Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = faraday probe

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 6581 KiB  
Article
High-Precision Diagnosis of the Whole Process of Laser-Induced Plasma and Shock Waves Using Simultaneous Phase-Shift Interferometry
by Lou Gao, Hongchao Zhang, Jian Lu and Zhonghua Shen
Photonics 2025, 12(6), 601; https://doi.org/10.3390/photonics12060601 - 11 Jun 2025
Viewed by 712
Abstract
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and [...] Read more.
This study employs the simultaneous phase-shift interferometry (SPSI) system to diagnose laser-induced plasma (LIP) and shock wave (SW). In high-density LIP diagnostics, the Faraday rotation effect causes probe light polarization deflection, rendering traditional fixed-phase-demodulation methods ineffective, the Carré phase-recovery algorithm is adopted and its applicability is verified. Uncertainty analysis and precision verification show that the total phase shift uncertainty is controlled within 0.045 radians, equivalent to a refractive index accuracy of 8.55×106, with sensitivity to weak perturbations improved by approximately one order of magnitude compared to conventional carrier-frequency interferometry. Experimental results demonstrate that the SPSI system precisely captures the initial spatiotemporal evolution of LIP and tracks shock waves at varying attenuation levels, exhibiting notable advantages in weak shock wave detection. This research validates the SPSI system’s high sensitivity to transient weak perturbations, offering a valuable diagnostic tool for high-vacuum plasmas, low-pressure shock waves, and stress waves in optical materials. Full article
(This article belongs to the Special Issue Advances in Laser Measurement)
Show Figures

Figure 1

19 pages, 1087 KiB  
Article
Pump-Driven Opto-Magnetic Properties in Semiconducting Transition-Metal Dichalcogenides: An Analytical Model
by Habib Rostami, Federico Cilento and Emmanuele Cappelluti
Nanomaterials 2024, 14(8), 707; https://doi.org/10.3390/nano14080707 - 18 Apr 2024
Viewed by 1468
Abstract
Single-layer transition-metal dichalcogenides provide an unique intrinsic entanglement between the spin/valley/orbital degrees of freedom and the polarization of scattered photons. This scenario gives rise to the well-assessed optical dichroism observed by using both steady and time-resolved probes. In this paper, we provide compact [...] Read more.
Single-layer transition-metal dichalcogenides provide an unique intrinsic entanglement between the spin/valley/orbital degrees of freedom and the polarization of scattered photons. This scenario gives rise to the well-assessed optical dichroism observed by using both steady and time-resolved probes. In this paper, we provide compact analytical modeling of the onset of a finite Faraday/Kerr optical rotation upon shining with circularly polarized light. We identify different optical features displaying optical rotation at different characteristic energies, and we describe in an analytical framework the time-dependence of their intensities as a consequence of the main spin-conserving and spin-flip processes. Full article
Show Figures

Figure 1

16 pages, 828 KiB  
Article
Coherent Spin Dynamics of Electrons in CdSe Colloidal Nanoplatelets
by Sergey R. Meliakov, Vasilii V. Belykh, Ina V. Kalitukha, Aleksandr A. Golovatenko, Alessio Di Giacomo, Iwan Moreels, Anna V. Rodina and Dmitri R. Yakovlev
Nanomaterials 2023, 13(23), 3077; https://doi.org/10.3390/nano13233077 - 4 Dec 2023
Cited by 4 | Viewed by 2115
Abstract
Coherent spin dynamics of electrons in CdSe colloidal nanoplatelets are investigated by time-resolved pump–probe Faraday rotation at room and cryogenic temperatures. We measure electron spin precession in a magnetic field and determine g-factors of 1.83 and 1.72 at low temperatures for nanoplatelets [...] Read more.
Coherent spin dynamics of electrons in CdSe colloidal nanoplatelets are investigated by time-resolved pump–probe Faraday rotation at room and cryogenic temperatures. We measure electron spin precession in a magnetic field and determine g-factors of 1.83 and 1.72 at low temperatures for nanoplatelets with a thickness of 3 and 4 monolayers, respectively. The dephasing time of spin precession T2* amounts to a few nanoseconds and has a weak dependence on temperature, while the longitudinal spin relaxation time T1 exceeds 10 ns even at room temperature. Observations of single and double electron spin–flips confirm that the nanoplatelets are negatively charged. The spin–flip Raman scattering technique reveals g-factor anisotropy by up to 10% in nanoplatelets with thicknesses of 3, 4, and 5 monolayers. In the ensemble with a random orientation of nanoplatelets, our theoretical analysis shows that the measured Larmor precession frequency corresponds to the in-plane electron g-factor. We conclude that the experimentally observed electron spin dephasing and its acceleration in the magnetic field are not provided by the electron g-factor anisotropy and can be related to the localization of the resident electrons and fluctuations of the localization potential. Full article
(This article belongs to the Special Issue Advances in Spin Physics in Semiconductor Nanostructures)
Show Figures

Figure 1

12 pages, 459 KiB  
Article
Coherent Spin Dynamics of Electrons in CsPbBr3 Perovskite Nanocrystals at Room Temperature
by Sergey R. Meliakov, Evgeny A. Zhukov, Evgeniya V. Kulebyakina, Vasilii V. Belykh and Dmitri R. Yakovlev
Nanomaterials 2023, 13(17), 2454; https://doi.org/10.3390/nano13172454 - 30 Aug 2023
Cited by 8 | Viewed by 2260
Abstract
Coherent spin dynamics of charge carriers in CsPbBr3 perovskite nanocrystals are studied in a temperature range of 4–300 K and in magnetic fields of up to 500 mT using time-resolved pump-probe Faraday rotation and differential transmission techniques. We detect electron spin Larmor [...] Read more.
Coherent spin dynamics of charge carriers in CsPbBr3 perovskite nanocrystals are studied in a temperature range of 4–300 K and in magnetic fields of up to 500 mT using time-resolved pump-probe Faraday rotation and differential transmission techniques. We detect electron spin Larmor precession in the entire temperature range. At temperatures below 50 K, hole spin precession is also observed. The temperature dependences of spin-related parameters, such as Landè g-factor and spin dephasing time are measured and analyzed. The electron g-factor increases with growing temperature, which can not be described by the temperature-induced band gap renormalization. We find that photocharging of the nanocrystals with either electrons or holes depends on the sample cooling regime, namely the cooling rate and illumination conditions. The type of the charge carrier provided by the photocharging can be identified via the carrier spin Larmor precession. Full article
(This article belongs to the Special Issue Semiconductor Quantum Dots: Synthesis, Properties and Applications)
Show Figures

Figure 1

23 pages, 6794 KiB  
Review
Polarization Observations of AGN Jets: Past and Future
by Jongho Park and Juan Carlos Algaba
Galaxies 2022, 10(5), 102; https://doi.org/10.3390/galaxies10050102 - 20 Oct 2022
Cited by 8 | Viewed by 4325
Abstract
The magnetic field is believed to play a critical role in the bulk acceleration and propagation of jets produced in active galactic nuclei (AGN). Polarization observations of AGN jets provide valuable information about their magnetic fields. As a result of radiative transfer, jet [...] Read more.
The magnetic field is believed to play a critical role in the bulk acceleration and propagation of jets produced in active galactic nuclei (AGN). Polarization observations of AGN jets provide valuable information about their magnetic fields. As a result of radiative transfer, jet structure, and stratification, among other factors, it is not always straightforward to determine the magnetic field structures from observed polarization. We review these effects and their impact on polarization emission at a variety of wavelengths, including radio, optical, and ultraviolet wavelengths in this paper. It is also possible to study the magnetic field in the launching and acceleration regions of AGN jets by using very long baseline interferometry (VLBI), which occurs on a small physical scale. Due to the weak polarization of the jets in these regions, probing the magnetic field is generally difficult. However, recent VLBI observations have detected significant polarization and Faraday rotation in some nearby sources. We present the results of these observations as well as prospects for future observations. Additionally, we briefly discuss recently developed polarization calibration and imaging techniques for VLBI data, which enable more in-depth analysis of the magnetic field structure around supermassive black holes and in AGN jets. Full article
(This article belongs to the Special Issue Challenges in Understanding Black Hole Powered Jets with VLBI)
Show Figures

Figure 1

14 pages, 1475 KiB  
Article
Plume Divergence and Discharge Oscillations of an Accessible Low-Power Hall Effect Thruster
by Matthew Baird, Thomas Kerber, Ron McGee-Sinclair and Kristina Lemmer
Appl. Sci. 2021, 11(4), 1973; https://doi.org/10.3390/app11041973 - 23 Feb 2021
Cited by 6 | Viewed by 3564
Abstract
Hall effect thrusters (HETs) are an increasingly utilized proportion of electric propulsion devices due to their high thrust-to-power ratio. To enable an accessible research thruster, our team used inexpensive materials and simplified structures to fabricate the 44-mm-diameter Western Hall Thruster (WHT44). Anode flow, [...] Read more.
Hall effect thrusters (HETs) are an increasingly utilized proportion of electric propulsion devices due to their high thrust-to-power ratio. To enable an accessible research thruster, our team used inexpensive materials and simplified structures to fabricate the 44-mm-diameter Western Hall Thruster (WHT44). Anode flow, discharge voltage, magnet current, and cathode flow fraction (CFF) were independently swept while keeping all other parameters constant. Simultaneously, a Faraday probe was used to test plume properties at a variety of polar coordinate distances, and an oscilloscope was used to capture discharge oscillation behavior. Plasma plume divergence angle at a fixed probe distance of 4.5 thruster diameters increased with increasing anode flow, varying from 36.7° to 37.4°. Moreover, divergence angle decreased with increasing discharge voltage, magnet current, and CFF, by 0.3°, 0.2°, and 8°, respectively, over the span of the swept parameters. Generally, the thruster exhibited a strong oscillation near 90 kHz, which is higher than a similarly sized HET (20–60 kHz). The WHT44 noise frequency spectra became more broadband and the amplitude increased at a CFF of less than 1.5% and greater than 26%. Only the low flow and low voltage operating conditions showed a quiescent sinusoidal discharge current; otherwise, the discharge current probability distribution was Gaussian. This work demonstrates that the WHT44 thruster, designed for simplicity of fabrication, is a viable tool for research and academic purposes. Full article
(This article belongs to the Special Issue Plasmas for Space Propulsion)
Show Figures

Figure 1

12 pages, 2663 KiB  
Article
Research on Polarization and Phase Fading Compensation in Michelson Interferometer Based on 3 × 3 Coupler and Novel Probe with Built-in Faraday Rotator
by Shuaiqi Jing, Jian Rong and Jiayan Tian
Appl. Sci. 2019, 9(19), 4173; https://doi.org/10.3390/app9194173 - 5 Oct 2019
Cited by 3 | Viewed by 3783
Abstract
A self-designed probe and a feedback control scheme based on the Michelson interferometer with a 3 × 3 fiber coupler are proposed. A 45° Faraday rotator is built into the self-designed probe, and a feedback control scheme is used to judge the direction [...] Read more.
A self-designed probe and a feedback control scheme based on the Michelson interferometer with a 3 × 3 fiber coupler are proposed. A 45° Faraday rotator is built into the self-designed probe, and a feedback control scheme is used to judge the direction of increase or decrease for the phase compensation, so as to solve the problems of polarization and phase fading. In addition, a result-normalized method is applied in a micro-vibration measurement experiment. The experimental interferometer system achieves a high frequency of 1 MHz micro-vibration. The normalized results keep stable with a maximum deviation from the mean of 1.9% when the power of light reflected back into the self-designed probe is altered. Applied research is carried out by detecting the displacement due to a photoacoustic wave. Therefore, the experimental interferometer system is available for the practical application of micro-displacement measurements, noncontact high-frequency detection, and point-by-point image scanning in biological tissue. Full article
(This article belongs to the Collection Optical Design and Engineering)
Show Figures

Figure 1

28 pages, 15212 KiB  
Review
Recent Progress on Electromagnetic Field Measurement Based on Optical Sensors
by Jun Peng, Shuhai Jia, Jiaming Bian, Shuo Zhang, Jianben Liu and Xing Zhou
Sensors 2019, 19(13), 2860; https://doi.org/10.3390/s19132860 - 27 Jun 2019
Cited by 79 | Viewed by 13899
Abstract
Electromagnetic field sensors are widely used in various areas. In recent years, great progress has been made in the optical sensing technique for electromagnetic field measurement, and varieties of corresponding sensors have been proposed. Types of magnetic field optical sensors were presented, including [...] Read more.
Electromagnetic field sensors are widely used in various areas. In recent years, great progress has been made in the optical sensing technique for electromagnetic field measurement, and varieties of corresponding sensors have been proposed. Types of magnetic field optical sensors were presented, including probes-based Faraday effect, magnetostrictive materials, and magnetic fluid. The sensing system-based Faraday effect is complex, and the sensors are mostly used in intensive magnetic field measurement. Magnetic field optical sensors based on magnetic fluid have high sensitivity compared to that based on magnetostrictive materials. Three types of electric field optical sensors are presented, including the sensor probes based on electric-optic crystal, piezoelectric materials, and electrostatic attraction. The majority of sensors are developed using the sensing scheme of combining the LiNbO3 crystal and optical fiber interferometer due to the good electro-optic properties of the crystal. The piezoelectric materials-based electric field sensors have simple structure and easy fabrication, but it is not suitable for weak electric field measurement. The sensing principle based on electrostatic attraction is less commonly-used sensing methods. This review aims at presenting the advances in optical sensing technology for electromagnetic field measurement, analyzing the principles of different types of sensors and discussing each advantage and disadvantage, as well as the future outlook on the performance improvement of sensors. Full article
(This article belongs to the Special Issue Fiber-Based Sensing Technology: Recent Progresses and New Challenges)
Show Figures

Figure 1

18 pages, 4469 KiB  
Article
Faraday Rotation of Extended Emission as a Probe of the Large-Scale Galactic Magnetic Field
by Anna Ordog, Rebecca A. Booth, Cameron L. Van Eck, Jo-Anne C. Brown and Thomas L. Landecker
Galaxies 2019, 7(2), 43; https://doi.org/10.3390/galaxies7020043 - 27 Mar 2019
Cited by 14 | Viewed by 4053
Abstract
The Galactic magnetic field is an integral constituent of the interstellar medium (ISM), and knowledge of its structure is crucial to understanding Galactic dynamics. The Rotation Measures (RM) of extragalactic (EG) sources have been the basis of comprehensive Galactic magnetic field models. Polarised [...] Read more.
The Galactic magnetic field is an integral constituent of the interstellar medium (ISM), and knowledge of its structure is crucial to understanding Galactic dynamics. The Rotation Measures (RM) of extragalactic (EG) sources have been the basis of comprehensive Galactic magnetic field models. Polarised extended emission (XE) is also seen along lines of sight through the Galactic disk, and also displays the effects of Faraday rotation. Our aim is to investigate and understand the relationship between EG and XE RMs near the Galactic plane, and to determine how the XE RMs, a hitherto unused resource, can be used as a probe of the large-scale Galactic magnetic field. We used polarisation data from the Canadian Galactic Plane Survey (CGPS), observed near 1420 MHz with the Dominion Radio Astrophysical Observatory (DRAO) Synthesis Telescope. We calculated RMs from a linear fit to the polarisation angles as a function of wavelength squared in four frequency channels, for both the EG sources and the XE. Across the CGPS area, 55 < < 193 , 3 < b < 5 , the RMs of the XE closely track the RMs of the EG sources, with XE RMs about half the value of EG-source RMs. The exceptions are places where large local HII complexes heavily depolarise more distant emission. We conclude that there is valuable information in the XE RM dataset. The factor of 2 between the two types of RM values is close to that expected from a Burn slab model of the ISM. This result indicates that, at least in the outer Galaxy, the EG and XE sources are likely probing similar depths, and that the Faraday rotating medium and the synchrotron emitting medium have similar variation with galactocentric distance. Full article
(This article belongs to the Special Issue New Perspectives on Galactic Magnetism)
Show Figures

Figure 1

7 pages, 1301 KiB  
Article
Probing the Large Faraday Rotation Measure Environment of Compact Active Galactic Nuclei
by Alice Pasetto, Carlos Carrasco-González, Shane O’Sullivan, Aritra Basu, Gabriele Bruni, Alex Kraus, Salvador Curiel and Karl-Heinz Mack
Galaxies 2018, 6(2), 40; https://doi.org/10.3390/galaxies6020040 - 26 Mar 2018
Cited by 1 | Viewed by 3563
Abstract
Knowing how the ambient medium in the vicinity of active galactic nuclei (AGNs) is shaped is crucial to understanding generally the evolution of such cosmic giants as well as AGN jet formation and launching. Thanks to the new broadband capability now available at [...] Read more.
Knowing how the ambient medium in the vicinity of active galactic nuclei (AGNs) is shaped is crucial to understanding generally the evolution of such cosmic giants as well as AGN jet formation and launching. Thanks to the new broadband capability now available at the Jansky Very Large Array (JVLA), we can study changes in polarization properties, fractional polarization, and polarization angles, together with the total intensity spectra of a sample of 14 AGNs, within a frequency range from 1 to 12 GHz. Depolarization modeling has been performed by means of so-called “qu-fitting” to the polarized data, and a synchrotron self absorption model has been used for fitting to the total intensity data. We found complex behavior both in the polarization spectra and in the total intensity spectra, and several Faraday components with a large rotation measure (RM) and several synchrotron components were needed to represent these spectra. Here, results for three targets are shown. This new method of analyzing broadband polarization data through qu-fitting successfully maps the complex surroundings of unresolved objects. Full article
(This article belongs to the Special Issue Polarised Emission from Astrophysical Jets)
Show Figures

Figure 1

6 pages, 2602 KiB  
Article
Magnetic Field Studies in BL Lacertae through Faraday Rotation and a Novel Astrometric Technique
by Sol N. Molina, José L. Gómez, Richard Dodson and María J. Rioja
Galaxies 2017, 5(4), 97; https://doi.org/10.3390/galaxies5040097 - 12 Dec 2017
Viewed by 3230
Abstract
It is thought that dynamically important helical magnetic fields twisted by the differential rotation of the black hole’s accretion disk or ergosphere play an important role in the launching, acceleration, and collimation of active galactic nuclei (AGN) jets. We present multi-frequency astrometric and [...] Read more.
It is thought that dynamically important helical magnetic fields twisted by the differential rotation of the black hole’s accretion disk or ergosphere play an important role in the launching, acceleration, and collimation of active galactic nuclei (AGN) jets. We present multi-frequency astrometric and polarimetric Very Long Baseline Array (VLBA) images at 15, 22, and 43 GHz, as well as Faraday rotation analyses of the jet in BL Lacertae as part of a sample of AGN jets aimed to probe the magnetic field structure at the innermost scales to test jet formation models. The novel astrometric technique applied allows us to obtain the absolute position at mm wavelengths without any external calibrator. Full article
(This article belongs to the Special Issue Polarised Emission from Astrophysical Jets)
Show Figures

Figure 1

7 pages, 973 KiB  
Article
Circular Polarization in Turbulent Blazar Jets
by Nicholas Roy MacDonald
Galaxies 2017, 5(4), 82; https://doi.org/10.3390/galaxies5040082 - 20 Nov 2017
Cited by 2 | Viewed by 3547
Abstract
Circular polarization (CP) provides an invaluable probe into the underlying plasma content of relativistic jets. CP can be generated within the jet through a physical process known as linear birefringence. This is a physical mechanism through which initially linearly polarized emission produced in [...] Read more.
Circular polarization (CP) provides an invaluable probe into the underlying plasma content of relativistic jets. CP can be generated within the jet through a physical process known as linear birefringence. This is a physical mechanism through which initially linearly polarized emission produced in one region of the jet is attenuated by Faraday rotation as it passes through other regions of the jet with distinct magnetic field orientations. Marscher developed the turbulent extreme multi-zone (TEMZ) model of blazar emission which mimics these types of magnetic geometries with collections of thousands of plasma cells passing through a standing conical shock. I have recently developed a radiative transfer algorithm to generate synthetic images of the time-dependent circularly polarized intensity emanating from the TEMZ model at different radio frequencies. In this study, we produce synthetic multi-epoch observations that highlight the temporal variability in the circular polarization produced by the TEMZ model. We also explore the effect that different plasma compositions within the jet have on the resultant levels of CP. Full article
(This article belongs to the Special Issue Polarised Emission from Astrophysical Jets)
Show Figures

Figure 1

6 pages, 434 KiB  
Article
Full-Stokes, Multi-Frequency Radio Polarimetry of Fermi Blazars; Monitoring and Modelling
by Emmanouil Angelakis, Ioannis Myserlis and J. Anton Zensus
Galaxies 2017, 5(4), 81; https://doi.org/10.3390/galaxies5040081 - 20 Nov 2017
Cited by 3 | Viewed by 3444
Abstract
The polarised emission from active galactic nuclei (AGN) jets carries information about the physical conditions at the emitting plasma elements, while its temporal evolution probes the physical processes that introduce variability and dynamically modify the local conditions. Here we present the analysis of [...] Read more.
The polarised emission from active galactic nuclei (AGN) jets carries information about the physical conditions at the emitting plasma elements, while its temporal evolution probes the physical processes that introduce variability and dynamically modify the local conditions. Here we present the analysis of multi-frequency radio linear and circular polarisation datasets with the aim of exactly quantifying the conditions in blazar jets. Our analysis includes both the careful treatment of observational datasets and numerical modelling for the reproduction of synthetic polarisation curves that can be compared to the observed ones. In our approach, the variability is attributed to traveling shocks. The emission from the cells of our jet model is computed with radiative transfer of all Stokes parameters. The model also accounts for Faraday effects which map the low-energy particle populations. We present two extreme cases in terms of the significance of Faraday conversion in the production of circular polarisation. As we show, in both regimes the model gives a realistic reproduction of the observed emission. Full article
(This article belongs to the Special Issue Polarised Emission from Astrophysical Jets)
Show Figures

Figure 1

6 pages, 1990 KiB  
Article
Evidence for Toroidal B-Field Components in AGN Jets on Kiloparsec Scales
by Sebastian Knuettel, Denise Gabuzda and Shane P. O’Sullivan
Galaxies 2017, 5(4), 61; https://doi.org/10.3390/galaxies5040061 - 4 Oct 2017
Cited by 15 | Viewed by 4159
Abstract
Though helical magnetic fields are generally believed to arise when the jets of Active Galactic Nuclei (AGN) are launched, it is still unclear what role they play (and if they survive) to the largest jet scales. A helical or toroidal B-field may contribute [...] Read more.
Though helical magnetic fields are generally believed to arise when the jets of Active Galactic Nuclei (AGN) are launched, it is still unclear what role they play (and if they survive) to the largest jet scales. A helical or toroidal B-field may contribute substantially to the collimation of the jet. This B-field structure can be detected in images of the Faraday rotation measure (RM)—a measure of the change in polarisation angle of an electromagnetic wave as it passes through a magneto-ionic medium. The Faraday rotation measure is directly proportional to the line-of-sight magnetic field; therefore a monotonic gradient in the RM transverse to the jet indicates similar behaviour of the line-of-sight B-field component. This type of analysis has mostly been done on parsec scales using VLBI observations at centimetre wavelengths, while relatively few studies have probed decaparsec to kiloparsec scales. The detection of RM gradients with significances of 3 σ or more on such large scales can demonstrate the presence of a toroidal field component, which may be associated with a helical field that has persisted to these distances from the centre of the AGN. We present the results of new Faraday rotation analyses for 2 AGN on kiloparsec scales based on multiwavelength VLA observations, with robust transverse RM gradients detected in both. Furthermore, the direction of the inferred toroidal B-fields on the sky supports previous results indicating a predominance of outward currents in the jets on kiloparsec scales. Full article
(This article belongs to the Special Issue Polarised Emission from Astrophysical Jets)
Show Figures

Figure 1

6 pages, 575 KiB  
Article
18–22 cm VLBA Observational Evidence for Toroidal B-Field Components in Six AGN Jets
by Juliana Cristina Motter and Denise Carmen Gabuzda
Galaxies 2016, 4(3), 18; https://doi.org/10.3390/galaxies4030018 - 30 Aug 2016
Cited by 2 | Viewed by 3969
Abstract
The formation of relativistic jets in Active Galactic Nuclei (AGN) is related to accretion onto their central supermassive black holes, and magnetic (B) fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very [...] Read more.
The formation of relativistic jets in Active Galactic Nuclei (AGN) is related to accretion onto their central supermassive black holes, and magnetic (B) fields are believed to play a central role in launching, collimating, and accelerating the jet streams from very compact regions out to kiloparsec scales. We present results of Faraday rotation studies based on Very Long Baseline Array (VLBA) data obtained at 18–22 cm for six well known AGN (OJ 287, 3C 279, PKS 1510-089, 3C 345, BL Lac, and 3C 454.3), which probe projected distances out to tens of parsecs from the observed cores. We have identified statistically significant, monotonic, transverse Faraday rotation gradients across the jets of all but one of these sources, indicating the presence of toroidal B fields, which may be one component of helical B fields associated with these AGN jets. Full article
(This article belongs to the Special Issue Blazars through Sharp Multi-wavelength Eyes)
Show Figures

Figure 1

Back to TopTop