Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = farmland reclamation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4515 KiB  
Article
Impact of Coastal Beach Reclamation on Seasonal Greenhouse Gas Emissions: A Study of Diversified Saline–Alkaline Land Use Patterns
by Jiayi Xie, Ye Yuan, Xiaoqing Wang, Rui Zhang, Rui Zhong, Jiahao Zhai, Yumeng Lu, Jiawei Tao, Lijie Pu and Sihua Huang
Agriculture 2025, 15(13), 1403; https://doi.org/10.3390/agriculture15131403 - 29 Jun 2025
Viewed by 388
Abstract
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. [...] Read more.
Reclaiming coastal wetlands for agricultural purposes has led to intensified farming activities, which are anticipated to affect greenhouse gas (GHG) flux processes within coastal wetland ecosystems. However, how greenhouse gas exchanges respond to variations in agricultural reclamation activities across different years remains uncertain. To address this knowledge gap, this study characterized dynamic exchanges within the soil–plant–atmosphere continuum by employing continuous monitoring across four representative coastal wetland soil–vegetation systems in Jiangsu, China. The results show the carbon dioxide (CO2) and nitrous oxide (N2O) flux exchanges between the system and the atmosphere and soil–vegetation carbon pools, which revealed the drivers of carbon dynamics in the coastal wetland system. The four study sites, converted from coastal wetlands to agricultural lands at different times (years), generally act as CO2 sinks and N2O sources. Higher levels of CO2 sequestration occur as the age of reclamation rises. In terms of time scale, crops lands were found to be CO2 sinks during the growing period but became CO2 sources during the crop fallow period. Although the temporal trend of the N2O flux was generally smooth, reclaimed farmlands acted as net sources of N2O, particularly during the crop-growing period. The RDA and PLS-PM models illustrate that soil salinity, acidity, and hydrothermal conditions were the key drivers affecting the magnitude of the GHG flux exchanges under reclamation. This study demonstrates that GHG emissions from reclaimed wetlands can be effectively regulated through science-based land management, calling for prioritized attention to post-development practices rather than blanket restrictions on coastal exploitation. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

27 pages, 2926 KiB  
Article
Research on Resilience Evaluation and Prediction of Urban Ecosystems in Plateau and Mountainous Area: Case Study of Kunming City
by Hui Li, Fucheng Liang, Jiaheng Du, Yang Liu, Junzhi Wang, Qing Xu, Liang Tang, Xinran Zhou, Han Sheng, Yueying Chen, Kaiyan Liu, Yuqing Li, Yanming Chen and Mengran Li
Sustainability 2025, 17(12), 5515; https://doi.org/10.3390/su17125515 - 15 Jun 2025
Viewed by 633
Abstract
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience [...] Read more.
In the face of increasingly complex urban challenges, a critical question arises: can urban ecosystems maintain resilience, vitality, and sustainability when confronted with external threats and pressures? Taking Kunming—a plateau-mountainous city in China—as a case study, this research constructs an urban ecosystem resilience (UER) assessment model based on the DPSIR (Driving forces, Pressures, States, Impacts, and Responses) framework. A total of 25 indicators were selected via questionnaire surveys, covering five dimensions: driving forces such as natural population growth, annual GDP growth, urbanization level, urban population density, and resident consumption price growth; pressures including per capita farmland, per capita urban construction land, land reclamation and cultivation rate, proportion of natural disaster-stricken areas, and unit GDP energy consumption; states measured by Evenness Index (EI), Shannon Diversity Index (SHDI), Aggregation Index (AI), Interspersion and Juxtaposition Index (IJI), Landscape Shape Index (LSI), and Normalized Vegetation Index (NDVI); impacts involving per capita GDP, economic density, per capita disposable income growth, per capita green space area, and per capita water resources; and responses including proportion of natural reserve areas, proportion of environmental protection investment to GDP, overall utilization of industrial solid waste, and afforestation area. Based on remote sensing and other data, indicator values were calculated for 2006, 2011, and 2016. The entire-array polygon indicator method was used to visualize indicator interactions and derive composite resilience index values, all of which remained below 0.25—indicating a persistent low-resilience state, marked by sustained economic growth, frequent natural disasters, and declining ecological self-recovery capacity. Forecasting results suggest that, under current development trajectories, Kunming’s UER will remain low over the next decade. This study is the first to integrate the DPSIR framework, entire-array polygon indicator method, and Grey System Forecasting Model into the evaluation and prediction of urban ecosystem resilience in plateau-mountainous cities. The findings highlight the ecosystem’s inherent capacities for self-organization, adaptation, learning, and innovation and reveal its nested, multi-scalar resilience structure. The DPSIR-based framework not only reflects the complex human–nature interactions in urban systems but also identifies key drivers and enables the prediction of future resilience patterns—providing valuable insights for sustainable urban development. Full article
(This article belongs to the Special Issue Sustainable and Resilient Regional Development: A Spatial Perspective)
Show Figures

Figure 1

13 pages, 2103 KiB  
Review
The Sustainable Development of Wetlands and Agriculture: A Literature Review
by Hanqiong He, Xiaoyu Li and Tingliang Li
Agronomy 2025, 15(3), 746; https://doi.org/10.3390/agronomy15030746 - 20 Mar 2025
Cited by 3 | Viewed by 1400
Abstract
Wetland agriculture is an important component of agricultural heritage worldwide and an example of human agricultural civilization. With the progress of society, human beings have an increasing demand for using wetland ecological environments. However, traditional agricultural reclamation has damaged wetland resources, leading to [...] Read more.
Wetland agriculture is an important component of agricultural heritage worldwide and an example of human agricultural civilization. With the progress of society, human beings have an increasing demand for using wetland ecological environments. However, traditional agricultural reclamation has damaged wetland resources, leading to the disappearance of 50% of wetlands worldwide. The sustainable and coordinated development of wetland and agricultural ecosystems is urgently needed. A bibliometric analysis method was used for analyzing wetland agriculture research, based on the Web of Science TM database. There were 2251 documents retrieved when the keywords “wetland agriculture” were searched, and 659 documents were obtained by manually removing non-relevant articles and duplicates to analyze the wetland agriculture research systematically. Based on high-frequency keyword analysis, wetland agriculture has evolved from the agricultural reclamation of wetlands, the return of farmland for wetlands, to the coexistence of wetland and agriculture. Furthermore, the functions of wetland agriculture are summarized and factors impacting its sustainability and healthy development are discussed. Therefore, the scientific use of wetlands based on their ecological services is an effective method for achieving the sustainable development of both ecosystems. Some advances are proposed for the future development of wetland ecological agriculture. Full article
(This article belongs to the Section Agroecology Innovation: Achieving System Resilience)
Show Figures

Figure 1

19 pages, 5083 KiB  
Article
Ecological Restoration and Regeneration Strategies for the Gumi Mountain Mining Area in Wuhan Guided by Nature-Based Solution (NbS) Concepts
by Li Hong, Shuowen Feng, Panru Li and Aoxue Wang
Sustainability 2025, 17(5), 1913; https://doi.org/10.3390/su17051913 - 24 Feb 2025
Cited by 1 | Viewed by 1110
Abstract
To remedy ecological damage and soil contamination in mining brownfields, this research focuses on the Gumi Mountain mining area in Wuhan. It proposes restoration strategies based on Nature-based Solutions (NbSs). Besides terrain restoration and soil enhancement, it also involves the redesigning of water [...] Read more.
To remedy ecological damage and soil contamination in mining brownfields, this research focuses on the Gumi Mountain mining area in Wuhan. It proposes restoration strategies based on Nature-based Solutions (NbSs). Besides terrain restoration and soil enhancement, it also involves the redesigning of water systems, hydrological management, and the stratified planting of native species to restore plant communities. As China’s inaugural quartz optical fiber was born here, we need to consider its history when making reclamation strategy for the Optics Valley City. This research took the Pulsed High Magnetic Field Facility (PHMFF) as the prototype to build a model that integrates “mountain, river, forest, farmland and flower” ecosystems. Based on NbS, we divided the brownfield by functions and redesigned the tourist routes. This research offers new methodologies for similar efforts in mine rehabilitation. Full article
Show Figures

Figure 1

21 pages, 8848 KiB  
Article
Monitoring and Analysis of Relocation and Reclamation of Residential Areas Based on Multiple Remote Sensing Indices
by Huiping Huang, Yingqi Wang, Chao Yuan, Wenlu Zhu and Yichen Tian
Land 2025, 14(2), 401; https://doi.org/10.3390/land14020401 - 14 Feb 2025
Viewed by 597
Abstract
The relocation of residents from high-risk areas is a critical measure to address safety and development issues in the floodplain regions of Henan Province in China. Whether the old villages can be reclaimed as farmland after demolition concerns Henan Province’s ability to maintain [...] Read more.
The relocation of residents from high-risk areas is a critical measure to address safety and development issues in the floodplain regions of Henan Province in China. Whether the old villages can be reclaimed as farmland after demolition concerns Henan Province’s ability to maintain its farmland red line. This paper integrated multiple remote sensing indices and proposed a remote sensing identification method for monitoring the progress status of village relocation and reclamation that adapted to data characteristics and application scenarios. Firstly, it addressed the issue of missing target bands in GF-2 (GaoFen-2) by employing a band downscaling method; secondly, it combined building and vegetation indices to identify changes in land cover in the old villages within the floodplain, analyzing the implementation effects of the relocation and reclamation policies. Results showed that using a Random Forest regression model to generate a 4 m resolution shortwave infrared band not only retains the original target band information of Landsat-8 but also enhances the spatial detail of the images. Based on the optimal thresholds of multiple remote sensing indices, combined with human footprint data and POI (Points of Interest) identified village boundaries, the overall accuracy of identifying the progress status of resident relocation and reclamation reached 93.5%. In the floodplain region of Henan, the implementation effect of resident relocation was relatively good, with an old village demolition rate of 77%, yet the farmland reclamation rate was only 23%, indicating significant challenges in land conversion, lagging well behind the pilot program schedule requirements. Overall, this study made two primary contributions. First, to distinguish between rural construction and bare soil, thereby improving the accuracy of construction land extraction, an Enhanced Artifical Surface Index (EASI) was proposed. Second, the monitoring results of land use changes were transformed from pixel-level to village-level, and this framework can be extended to other specific land use change monitoring scenarios, demonstrating broad application potential. Full article
Show Figures

Figure 1

23 pages, 1655 KiB  
Article
The Spatial–Temporal Evolution and Impact Mechanism of Cultivated Land Use in the Mountainous Areas of Southwest Hubei Province, China
by Zhengxiang Wu, Qingbin Fan, Wen Li and Yong Zhou
Land 2024, 13(11), 1946; https://doi.org/10.3390/land13111946 - 18 Nov 2024
Cited by 3 | Viewed by 979
Abstract
Changes in cultivated land use significantly impact food production capacity, which in turn affects food security. Therefore, accurately understanding the spatial and temporal variations in cultivated land use is critical for strategic decision-making regarding national food security. Since the second national soil survey [...] Read more.
Changes in cultivated land use significantly impact food production capacity, which in turn affects food security. Therefore, accurately understanding the spatial and temporal variations in cultivated land use is critical for strategic decision-making regarding national food security. Since the second national soil survey was conducted in around 1980, China has implemented major efforts, such as a nationwide soil testing and fertilization project in around 2005 and the establishment of the National Standards for Cultivated Land Quality Grading in 2016. However, limited research has focused on how cultivated land use has changed during these periods and the mechanisms driving these changes. This study, using Enshi Prefecture in the mountainous region of southwestern Hubei Province as a case study, examines the spatiotemporal changes in cultivated land use during 1980–2018. Land use data from 1980, 2005, and 2018 were combined with statistical yearbook data from Enshi Prefecture, and remote sensing and GIS technology were applied. Indicators such as the dynamic degree of cultivated land use, the relative rate of change in cultivated land use, and a Geoscience Information Atlas model were used to explore these changes. Additionally, principal component analysis was employed to examine the mechanisms influencing these changes. The results show that (1) the area of cultivated land in Enshi Prefecture increased slightly from 1980 to 2005, while from 2005 to 2018, it significantly decreased; compared with the earlier period, the transformation of land use types during 2005–2018 was more intense; (2) the increase in cultivated land area from 1980 to 2005 was mainly due to deforestation, the creation of farmland from lakes, and the reclamation of wasteland, while the decrease in land area was primarily attributed to the conversion of farmland back to forests and grassland. From 2005 to 2018, the main drivers for the increase in cultivated land were deforestation and the reclamation of wasteland, while the return of farmland to forests remained the primary reason for the decrease in land area; (3) from 1980 to 2005, the dynamic degree of cultivated land use in each county and city of Enshi Prefecture was generally low. However, between 2005 and 2018, the dynamic degree increased in most counties and cities except Enshi City and Xianfeng County; (4) there were significant variations in the relative rate of change in cultivated land utilization across counties and cities from 1980 to 2005. However, from 2005 to 2018, the relative rate of change decreased in all counties and cities compared to the previous period; (5) since 1980, nearly 50% of the cultivated land in Enshi Prefecture has undergone land classification conversion, with frequent shifts between different land classes; and (6) economic development, population growth, capital investment, food production, and production efficiency are the dominant socioeconomic factors driving changes in cultivated land use in Enshi Prefecture. The results of this study can provide a scientific basis for the protection and optimization of cultivated land resources in the mountainous regions of southwestern Hubei Province. Full article
Show Figures

Figure 1

22 pages, 62132 KiB  
Article
Assessment of the Impact of Land Use on Biodiversity Based on Multiple Scenarios—A Case Study of Southwest China
by Yingzhi Kuang, Hao Zhou and Lun Yin
Diversity 2024, 16(10), 630; https://doi.org/10.3390/d16100630 - 10 Oct 2024
Cited by 4 | Viewed by 2405
Abstract
The main causes of habitat conversion, degradation, and fragmentation—all of which add to the loss in biodiversity—are human activities, such as urbanization and farmland reclamation. In order to inform scientific land management and biodiversity conservation strategies and, therefore, advance sustainable development, it is [...] Read more.
The main causes of habitat conversion, degradation, and fragmentation—all of which add to the loss in biodiversity—are human activities, such as urbanization and farmland reclamation. In order to inform scientific land management and biodiversity conservation strategies and, therefore, advance sustainable development, it is imperative to evaluate the effects of land-use changes on biodiversity, especially in areas with high biodiversity. Using data from five future land-use scenarios under various Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs), this study systematically assesses the characteristics of land-use and landscape pattern changes in southwest China by 2050. This study builds a comprehensive biodiversity index and forecasts trends in species richness and habitat quality using models like Fragstats and InVEST to evaluate the overall effects of future land-use changes on biodiversity. The research yielded the subsequent conclusions: (1) Grasslands and woods will continue to be the primary land uses in southwest China in the future. But the amount of grassland is expected to decrease by 11,521 to 102,832 km2, and the amounts of wasteland and urban area are expected to increase by 8130 to 16,293 km2 and 4028 to 19,677 km2, respectively. Furthermore, it is anticipated that metropolitan areas will see an increase in landscape fragmentation and shape complexity, whereas forests and wastelands will see a decrease in these aspects. (2) In southwest China, there is a synergistic relationship between species richness and habitat quality, and both are still at relatively high levels. In terms of species richness and habitat quality, the percentage of regions categorized as outstanding and good range from 71.63% to 74.33% and 70.13% to 75.83%, respectively. The environmental circumstances for species survival and habitat quality are expected to worsen in comparison to 2020, notwithstanding these high levels. Western Sichuan, southern Guizhou, and western Yunnan are home to most of the high-habitat-quality and species-richness areas, while the western plateau is home to the majority of the lower scoring areas. (3) The majority of areas (89.84% to 94.29%) are forecast to undergo little change in the spatial distribution of biodiversity in southwest China, and the general quality of the ecological environment is predicted to stay favorable. Except in the SSP1-RCP2.6 scenario, however, it is expected that the region with declining biodiversity will exceed those with increasing biodiversity. In comparison to 2020, there is a projected decline of 1.0562% to 5.2491% in the comprehensive biodiversity index. These results underscore the major obstacles to the conservation of biodiversity in the area, highlighting the need to fortify macro-level land-use management, put into practice efficient regional conservation plans, and incorporate traditional knowledge in order to save biodiversity. Full article
(This article belongs to the Special Issue Biodiversity Conservation Planning and Assessment)
Show Figures

Figure 1

37 pages, 12163 KiB  
Article
Spatial–Temporal Evolution, Impact Mechanisms, and Reclamation Potential of Rural Human Settlements in China
by Duan Ran, Qiyu Hu and Zhanlu Zhang
Land 2024, 13(4), 430; https://doi.org/10.3390/land13040430 - 28 Mar 2024
Cited by 10 | Viewed by 2246
Abstract
In China’s pursuit of modernization, the government has introduced the rural revitalization strategy to combat rural decline, foster balanced urban–rural development, and reduce the urban–rural gap. Rural human settlements, as key components of this strategy, play a vital role. This paper examines the [...] Read more.
In China’s pursuit of modernization, the government has introduced the rural revitalization strategy to combat rural decline, foster balanced urban–rural development, and reduce the urban–rural gap. Rural human settlements, as key components of this strategy, play a vital role. This paper examines the types and characteristics of human–earth relationships within rural settlements, emphasizing their significance. Using national land use and population census data, we analyze the spatiotemporal evolution of rural settlements at the county level, investigating landscape pattern changes, assessing the degree of coupling coordination between rural population and settlements, categorizing relationship types and features, and estimating the potential for remediation. Our findings reveal a growing trend in the scale of rural human settlements, particularly sourced from arable land, with significant expansions observed in the North China Plain and Northeast Plain, indicating potential for farmland reclamation and village consolidation. Landscape patterns of rural human settlements exhibit increased fragmentation, complex shapes, and aggregation. We categorize the utilization of rural human settlements into two types, each with four distinct features: human–land coordination is observed in regions characterized by either a higher rural population and larger rural settlement areas, or lower rural population and smaller rural settlement areas. Human–land trade-offs are evident in areas where there is either a higher rural population and smaller rural settlement areas, or lower rural population and larger rural settlement areas. This provides valuable insights for the Chinese government’s context-specific implementation of the rural revitalization strategy. It also serves as an experiential reference for the governance of rural human settlements in other developing countries. Full article
Show Figures

Figure 1

20 pages, 14004 KiB  
Article
Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China
by Junzhi Ye, Yunfeng Hu, Zhiming Feng, Lin Zhen, Yu Shi, Qi Tian and Yunzhi Zhang
Remote Sens. 2024, 16(6), 1089; https://doi.org/10.3390/rs16061089 - 20 Mar 2024
Cited by 6 | Viewed by 3014
Abstract
The farming–pastoral zone in northern China is one of the most ecologically sensitive areas globally, having experienced extensive cropland abandonment and land reclamation over decades, primarily influenced by policy adjustment and global warming. However, the spatiotemporal patterns and suitability of long-term cropland change [...] Read more.
The farming–pastoral zone in northern China is one of the most ecologically sensitive areas globally, having experienced extensive cropland abandonment and land reclamation over decades, primarily influenced by policy adjustment and global warming. However, the spatiotemporal patterns and suitability of long-term cropland change remain poorly understood. Using the annual China land cover dataset (CLCD), we provide a cropland abandonment and land reclamation mapping approach based on actual land use processes (rather than land cover conditions) to investigate spatiotemporal features of abandonment and reclamation and evaluate the rationality. Our findings show that: (1) Returning farmland to forest and grassland has been a clear trend in the study area over the past 30 years. Specifically, cropland use has undergone three phases of change, i.e., cropland contraction and expansion alternately (before 2000), followed by substantial abandonment (after 2000), and low-intensity reclamation (after 2010). (2) In the last decade, the intensity of the abandonment of cropland with high and moderate suitability is low. The rate of abandonment decreased, while the intensity of land reclamation was relatively high. The rate of the reclamation increased, and the spatial distribution of cropland tended to be reasonable. Our study emphasizes the importance of monitoring actual cropland changes based on land use processes, and this method can be effectively extended to regional or global long-term cropland monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

16 pages, 3683 KiB  
Article
Pseudomonas fluorescens with Nitrogen-Fixing Function Facilitates Nitrogen Recovery in Reclaimed Coal Mining Soils
by Xin Wu, Xiangying Wang, Huisheng Meng, Jie Zhang, Jamie R. Lead and Jianping Hong
Microorganisms 2024, 12(1), 9; https://doi.org/10.3390/microorganisms12010009 - 19 Dec 2023
Cited by 4 | Viewed by 2915
Abstract
Coal mining has caused significant soil nitrogen loss in mining areas, limiting reclamation and reuse in agriculture. This article studies the effects of organic fertilizer, inorganic fertilizer, and the combined application of Pseudomonas fluorescens with the ability of nitrogen fixation on soil nitrogen [...] Read more.
Coal mining has caused significant soil nitrogen loss in mining areas, limiting reclamation and reuse in agriculture. This article studies the effects of organic fertilizer, inorganic fertilizer, and the combined application of Pseudomonas fluorescens with the ability of nitrogen fixation on soil nitrogen accumulation and composition in the reclamation area of the Tunlan Coal Mine from 2016 to 2022 under the conditions of equal nitrogen application, providing a scientific basis for microbial fertilization and the rapid increase in nitrogen content in the reclaimed soil of mining areas. The results showed that as the reclamation time increased, the nitrogen content and the composition and structure of the soil treated with fertilization rapidly evolved toward normal farmland soil. The soil nitrogen content increased most rapidly in the presence of added P. fluorescens + organic fertilizer (MB). Compared to other treatments (inorganic fertilizer (CF), organic fertilizer (M), and P. fluorescens + inorganic fertilizer (CFB)), MB increased total nitrogen (TN) to normal farmland soil levels 1–3 years earlier. The comprehensive scores of MB and CFB on the two principal components increased by 1.58 and 0.79 compared to those of M and CF treatments, respectively. This indicates that the combination of P. fluorescens and organic fertilizer improves soil nitrogen accumulation more effectively than the combination of P. fluorescens and inorganic fertilizer. In addition, the application of P. fluorescens increases the content of unknown nitrogen (UN) in acid-hydrolysable nitrogen (AHN) and decreases the content of amino acid nitrogen (AAN) and ammonia nitrogen (AN). However, there was no significant effect on the content of ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3-N) in soil-mineralized nitrogen (SMN). When combined with inorganic fertilizer, the contribution of SMN to TN increased by 14.78%, while when combined with organic fertilizer, the contribution of AHN to TN increased by 44.77%. In summary, the use of P. fluorescens is beneficial for nitrogen recovery in the reclaimed soil of coal-mining areas. The optimal fertilization method under the experimental conditions is the combination of P. fluorescens and organic fertilizer. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

26 pages, 16090 KiB  
Article
Detecting, Analyzing, and Predicting Land Use/Land Cover (LULC) Changes in Arid Regions Using Landsat Images, CA-Markov Hybrid Model, and GIS Techniques
by Salman A. H. Selmy, Dmitry E. Kucher, Gintautas Mozgeris, Ali R. A. Moursy, Raimundo Jimenez-Ballesta, Olga D. Kucher, Mohamed E. Fadl and Abdel-rahman A. Mustafa
Remote Sens. 2023, 15(23), 5522; https://doi.org/10.3390/rs15235522 - 27 Nov 2023
Cited by 38 | Viewed by 9826
Abstract
Understanding the change dynamics of land use and land cover (LULC) is critical for efficient ecological management modification and sustainable land-use planning. This work aimed to identify, simulate, and predict historical and future LULC changes in the Sohag Governorate, Egypt, as an arid [...] Read more.
Understanding the change dynamics of land use and land cover (LULC) is critical for efficient ecological management modification and sustainable land-use planning. This work aimed to identify, simulate, and predict historical and future LULC changes in the Sohag Governorate, Egypt, as an arid region. In the present study, the detection of historical LULC change dynamics for time series 1984–2002, 2002–2013, and 2013–2022 was performed, as well as CA-Markov hybrid model was employed to project the future LULC trends for 2030, 2040, and 2050. Four Landsat images acquired by different sensors were used as spatial–temporal data sources for the study region, including TM for 1984, ETM+ for 2002, and OLI for 2013 and 2022. Furthermore, a supervised classification technique was implemented in the image classification process. All remote sensing data was processed and modeled using IDRISI 7.02 software. Four main LULC categories were recognized in the study region: urban areas, cultivated lands, desert lands, and water bodies. The precision of LULC categorization analysis was high, with Kappa coefficients above 0.7 and overall accuracy above 87.5% for all classifications. The results obtained from estimating LULC change in the period from 1984 to 2022 indicated that built-up areas expanded to cover 12.5% of the study area in 2022 instead of 5.5% in 1984. This urban sprawl occurred at the cost of reducing old farmlands in old towns and villages and building new settlements on bare lands. Furthermore, cultivated lands increased from 45.5% of the total area in 1984 to 60.7% in 2022 due to ongoing soil reclamation projects in desert areas outside the Nile Valley. Moreover, between 1984 and 2022, desert lands lost around half of their area, while water bodies gained a very slight increase. According to the simulation and projection of the future LULC trends for 2030, 2040, and 2050, similar trends to historical LULC changes were detected. These trends are represented by decreasing desert lands and increasing urban and cultivated newly reclaimed areas. Concerning CA-Markov model validation, Kappa indices ranged across actual and simulated maps from 0.84 to 0.93, suggesting that this model was reasonably excellent at projecting future LULC trends. Therefore, using the CA-Markov hybrid model as a prediction and modeling approach for future LULC trends provides a good vision for monitoring and reducing the negative impacts of LULC changes, supporting land use policy-makers, and developing land management. Full article
(This article belongs to the Special Issue Advances of Remote Sensing in Land Cover and Land Use Mapping)
Show Figures

Figure 1

17 pages, 30436 KiB  
Article
Increase in Soil Carbon Pool Stability Rather Than Its Stock in Coastal Saline—Alkali Ditches following Reclamation Time
by Xiangrong Li, Zhen Liu, Jing Li, Huarui Gong, Yitao Zhang, Zhigang Sun and Zhu Ouyang
Agronomy 2023, 13(11), 2843; https://doi.org/10.3390/agronomy13112843 - 19 Nov 2023
Cited by 1 | Viewed by 2072
Abstract
Extensive drainage ditches are constructed to reduce soil salinity in reclaimed saline–alkali farmland, consequently forming plant growth hotspots and impacting soil carbon stocks therein. However, the investigation into changes in soil carbon stocks remains limited in these ditches. To address this, soil samples [...] Read more.
Extensive drainage ditches are constructed to reduce soil salinity in reclaimed saline–alkali farmland, consequently forming plant growth hotspots and impacting soil carbon stocks therein. However, the investigation into changes in soil carbon stocks remains limited in these ditches. To address this, soil samples were collected from drainage ditches, which originated from the reclamation of saline–alkali farmland, at different reclamation years (the first, seventh, and fifteenth year). Moreover, fractions were separated from soil samples; a particle size separation method (particulate organic matter, POM; mineral–associated organic matter, MAOM) and a spatio–temporal substitution method were conducted to analyze the variations in soil carbon components and the underlying mechanisms. The results indicate that there were no significant variations in the contents and stocks of soil organic carbon (SOC) and soil inorganic carbon (SIC) following the increase in reclamation time. However, in the POM fraction, the SOC content (SOCPOM) and stock significantly decreased from 2.24 to 1.12 g kg−1 and from 19.02 to 12.71 Mg ha−1, respectively. Conversely, in the MAOM fraction, the SOC content (SOCMAOM) and stock significantly increased from 0.65 to 1.70 g kg−1 and from 5.30 to 12.27 Mg ha−1, respectively. The different changes in SOCPOM and SOCMAOM, as well as the result of the structural equation model, showed a possible transformation process from SOCPOM to SOCMAOM in the soil carbon pool under the driving force of reclamation time. The results in terms of the changes in soil carbon components demonstrate the stability rather than the stock of the soil carbon pool increase in coastal saline–alkali ditches following the excavation formation time. Although more long time series and direct evidence are needed, our findings further provide a case study for new knowledge about changes in the soil carbon pool within saline–alkali ditches and reveal the potential processes involved in the transformation of soil carbon components. Full article
Show Figures

Figure 1

15 pages, 7040 KiB  
Article
Analyzing the Factors Driving the Changes of Ecosystem Service Value in the Liangzi Lake Basin—A GeoDetector-Based Application
by Yan Zhou, Tao Chen, Jingjing Wang and Xiaolan Xu
Sustainability 2023, 15(22), 15763; https://doi.org/10.3390/su152215763 - 9 Nov 2023
Cited by 15 | Viewed by 1784
Abstract
The Liangzi Lake Basin (LLB) is an important ecological buffer for Wuhan’s urban agglomeration. It involves the ecological security of the middle reaches of the Yangtze River. Historical land misuse has altered the topography and impacted the ecosystem services value (ESV). Amid urbanization, [...] Read more.
The Liangzi Lake Basin (LLB) is an important ecological buffer for Wuhan’s urban agglomeration. It involves the ecological security of the middle reaches of the Yangtze River. Historical land misuse has altered the topography and impacted the ecosystem services value (ESV). Amid urbanization, it is vital to highlight changing land use methods and their effects on ESV valuation, understanding the underlying drivers comprehensively. The research is centered on the LLB as its designated study region, and utilizes remote sensing satellite data spanning from 2000 to 2020. This data is combined with a value equivalence table to quantify ESV. The GeoDetector method is employed to investigate the driving factors behind ESV fluctuations. The findings indicate a substantial shift in land use patterns within the LLB between 2000 and 2020. Notably, arable land decreased by 6.28% and water bodies decreased by 0.92%, while built-up areas expanded by 5.14% and forest land expanded by 2.05%. During this period, the LLB’s ecosystem services value decreased by approximately 2.035 billion yuan. This drop was mainly due to reduced water areas resulting from urbanization, negatively impacting the ecological regulatory services provided by these water bodies. Based on the geoprobe model, possible drivers of changes in ESV in the LLB were identified, with human activity intensity and NDVI detection results being the most obvious. The research emphasized protecting and restoring key ecological areas, like water bodies and forests, to maintain a delicate balance between the environment and socio-economic development. Additionally, they exemplify the effectiveness of ecological policies, including initiatives such as “Returning Farmland to Forest or Pasture” (RFFP), and the prohibition of lake and field reclamation. Full article
(This article belongs to the Section Environmental Sustainability and Applications)
Show Figures

Figure 1

15 pages, 22214 KiB  
Article
Integrated Mining and Reclamation Practices Enhance Sustainable Land Use: A Case Study in Huainan Coalfield, China
by Zhanjie Feng, Zhenqi Hu, Xi Zhang, Yuhang Zhang, Ruihao Cui and Li Lu
Land 2023, 12(11), 1994; https://doi.org/10.3390/land12111994 - 31 Oct 2023
Cited by 11 | Viewed by 2695
Abstract
In the coal-grain composite area (CGCA) of eastern China with a high groundwater table (HGT), underground coal mining subsidence has caused extensive submergence of farmland, posing a significant threat to regional food security. Currently, land reclamation techniques in mining subsidence areas primarily focus [...] Read more.
In the coal-grain composite area (CGCA) of eastern China with a high groundwater table (HGT), underground coal mining subsidence has caused extensive submergence of farmland, posing a significant threat to regional food security. Currently, land reclamation techniques in mining subsidence areas primarily focus on post-mining reclamation (PMR) of stable subsidence land with a low reclamation rate. This study investigated the application of concurrent mining and reclamation (CMR) technology for unstable subsidence land in a representative HGT mining area, namely the Guqiao Coal Mine in the Huainan Coalfield. Firstly, mining subsidence prediction and geographic information technology were employed to simulate the spatio-temporal evolution of dynamic mining subsidence, taking into consideration the mining plan. Subsequently, phased reclamation parameters were quantitatively designed by integrating the dynamic mining subsidence and surface reclamation measures. Lastly, scenario simulations were conducted to discuss the effectiveness of CMR in comparison with non-reclamation (NR) and PMR. Additionally, reclamation and ecological restoration strategies for coal mining subsidence areas with comprehensive governance modes were proposed. The findings indicated that mining activities have led to a reduction in both the quantity and quality of original farmland, with 70% of the farmland submerged and rendered uncultivable. In contrast to PMR, which achieved a reclamation rate of 29%, CMR can significantly increase the farmland reclamation rate to 69% while also prolonging the service life of farmland. This study provides theoretical support and technical references for promoting sustainable mining practices, protecting farmland, and facilitating the high-quality development of coal resource-based cities. Full article
Show Figures

Figure 1

19 pages, 12322 KiB  
Article
Crop Classification and Growth Monitoring in Coal Mining Subsidence Water Areas Based on Sentinel Satellite
by Ruihao Cui, Zhenqi Hu, Peijun Wang, Jiazheng Han, Xi Zhang, Xuyang Jiang and Yingjia Cao
Remote Sens. 2023, 15(21), 5095; https://doi.org/10.3390/rs15215095 - 24 Oct 2023
Cited by 10 | Viewed by 2037
Abstract
In high groundwater level mining areas, subsidence resulting from mining can lead to waterlogging in farmland, causing damage to crops and affecting their growth and development, thereby affecting regional food security. Therefore, it is necessary to restore agricultural production in the coal mining [...] Read more.
In high groundwater level mining areas, subsidence resulting from mining can lead to waterlogging in farmland, causing damage to crops and affecting their growth and development, thereby affecting regional food security. Therefore, it is necessary to restore agricultural production in the coal mining subsidence water areas in the densely populated eastern plains. This study focuses on the Yongcheng coal mining subsidence water areas. It utilizes Sentinel-1 and Sentinel-2 data from May to October in the years 2019 to 2022 to monitor the growth and development of crops. The results demonstrated that (1) the accuracy of aquatic crops categorization was improved by adjusting the elevation of the study region with Mining Subsidence Prediction Software (MSPS 1.0). The order of accuracy for classifying aquatic crops using different machine learning techniques is Random Forest (RF) > Classification and Regression Trees (CART) ≥ Support Vector Machine (SVM). Using the RF method, the obtained classification results can be used for subsequent crop growth monitoring. (2) During the early stages of crop growth, when vegetation cover is low, the Radar Vegetation Index (RVI) is sensitive to the volume scattering of crops, making it suitable for tracking the early growth processes of crops. The peak RVI values for crops from May to July are ranked in the following order: rice (2.595), euryale (2.590), corn (2.535), and lotus (2.483). (3) The order of crops showing improved growth conditions during the mid-growth stage is as follows: rice (47.4%), euryale (43.4%), lotus (27.6%), and corn (4.01%). This study demonstrates that in the Yongcheng coal subsidence water areas, the agricultural reclamation results for the grain-focused model with rice as the main crop and the medicinal herb-focused model with euryale as the main crop are significant. This study can serve as a reference for agricultural management and land reclamation efforts in other coal subsidence water areas. Full article
(This article belongs to the Special Issue Within-Season Agricultural Monitoring from Remotely Sensed Data)
Show Figures

Figure 1

Back to TopTop