Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China
Abstract
:1. Introduction
- (1)
- How can cropland abandonment and land reclamation be monitored based on the land use process?
- (2)
- What is the process of cropland abandonment and land reclamation since 1990?
- (3)
- From the perspective of cropland suitability, is the land use decision of cropland abandonment and land reclamation reasonable?
2. Materials and Methods
2.1. Study Area
2.2. Data and Processing
2.3. Cropland Abandonment and Land Reclamation Mapping and Cropland Suitability Evaluation
2.3.1. Cropland Abandonment and Land Reclamation
2.3.2. Land Change Frequency
2.3.3. Multiple Criteria Decision Making
2.3.4. Analytic Hierarchy Process
3. Results
3.1. Spatiotemporal Dynamics and Suitability Characteristics of Cropland
3.2. Cropland Abandonment and Land Reclamation Process
3.3. Suitability Ratings of Abandoned and Reclaimed Cropland
4. Discussion
4.1. Cropland Change Process Detection
4.2. Uncertainty of Data and Methods
4.3. Dynamics, Driving Mechanism, and Suitability of Cropland Change
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- West, P.C.; Gibbs, H.K.; Monfreda, C.; Wagner, J.; Barford, C.C.; Carpenter, S.R.; Foley, J.A. Trading carbon for food: Global comparison of carbon stocks vs. crop yields on agricultural land. Proc. Natl. Acad. Sci. USA 2010, 107, 19645–19648. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef] [PubMed]
- Lasanta, T.; Arnaez, J.; Pascual, N.; Ruiz-Flano, P.; Errea, M.P.; Lana-Renault, N. Space-time process and drivers of land abandonment in Europe. Catena 2017, 149, 810–823. [Google Scholar] [CrossRef]
- Godfray, H.; Beddington, J.; Crute, I.; Haddad, L.; Lawrence, D.; Muir, J.; Pretty, J.; Robinson, S.; Thomas, S.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef]
- Du, Z.R.; Yang, J.Y.; Ou, C.; Zhang, T.T. Agricultural Land Abandonment and Retirement Mapping in the Northern China Crop-Pasture Band Using Temporal Consistency Check and Trajectory-Based Change Detection Approach. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4406712. [Google Scholar] [CrossRef]
- Jian, Y.Q.; Liu, Z.J.; Gong, J.Z. Response of landscape dynamics to socio-economic development and biophysical setting across the farming-pastoral ecotone of northern China and its implications for regional sustainable land management. Land Use Policy 2022, 122, 106354. [Google Scholar] [CrossRef]
- Xu, D.; Li, C.; Song, X.; Ren, H. The dynamics of desertification in the farming-pastoral region of North China over the past 10years and their relationship to climate change and human activity. Catena 2014, 123, 11–22. [Google Scholar] [CrossRef]
- Ye, J.Z.; Hu, Y.F.; Zhen, L.; Wang, H.; Zhang, Y.X. Analysis on Land-Use Change and Its Driving Mechanism in Xilingol, China, during 2000–2020 Using the Google Earth Engine. Remote Sens. 2021, 13, 5134. [Google Scholar] [CrossRef]
- Yin, R.; Yin, G.; Li, L. Assessing China’s Ecological Restoration Programs: What’s Been Done and What Remains to Be Done? Environ. Manag. 2010, 45, 442–453. [Google Scholar] [CrossRef]
- Liang, X.Y.; Li, Y.B.; Zhou, Y.L. Study on the abandonment of sloping farmland in Fengjie County, Three Gorges Reservoir Area, a mountainous area in China. Land Use Policy 2020, 97, 104760. [Google Scholar] [CrossRef]
- Ning, J.; Liu, J.; Kuang, W.; Xu, X.; Zhang, S.; Yan, C.; Li, R.; Wu, S.; Hu, Y.; Du, G.; et al. Spatiotemporal patterns and characteristics of land-use change in China during 2010–2015. J. Geogr. Sci. 2018, 28, 547–562. [Google Scholar] [CrossRef]
- Chen, W.; Li, A.J.; Hu, Y.G.; Li, L.H.; Zhao, H.M.; Han, X.R.; Yang, B. Exploring the long-term vegetation dynamics of different ecological zones in the farming-pastoral ecotone in northern China. Environ. Sci. Pollut. Res. 2021, 28, 27914–27932. [Google Scholar] [CrossRef]
- Wuyun, D.; Sun, L.; Chen, Z.X.; Hou, A.H.; Crusiol, L.G.T.; Yu, L.F.; Chen, R.Q.; Sun, Z. The spatiotemporal change of cropland and its impact on vegetation dynamics in the farming-pastoral ecotone of northern China. Sci. Total Environ. 2022, 805, 150286. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Pflugmacher, D.; Li, A.; Li, Z.G.; Hostert, P. Land use and land cover change in Inner Mongolia—Understanding the effects of China’s re-vegetation programs. Remote Sens. Environ. 2018, 204, 918–930. [Google Scholar] [CrossRef]
- Liu, H.; Gong, P.; Wang, J.; Clinton, N.; Bai, Y.Q.; Liang, S.L. Annual dynamics of global land cover and its long-term changes from 1982 to 2015. Earth Syst. Sci. Data 2020, 12, 1217–1243. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A.; et al. Global land cover mapping from MODIS: Algorithms and early results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.N.; Li, C.C.; Wang, J.; Huang, H.B.; Clinton, N.; Ji, L.Y.; Li, W.Y.; Bai, Y.Q.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef]
- Liu, J.Y.; Zhang, Z.X.; Xu, X.L.; Kuang, W.H.; Zhou, W.C.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Yu, D.S.; Wu, S.X.; et al. Spatial patterns and driving forces of land use change in China during the early 21st century. J. Geogr. Sci. 2010, 20, 483–494. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- Wang, X.H.; Lu, C.H.; Fang, J.F.; Shen, Y.C. Implications for development of grain-for-green policy based on cropland suitability evaluation in desertification-affected north China. Land Use Policy 2007, 24, 417–424. [Google Scholar] [CrossRef]
- Morton, D.C.; Noojipady, P.; Macedo, M.M.; Gibbs, H.; Victoria, D.C.; Bolfe, E.L. Reevaluating suitability estimates based on dynamics of cropland expansion in the Brazilian Amazon. Glob. Environ. Chang. 2016, 37, 92–101. [Google Scholar] [CrossRef]
- Fu, B.J.; Meng, Q.H.; Qiu, Y.; Zhao, W.W.; Zhang, Q.J.; Davidson, D.A. Effects of land use on soil erosion and nitrogen loss in the hilly area of the Loess Plateau, China. Land Degrad. Dev. 2004, 15, 87–96. [Google Scholar] [CrossRef]
- Romano, G.; Dal Sasso, P.; Trisorio Liuzzi, G.; Gentile, F. Multi-criteria decision analysis for land suitability mapping in a rural area of Southern Italy. Land Use Policy 2015, 48, 131–143. [Google Scholar] [CrossRef]
- Ustaoglu, E.; Sisman, S.; Aydınoglu, A.C. Determining agricultural suitable land in peri-urban geography using GIS and Multi Criteria Decision Analysis (MCDA) techniques. Ecol. Modell. 2021, 455, 109610. [Google Scholar] [CrossRef]
- He, Z.L.L.; Yang, X.E.; Stoffella, P.J. Trace elements in agroecosystems and impacts on the environment. J. Trace Elem. Med. Biol. 2005, 19, 125–140. [Google Scholar] [CrossRef]
- Tao, Z.; Wang, S.; Sun, P.; Li, K.; Tian, W.; Han, X.J.A.L.G. Spatio-Temporal Differentiation and Driving Factors of Cropland in the Agro-Pastoral Ecotone of Northern China. J. Nat. Resour. 2022, 45, 153–163. [Google Scholar]
- Zhang, G.; Azorin-Molina, C.; Shi, P.; Lin, D.; Guijarro, J.A.; Kong, F.; Chen, D. Impact of near-surface wind speed variability on wind erosion in the eastern agro-pastoral transitional zone of Northern China, 1982–2016. Agric. For. Meteorol. 2019, 271, 102–115. [Google Scholar] [CrossRef]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The shuttle radar topography mission. Rev. Geophys. 2007, 45, RG2004. [Google Scholar] [CrossRef]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- Yin, H.; Brandão, A.; Buchner, J.; Helmers, D.; Iuliano, B.G.; Kimambo, N.E.; Lewińska, K.E.; Razenkova, E.; Rizayeva, A.; Rogova, N.; et al. Monitoring cropland abandonment with Landsat time series. Remote Sens. Environ. 2020, 246, 111873. [Google Scholar] [CrossRef]
- FAO. The Role of Agriculture and Rural Development in Revitalizing Abandoned/Depopulated Areas; FAO: Rome, Italy, 2006. [Google Scholar]
- Dedeoğlu, M.; Dengiz, O. Generating of land suitability index for wheat with hybrid system approach using AHP and GIS. Comput. Electron. Agric. 2019, 167, 105062. [Google Scholar] [CrossRef]
- Sun, P.L.; Qu, L.; Liu, Q.G.; Xu, Y.Q.; Gong, Q.Q. Spatiotemporal differentiation characteristics and driving factors of ecological restoration in the agro-pastoral ecotone of northern China. Resour. Sci. 2022, 44, 943–954. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Wei, B.; Niu, J.Z.; Fan, Z.P.; Wang, H.L.; Han, J.C.; Zhang, G.F.; Shao, W.W. Analysis of Land Use/Cover Cnanges or Typical Agro-pasture Zigzag Zone in Northeast China. Res. Soil Water Conserv. 2010, 17, 212–216+221. [Google Scholar]
- Xue, Y.Y.; Zhang, B.Q.; He, C.S.; Shao, R. Detecting Vegetation Variations and Main Drivers over the Agropastoral Ecotone of Northern China through the Ensemble Empirical Mode Decomposition Method. Remote Sens. 2019, 11, 1860. [Google Scholar] [CrossRef]
- Dong, J.W.; Liu, J.Y.; Yan, H.M.; Tao, F.L.; Kuang, W.H. Spatio-temporal pattern and rationality of land reclamation and cropland abandonment in mid-eastern Inner Mongolia of China in 1990–2005. Environ. Monit. Assess. 2011, 179, 137–153. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Shao, G.; Zhao, G.; Le Master, D.C.; Parker, G.R.; Dunning, J.B.; Li, Q. China’s Forest Policy for the 21st Century. Science 2000, 288, 2135–2136. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.H.; He, X.Y.; Wang, Z.M.; Tian, Y.L.; Xiang, H.X.; Yu, H.; Man, W.D.; Jia, M.M.; Ren, C.Y.; Zheng, H.F. Diverse policies leading to contrasting impacts on land cover and ecosystem services in Northeast China. J. Clean. Prod. 2019, 240, 117961. [Google Scholar] [CrossRef]
- Qiu, B.; Yang, X.; Tang, Z.; Chen, C.; Li, H.; Berry, J. Urban expansion or poor productivity: Explaining regional differences in cropland abandonment in China during the early 21st century. Land Degrad. Dev. 2020, 31, 2540–2551. [Google Scholar] [CrossRef]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.M.; et al. Improvements in ecosystem services from investments in natural capital. Science 2016, 352, 1455–1459. [Google Scholar] [CrossRef]
Product | Data Type | Spatial Resolution | Time Period | Source |
---|---|---|---|---|
CLCD | Land cover change | 30 m | 1990–2020 | http://irsip.whu.edu.cn/resources/CLCD.php# (accessed on 15 March 2024) |
SRTM V3 | Elevation/Slope/Aspect of slope | 30 m | / | https://developers.google.com/earth-engine/datasets/catalog/USGS_SRTMGL1_003 (accessed on 15 March 2024) |
China high-resolution national soil information Grid basic attribute data | Effective soil thickness | 90 m | 2010–2018 | http://www.geodata.cn/ (accessed on 15 March 2024) |
Soil pH | 90 m | 2010–2018 | http://www.geodata.cn/ (accessed on 15 March 2024) | |
China 1 km soil organic matter content map | Soil organic matter | 1 km | 1990 | http://www.geodata.cn/ (accessed on 15 March 2024) |
China 1 km soil texture data | Soil texture | 1 km | 2010–2018 | http://www.geodata.cn/ (accessed on 15 March 2024) |
PERSIANN-CDR | Annual precipitation | 27 km | 2010–2018 | https://developers.google.com/earth-engine/datasets/catalog/NOAA_PERSIANN-CDR (accessed on 15 March 2024) |
GLDAS-2.1 | Spring wind speed | 27 km | 2010–2018 | https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H (accessed on 15 March 2024) |
≥10 °C temperature accumulation | 27 km | 2010–2018 |
Base Year | Test Year | The Subsequent Three Years | Definition |
---|---|---|---|
Cropland | Cropland | / | Successive cropland |
Natural land | Successive natural land | Cropland abandonment | |
Natural land | At least one year for cropland | Fallow | |
Natural land | Natural land | / | Successive natural land |
Cropland | At least one year for cropland | Land reclamation | |
Cropland | Successive natural land | Mapping error |
Target Hierarchy | Rule Hierarchy | Index Hierarchy | Suitability Score | |||
---|---|---|---|---|---|---|
8 | 6 | 4 | 2 | |||
Evaluation of cropland suitability | Topographic condition | Slope (°) | <6 | 6–15 | 15–25 | >25 |
Aspect of slope | Sunny slope | Half-sunny slope | Half-cloudy slope | Cloudy slope | ||
Elevation (m) | <500 | 500–1500 | 1500–2500 | >2500 | ||
Soil condition | Effective soil thickness (cm) | >100 | 80–100 | 60–80 | <60 | |
Organic matter (%) | >4.5 | 3.0–4.5 | 1.5–3.0 | <1.5 | ||
Soil pH | 6.5–7.5 | 7.5–8.5 | <6.5 | >8.5 | ||
Soil texture | Loam | Silty loam, sandy loam | Silty clay loam, clay loam, sandy clay loam | Loamy sand | ||
Meteorological condition | ≥10 °C cumulative temperature (°C) | >1500 | 1300–1500 | 800–1300 | <800 | |
Mean annual precipitation (mm) | >600 | 500–600 | 400–500 | <400 | ||
Spring wind speed (m/s) | <3.5 | 3.5–4.3 | 4.3–5.2 | >5.2 |
Rule Hierarchy | Topographic Condition | Soil Condition | Meteorological Condition | Weight |
---|---|---|---|---|
0.32 | 0.49 | 0.19 | ||
Slope | 0.51 | 0.163 | ||
Aspect of slope | 0.31 | 0.099 | ||
Elevation | 0.18 | 0.058 | ||
Effective soil thickness | 0.24 | 0.118 | ||
Organic matter | 0.48 | 0.235 | ||
Soil pH | 0.16 | 0.078 | ||
Soil texture | 0.12 | 0.059 | ||
Mean annual precipitation | 0.32 | 0.061 | ||
≥10 °C cumulative temperature | 0.56 | 0.106 | ||
Spring wind speed | 0.12 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ye, J.; Hu, Y.; Feng, Z.; Zhen, L.; Shi, Y.; Tian, Q.; Zhang, Y. Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China. Remote Sens. 2024, 16, 1089. https://doi.org/10.3390/rs16061089
Ye J, Hu Y, Feng Z, Zhen L, Shi Y, Tian Q, Zhang Y. Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China. Remote Sensing. 2024; 16(6):1089. https://doi.org/10.3390/rs16061089
Chicago/Turabian StyleYe, Junzhi, Yunfeng Hu, Zhiming Feng, Lin Zhen, Yu Shi, Qi Tian, and Yunzhi Zhang. 2024. "Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China" Remote Sensing 16, no. 6: 1089. https://doi.org/10.3390/rs16061089
APA StyleYe, J., Hu, Y., Feng, Z., Zhen, L., Shi, Y., Tian, Q., & Zhang, Y. (2024). Monitoring of Cropland Abandonment and Land Reclamation in the Farming–Pastoral Zone of Northern China. Remote Sensing, 16(6), 1089. https://doi.org/10.3390/rs16061089