings are widely used in various industrial machines. Fault diagnosis of rolling element bearings is a necessary tool to prevent any unexpected accidents and improve industrial efficiency. Although proved to be a powerful method in detecting the resonance band excited by [...] Read more.
Rolling element bearings are widely used in various industrial machines. Fault diagnosis of rolling element bearings is a necessary tool to prevent any unexpected accidents and improve industrial efficiency. Although proved to be a powerful method in detecting the resonance band excited by faults, the spectral kurtosis (SK) exposes an obvious weakness in the case of impulsive background noise. To well process the bearing fault signal in the presence of impulsive noise, this paper proposes a fault diagnosis method based on the cyclic correntropy (CCE) function and its spectrum. Furthermore, an important parameter of CCE function, namely kernel size, is analyzed to emphasize its critical influence on the fault diagnosis performance. Finally, comparisons with the SK-based Fast Kurtogram are conducted to highlight the superiority of the proposed method. The experimental results show that the proposed method not only largely suppresses the impulsive noise, but also has a robust self-adaptation ability. The application of the proposed method is validated on a simulated signal and real data, including rolling element bearing data of a train axle. Full article
(This article belongs to the Special Issue Entropy-Based Fault Diagnosis)
Show Figures

Figure 1

Back to TopTop