Polarization Observations of AGN Jets: Past and Future
Abstract
:1. Introduction
2. Polarization Studies in Blazar Jets
2.1. Early Optical–Radio Polarization Correlations
2.2. Resolving the Polarization Structure
2.3. A Blazar Jet Polarization Model
3. VLBI Polarization Observations of Nearby AGN Jets
3.1. M87
3.2. 3C 84
3.3. 3C 273
4. New Developments & Future Prospects
5. Circular Polarization
6. Conclusions
- Blazars. It seems clear we have advanced a lot in the understanding of the polarization emission in blazars, and the connection between the properties between optical and radio polarization. Although it was clear that various radiative transfer mechanisms, such as Faraday effects, would affect the multi-band polarization observation, the understanding of their extent and characteristics has significantly improved in the recent years.The works by Gabuzda et al. [43,44] and Algaba et al. [46,47] aiming to resolve the location and characteristics of the specific radio polarized regions have been enhanced and complemented by more detailed analysis such as the analysis by Park et al. [49], who considered (i) higher frequencies, (ii) explicit RM dependence with frequency, and (iii) a saturation point where the optical depth transitions into optically thin, and RM does not increase any more. Once these aspects are considered, the connection between optical and radio emission are better understood.On the other hand, the origins of the emission are now also better understood to be ascribed to a shock or magnetic reconnection phenomenology. The multi-band study of the time evolution of polarization together with follow-up of the VLBI structural changes has provided not only understanding of the intrinsic jet polarization properties, but also of the jet dynamics and evolution.
- Nearby AGN jets. Due to its proximity and very massive black hole, M87 enables detailed polarimetric studies of the supermassive black hole and its jet. In multifrequency VLBA observations, RM magnitudes were found to decrease with increasing distance from the black hole within the Bondi radius [81]. An analytic black hole accretion flow model was applied to the RM data, from which the pressure profile of the medium surrounding the jet was determined. The result is in good agreement with the current understanding that the M87 jet is systematically collimated by the pressure of winds, which have actually been reproduced in recent GRMHD simulations [63,102]. Recent observations with the EHT have revealed a linear polarization image of the M87 black hole [30]. The observed EVPA of the ring follows an azimuthal pattern. After comparing the results with GRMHD models, it was concluded that M87 is in a MAD state, in which there is a strong poloidal magnetic field in the vicinity of the black hole [107]. Combined with a spinning black hole, this magnetic field can produce powerful jets, as seen in M87.The nearby radio galaxy 3C 84 demonstrates many interesting features, including restarted jet activity, a strong collision between the jet and a compact dense cloud, and so on. The pc-scale jet of this source has been known for its very weak linear polarization. However, recent VLBI observations made at 43 and 86 GHz have detected significant patches of linear polarization in the jet right downstream the core [132]. By using these results, combined with ALMA-only linear polarization measurements at 98, 233, and 344 GHz, a large RM of ∼ was derived. The RM, depolarization, and RM variability may be explained by Faraday rotation occurring in a boundary layer of a transversely stratified jet [132]. The results of this study suggest that future observations of polarization at mm wavelengths can provide valuable information on the magnetic field structure and the RM distribution in nearby AGNs, because shorter wavelengths are expected to produce less depolarization.The nearby flat spectrum radio quasar 3C 273 hosts a powerful jet extending to kpc-scales. Due to the rich linear polarization structure of the jet and its large width on pc scales, VLBA observations in 1997 and 2002 revealed that the jet exhibits a significant transverse gradient in RMs [142,143]. This result indicates that a helical or toroidal magnetic field is wrapping around the jet. Further observations of linear polarization with the VLBA provided even more interesting results. Lisakov et al. [146] found that transverse RM gradients were also observed in the jet based on VLBA observations in 2009. As a result of the swing in jet direction in 2003, the jet position angles between 1997/2002 and 2009 were significantly different. In contrast, the RMs at the same jet distance in the different epochs are smoothly interconnected. It appears that the Faraday screen is wider than the narrow relativistic jet observed at one epoch, and that the jet illuminates different parts of the screen in different epochs. Based on this result, the jet-sheath model with a sheath threaded by a helical magnetic field serving as the Faraday screen was derived.
- Recent Developments in VLBI polarimetry. A number of novel algorithms for instrumental polarization calibration and polarimetric imaging have been developed recently, including GPCAL [150], PolSolve [151], eht-imaging [152,153], DMC [154], and THEMIS [155]. These softwares and pipelines overcome some of the limitations of the existing software, LPCAL, which has been widely used for instrument polarization calibration for VLBI data for decades. They have been applied to the first polarimetric imaging of the M87 black hole conducted with the EHT and have been demonstrated to be effective [30]. In the region of jet launching and acceleration/collimation, AGN jets are typically weakly polarized, presumably as a result of turbulent accretion flows surrounding them. Therefore, these advanced software tools will be useful for studying the magnetic field structure of AGN jets with future polarimetric VLBI observations. In a recent study, it was demonstrated that the high calibration accuracy provided by GPCAL can significantly improve a linear polarization view of the sub-parsec core of the M87 [156].
- Circular Polarization Circular polarization in AGN jets is believed to be produced by either synchrotron emission or Faraday conversion. The resulting CP is typically of the order of % and is challenging to detect reliably. Nevertheless, a few studies, using dedicated calibration techniques, found that the CP sign is generally stable over time for several sources. This suggests that the magnetic fields responsible for the observed CP may also be stable. Some studies have attempted to model the observed CP signs in several AGN jets by assuming a helical magnetic field in the jets as well as linear polarization vectors and transverse RM gradients. Moreover, an anti-correlation between the fractional linear and circular polarization was discovered in PKS 2126–158, indicating that Faraday conversion may be in action in this source.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blandford, R.; Meier, D.; Readhead, A. Relativistic Jets from Active Galactic Nuclei. ARA&A 2019, 57, 467–509. [Google Scholar] [CrossRef] [Green Version]
- Jorstad, S.G.; Marscher, A.P.; Morozova, D.A.; Troitsky, I.S.; Agudo, I.; Casadio, C.; Foord, A.; Gómez, J.L.; MacDonald, N.R.; Molina, S.N.; et al. Kinematics of Parsec-scale Jets of Gamma-Ray Blazars at 43 GHz within the VLBA-BU-BLAZAR Program. ApJ 2017, 846, 98. [Google Scholar] [CrossRef]
- Lister, M.L.; Aller, M.F.; Aller, H.D.; Hodge, M.A.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE. XV. VLBA 15 GHz Total Intensity and Polarization Maps of 437 Parsec-scale AGN Jets from 1996 to 2017. ApJS 2018, 234, 12. [Google Scholar] [CrossRef]
- Fabian, A.C. Observational Evidence of Active Galactic Nuclei Feedback. ARA&A 2012, 50, 455–489. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Yoon, D.; Li, Y.P.; Gan, Z.M.; Ho, L.C.; Guo, F. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. I. Low Angular Momentum Case. ApJ 2018, 857, 121. [Google Scholar] [CrossRef] [Green Version]
- Yoon, D.; Yuan, F.; Gan, Z.M.; Ostriker, J.P.; Li, Y.P.; Ciotti, L. Active Galactic Nucleus Feedback in an Elliptical Galaxy with the Most Updated AGN Physics. II. High Angular Momentum Case. ApJ 2018, 864, 6. [Google Scholar] [CrossRef]
- Kataoka, J.; Stawarz, Ł.; Aharonian, F.; Takahara, F.; Ostrowski, M.; Edwards, P.G. The X-Ray Jet in Centaurus A: Clues to the Jet Structure and Particle Acceleration. ApJ 2006, 641, 158–168. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Agudo, I.; Ajello, M.; Allafort, A.; Aller, H.D.; Aller, M.F.; Antolini, E.; Arkharov, A.A.; Axelsson, M.; et al. Fermi Large Area Telescope and Multi-wavelength Observations of the Flaring Activity of PKS 1510-089 between 2008 September and 2009 June. ApJ 2010, 721, 1425–1447. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Lee, S.S.; Kim, J.Y.; Hodgson, J.A.; Trippe, S.; Kim, D.W.; Algaba, J.C.; Kino, M.; Zhao, G.Y.; Lee, J.W.; et al. Ejection of Double Knots from the Radio Core of PKS 1510-089 during the Strong Gamma-Ray Flares in 2015. ApJ 2019, 877, 106. [Google Scholar] [CrossRef] [Green Version]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; et al. MAGIC Observations and multiwavelength properties of the quasar 3C 279 in 2007 and 2009. A&A 2011, 530, A4. [Google Scholar] [CrossRef]
- Aleksić, J.; Antonelli, L.A.; Antoranz, P.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; et al. MAGIC Discovery of Very High Energy Emission from the FSRQ PKS 1222+21. ApJL 2011, 730, L8. [Google Scholar] [CrossRef]
- Aleksić, J.; Ansoldi, S.; Antonelli, L.A.; Antoranz, P.; Babic, A.; Bangale, P.; Barres de Almeida, U.; Barrio, J.A.; Becerra González, J.; Bednarek, W.; et al. MAGIC gamma-ray and multi-frequency observations of flat spectrum radio quasar PKS 1510-089 in early 2012. A&A 2014, 569, A46. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Znajek, R.L. Electromagnetic extraction of energy from Kerr black holes. Mon. Not. R. Astron. Soc. 1977, 179, 433–456. [Google Scholar] [CrossRef]
- Blandford, R.D.; Payne, D.G. Hydromagnetic flows from accretion disks and the production of radio jets. Mon. Not. R. Astron. Soc. 1982, 199, 883–903. [Google Scholar] [CrossRef] [Green Version]
- Semenov, V.; Dyadechkin, S.; Punsly, B. Simulations of Jets Driven by Black Hole Rotation. Science 2004, 305, 978–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vlahakis, N.; Königl, A. Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations. ApJ 2004, 605, 656–661. [Google Scholar] [CrossRef]
- Narayan, R.; Quataert, E. Black Hole Accretion. Science 2005, 307, 77–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinney, J.C. General relativistic magnetohydrodynamic simulations of the jet formation and large-scale propagation from black hole accretion systems. Mon. Not. R. Astron. Soc. 2006, 368, 1561–1582. [Google Scholar] [CrossRef] [Green Version]
- Komissarov, S.S.; Barkov, M.V.; Vlahakis, N.; Königl, A. Magnetic acceleration of relativistic active galactic nucleus jets. Mon. Not. R. Astron. Soc. 2007, 380, 51–70. [Google Scholar] [CrossRef] [Green Version]
- Komissarov, S.S.; Vlahakis, N.; Königl, A.; Barkov, M.V. Magnetic acceleration of ultrarelativistic jets in gamma-ray burst sources. Mon. Not. R. Astron. Soc. 2009, 394, 1182–1212. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. Simulations of ultrarelativistic magnetodynamic jets from gamma-ray burst engines. Mon. Not. R. Astron. Soc. 2008, 388, 551–572. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. Efficiency of Magnetic to Kinetic Energy Conversion in a Monopole Magnetosphere. ApJ 2009, 699, 1789–1808. [Google Scholar] [CrossRef]
- Li, Z.Y.; Chiueh, T.; Begelman, M.C. Electromagnetically Driven Relativistic Jets: A Class of Self-similar Solutions. ApJ 1992, 394, 459. [Google Scholar] [CrossRef]
- Begelman, M.C.; Li, Z.Y. Asymptotic Domination of Cold Relativistic MHD Winds by Kinetic Energy Flux. ApJ 1994, 426, 269. [Google Scholar] [CrossRef]
- Lyubarsky, Y. Asymptotic Structure of Poynting-Dominated Jets. ApJ 2009, 698, 1570–1589. [Google Scholar] [CrossRef]
- Pu, H.Y.; Takahashi, M. Properties of Trans-fast Magnetosonic Jets in Black Hole Magnetospheres. ApJ 2020, 892, 37. [Google Scholar] [CrossRef]
- Sironi, L.; Spitkovsky, A. Relativistic Reconnection: An Efficient Source of Non-thermal Particles. ApJL 2014, 783, L21. [Google Scholar] [CrossRef]
- Ripperda, B.; Bacchini, F.; Philippov, A.A. Magnetic Reconnection and Hot Spot Formation in Black Hole Accretion Disks. ApJ 2020, 900, 100. [Google Scholar] [CrossRef]
- Ripperda, B.; Liska, M.; Chatterjee, K.; Musoke, G.; Philippov, A.A.; Markoff, S.B.; Tchekhovskoy, A.; Younsi, Z. Black Hole Flares: Ejection of Accreted Magnetic Flux through 3D Plasmoid-mediated Reconnection. ApJL 2022, 924, L32. [Google Scholar] [CrossRef]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VII. Polarization of the Ring. ApJL 2021, 910, L12. [Google Scholar] [CrossRef]
- Boccardi, B.; Krichbaum, T.P.; Ros, E.; Zensus, J.A. Radio observations of active galactic nuclei with mm-VLBI. AARv 2017, 25, 4. [Google Scholar] [CrossRef] [Green Version]
- Hada, K. Relativistic Jets from AGN Viewed at Highest Angular Resolution. Galaxies 2019, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Kinman, T.D.; Grasdalen, G.L.; Rieke, G.H. Optical and Infrared Observations of the Jet of M87. ApJL 1974, 194, L1. [Google Scholar] [CrossRef]
- Rudnick, L.; Owen, F.N.; Jones, T.W.; Puschell, J.J.; Stein, W.A. Coordinated centimeter, millimeter, infrared, and visual polarimetry of compact nonthermal sources. ApJL 1978, 225, L5–L9. [Google Scholar] [CrossRef]
- Ghisellini, G.; Maraschi, L.; Treves, A. Inhomogeneous synchrotron-self-compton models and the problem of relativistic beaming of BL Lac objects. A&A 1985, 146, 204–212. [Google Scholar]
- Asada, K.; Nakamura, M. The Structure of the M87 Jet: A Transition from Parabolic to Conical Streamlines. ApJL 2012, 745, L28. [Google Scholar] [CrossRef] [Green Version]
- Tseng, C.Y.; Asada, K.; Nakamura, M.; Pu, H.Y.; Algaba, J.C.; Lo, W.P. Structural Transition in the NGC 6251 Jet: An Interplay with the Supermassive Black Hole and Its Host Galaxy. ApJ 2016, 833, 288. [Google Scholar] [CrossRef] [Green Version]
- Akiyama, K.; Asada, K.; Fish, V.; Nakamura, M.; Hada, K.; Nagai, H.; Lonsdale, C. The Global Jet Structure of the Archetypical Quasar 3C 273. Galaxies 2018, 6, 15. [Google Scholar] [CrossRef] [Green Version]
- Algaba, J.C.; Nakamura, M.; Asada, K.; Lee, S.S. Resolving the Geometry of the Innermost Relativistic Jets in Active Galactic Nuclei. ApJ 2017, 834, 65. [Google Scholar] [CrossRef] [Green Version]
- Hada, K.; Doi, A.; Wajima, K.; D’Ammand o, F.; Orienti, M.; Giroletti, M.; Giovannini, G.; Nakamura, M.; Asada, K. Collimation, Acceleration, and Recollimation Shock in the Jet of Gamma-Ray Emitting Radio-loud Narrow-line Seyfert 1 Galaxy 1H0323+342. ApJ 2018, 860, 141. [Google Scholar] [CrossRef] [Green Version]
- Kovalev, Y.Y.; Pushkarev, A.B.; Nokhrina, E.E.; Plavin, A.V.; Beskin, V.S.; Chernoglazov, A.V.; Lister, M.L.; Savolainen, T. A transition from parabolic to conical shape as a common effect in nearby AGN jets. Mon. Not. R. Astron. Soc. 2020, 495, 3576–3591. [Google Scholar] [CrossRef]
- Park, J.; Hada, K.; Nakamura, M.; Asada, K.; Zhao, G.; Kino, M. Jet Collimation and Acceleration in the Giant Radio Galaxy NGC 315. ApJ 2021, 909, 76. [Google Scholar] [CrossRef]
- Gabuzda, D.C.; Sitko, M.L. Nearly Simultaneous Very Long Baseline Interferometry and Optical Polarimetry of Blazars. AJ 1994, 107, 884. [Google Scholar] [CrossRef]
- Gabuzda, D.C.; Sitko, M.L.; Smith, P.S. Correlations Between the VLBI and Optical Polarization of BL Lacertae Objects. AJ 1996, 112, 1877. [Google Scholar] [CrossRef]
- Wardle, J. The Variable Rotation Measure Distribution in 3C 273 on Parsec Scales. Galaxies 2018, 6, 5. [Google Scholar] [CrossRef] [Green Version]
- Algaba, J.C.; Gabuzda, D.C.; Smith, P.S. Search for correlations between the optical and radio polarization of active galactic nuclei—I. VLBA polarization data at 15 + 22 + 43 GHz. Mon. Not. R. Astron. Soc. 2011, 411, 85–101. [Google Scholar] [CrossRef] [Green Version]
- Algaba, J.C.; Gabuzda, D.C.; Smith, P.S. Search for correlations between the optical and radio polarization of active galactic nuclei—II. VLBA polarization data at 12+15+22+24+43 GHz. Mon. Not. R. Astron. Soc. 2012, 420, 542–553. [Google Scholar] [CrossRef] [Green Version]
- Jorstad, S.G.; Marscher, A.P.; Stevens, J.A.; Smith, P.S.; Forster, J.R.; Gear, W.K.; Cawthorne, T.V.; Lister, M.L.; Stirling, A.M.; Gómez, J.L.; et al. Multiwaveband Polarimetric Observations of 15 Active Galactic Nuclei at High Frequencies: Correlated Polarization Behavior. AJ 2007, 134, 799–824. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Kam, M.; Trippe, S.; Kang, S.; Byun, D.Y.; Kim, D.W.; Algaba, J.C.; Lee, S.S.; Zhao, G.Y.; Kino, M.; et al. Revealing the Nature of Blazar Radio Cores through Multifrequency Polarization Observations with the Korean VLBI Network. ApJ 2018, 860, 112. [Google Scholar] [CrossRef] [Green Version]
- D’Arcangelo, F.D.; Marscher, A.P.; Jorstad, S.G.; Smith, P.S.; Larionov, V.M.; Hagen-Thorn, V.A.; Kopatskaya, E.N.; Williams, G.G.; Gear, W.K. Rapid Multiwaveband Polarization Variability in the Quasar PKS 0420-014: Optical Emission from the Compact Radio Jet. ApJL 2007, 659, L107–L110. [Google Scholar] [CrossRef]
- Marscher, A.P.; Jorstad, S.G.; D’Arcangelo, F.D.; Smith, P.S.; Williams, G.G.; Larionov, V.M.; Oh, H.; Olmstead, A.R.; Aller, M.F.; Aller, H.D.; et al. The inner jet of an active galactic nucleus as revealed by a radio-to-γ-ray outburst. Nature 2008, 452, 966–969. [Google Scholar] [CrossRef] [PubMed]
- Marscher, A.P.; Jorstad, S.G.; Larionov, V.M.; Aller, M.F.; Aller, H.D.; Lähteenmäki, A.; Agudo, I.; Smith, P.S.; Gurwell, M.; Hagen-Thorn, V.A.; et al. Probing the Inner Jet of the Quasar PKS 1510-089 with Multi-Waveband Monitoring During Strong Gamma-Ray Activity. ApJL 2010, 710, L126–L131. [Google Scholar] [CrossRef]
- Marscher, A.P. Turbulent, Extreme Multi-zone Model for Simulating Flux and Polarization Variability in Blazars. ApJ 2014, 780, 87. [Google Scholar] [CrossRef]
- Blinov, D.; Pavlidou, V.; Papadakis, I.; Kiehlmann, S.; Liodakis, I.; Panopoulou, G.V.; Angelakis, E.; Baloković, M.; Hovatta, T.; King, O.G.; et al. RoboPol: Connection between optical polarization plane rotations and gamma-ray flares in blazars. Mon. Not. R. Astron. Soc. 2017, 474, 1296–1306. Available online: https://academic.oup.com/mnras/article-pdf/474/1/1296/22367606/stx2786.pdf (accessed on 18 October 2022). [CrossRef]
- Sasada, M.; Uemura, M.; Arai, A.; Fukazawa, Y.; Kawabata, K.S.; Ohsugi, T.; Yamashita, T.; Isogai, M.; Nagae, O.; Uehara, T.; et al. Multiband Photopolarimetric Monitoring of an Outburst of the Blazar 3C 454.3 in 2007. Publ. Astron. Soc. Jpn. 2010, 62, 645. [Google Scholar] [CrossRef] [Green Version]
- Liodakis, I.; Blinov, D.; Jorstad, S.G.; Arkharov, A.A.; Di Paola, A.; Efimova, N.V.; Grishina, T.S.; Kiehlmann, S.; Kopatskaya, E.N.; Larionov, V.M.; et al. Two Flares with One Shock: The Interesting Case of 3C 454.3. ApJ 2020, 902, 61. [Google Scholar] [CrossRef]
- Morozova, D.A.; Larionov, V.M.; Troitsky, I.S.; Jorstad, S.G.; Marscher, A.P.; Gómez, J.L.; Blinov, D.A.; Efimova, N.V.; Hagen-Thorn, V.A.; Hagen-Thorn, E.I.; et al. The Outburst of the Blazar S4 0954+658 in 2011 March-April. AJ 2014, 148, 42. [Google Scholar] [CrossRef]
- Troitskiy, I.S.; Morozova, D.A.; Jorstad, S.G.; Marscher, A.P.; Larionov, V.M.; Blinov, D.A.; Agudo, I.; Smith, P.S. Multiwavelength polarization observations of the γ-ray bright quasar PKS 0420-014. Eur. Phys. J. Web Conf. 2013, 61, 07008. [Google Scholar] [CrossRef] [Green Version]
- Myserlis, I.; Komossa, S.; Angelakis, E.; Gómez, J.L.; Karamanavis, V.; Krichbaum, T.P.; Bach, U.; Grupe, D. High cadence, linear, and circular polarization monitoring of OJ 287. Helical magnetic field in a bent jet. A&A 2018, 619, A88. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Igumenshchev, I.V.; Abramowicz, M.A. Magnetically Arrested Disk: An Energetically Efficient Accretion Flow. Publ. Astron. Soc. Jpn. 2003, 55, L69–L72. [Google Scholar] [CrossRef] [Green Version]
- Tchekhovskoy, A.; Narayan, R.; McKinney, J.C. Efficient generation of jets from magnetically arrested accretion on a rapidly spinning black hole. Mon. Not. R. Astron. Soc. 2011, 418, L79–L83. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.C.; Tchekhovskoy, A.; Bland ford, R.D. General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes. Mon. Not. R. Astron. Soc. 2012, 423, 3083–3117. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Asada, K.; Hada, K.; Pu, H.Y.; Noble, S.; Tseng, C.; Toma, K.; Kino, M.; Nagai, H.; Takahashi, K.; et al. Parabolic Jets from the Spinning Black Hole in M87. ApJ 2018, 868, 146. [Google Scholar] [CrossRef] [Green Version]
- Narayan, R.; Chael, A.; Chatterjee, K.; Ricarte, A.; Curd, B. Jets in magnetically arrested hot accretion flows: Geometry, power, and black hole spin-down. Mon. Not. R. Astron. Soc. 2022, 511, 3795–3813. [Google Scholar] [CrossRef]
- Zamaninasab, M.; Clausen-Brown, E.; Savolainen, T.; Tchekhovskoy, A. Dynamically important magnetic fields near accreting supermassive black holes. Nature 2014, 510, 126–128. [Google Scholar] [CrossRef]
- Ghisellini, G.; Tavecchio, F.; Maraschi, L.; Celotti, A.; Sbarrato, T. The power of relativistic jets is larger than the luminosity of their accretion disks. Nature 2014, 515, 376–378. [Google Scholar] [CrossRef] [Green Version]
- McKinney, J.C.; Blandford, R.D. Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations. Mon. Not. R. Astron. Soc. 2009, 394, L126–L130. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Osorio, A.; Fromm, C.M.; Mizuno, Y.; Nathanail, A.; Younsi, Z.; Porth, O.; Davelaar, J.; Falcke, H.; Kramer, M.; Rezzolla, L. State-of-the-art energetic and morphological modelling of the launching site of the M87 jet. Nat. Astron. 2022, 6, 103–108. [Google Scholar] [CrossRef]
- Owen, F.N.; Hardee, P.E.; Cornwell, T.J. High-Resolution, High Dynamic Range VLA Images of the M87 Jet at 2 Centimeters. ApJ 1989, 340, 698. [Google Scholar] [CrossRef]
- Biretta, J.A.; Sparks, W.B.; Macchetto, F. Hubble Space Telescope Observations of Superluminal Motion in the M87 Jet. ApJ 1999, 520, 621–626. [Google Scholar] [CrossRef]
- Perlman, E.S.; Biretta, J.A.; Sparks, W.B.; Macchetto, F.D.; Leahy, J.P. The Optical-Near-Infrared Spectrum of the M87 Jet fromHubble Space Telescope Observations. ApJ 2001, 551, 206–222. [Google Scholar] [CrossRef]
- Marshall, H.L.; Canizares, C.R.; Schulz, N.S. The High-Resolution X-Ray Spectrum of SS 433 Using the Chandra HETGS. ApJ 2002, 564, 941–952. [Google Scholar] [CrossRef]
- Cheung, C.C.; Harris, D.E.; Stawarz, Ł. Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission. ApJL 2007, 663, L65–L68. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, G.D.; Peterson, B.M.; Beaver, E.A. Imaging polarimetry of the jet of M87 and 3C 273. ApJL 1978, 220, L31–L36. [Google Scholar] [CrossRef]
- Dennison, B. Faraday rotation in the M87 radio/X-ray halo. ApJ 1980, 236, 761–768. [Google Scholar] [CrossRef]
- Perlman, E.S.; Biretta, J.A.; Zhou, F.; Sparks, W.B.; Macchetto, F.D. Optical and Radio Polarimetry of the M87 Jet at 0.2” Resolution. AJ 1999, 117, 2185–2198. [Google Scholar] [CrossRef] [Green Version]
- Algaba, J.C.; Asada, K.; Nakamura, M. Resolving the Rotation Measure of the M87 Jet on Kiloparsec Scales. ApJ 2016, 823, 86. [Google Scholar] [CrossRef] [Green Version]
- Pasetto, A.; Carrasco-González, C.; Gómez, J.L.; Martí, J.M.; Perucho, M.; O’Sullivan, S.P.; Anderson, C.; Díaz-González, D.J.; Fuentes, A.; Wardle, J. Reading M87’s DNA: A Double Helix Revealing a Large-scale Helical Magnetic Field. ApJL 2021, 923, L5. [Google Scholar] [CrossRef]
- Junor, W.; Biretta, J.A.; Wardle, J.F.C. VLBA lambda lambda 6, 4 cm polarimetry of Vir A. In Proceedings of the Galaxies and their Constituents at the Highest Angular Resolutions, Manchester, UK, 15–18 August 2001. [Google Scholar]
- Zavala, R.T.; Taylor, G.B. Faraday Rotation Measures in the Parsec-Scale Jets of the Radio Galaxies M87, 3C 111, and 3C 120. ApJL 2002, 566, L9–L12. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hada, K.; Kino, M.; Nakamura, M.; Ro, H.; Trippe, S. Faraday Rotation in the Jet of M87 inside the Bondi Radius: Indication of Winds from Hot Accretion Flows Confining the Relativistic Jet. ApJ 2019, 871, 257. [Google Scholar] [CrossRef] [Green Version]
- Nakamura, M.; Asada, K. The Parabolic Jet Structure in M87 as a Magnetohydrodynamic Nozzle. ApJ 2013, 775, 118. [Google Scholar] [CrossRef]
- Hada, K.; Doi, A.; Nagai, H.; Inoue, M.; Honma, M.; Giroletti, M.; Giovannini, G. Evidence for a Nuclear Radio Jet and its Structure down to lsim100 Schwarzschild Radii in the Center of the Sombrero Galaxy (M 104, NGC 4594). ApJ 2013, 779, 6. [Google Scholar] [CrossRef] [Green Version]
- Asada, K.; Nakamura, M.; Doi, A.; Nagai, H.; Inoue, M. Discovery of Sub- to Superluminal Motions in the M87 Jet: An Implication of Acceleration from Sub-relativistic to Relativistic Speeds. ApJL 2014, 781, L2. [Google Scholar] [CrossRef] [Green Version]
- Mertens, F.; Lobanov, A.P.; Walker, R.C.; Hardee, P.E. Kinematics of the jet in M 87 on scales of 100–1000 Schwarzschild radii. A&A 2016, 595, A54. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.C.; Hardee, P.E.; Davies, F.B.; Ly, C.; Junor, W. The Structure and Dynamics of the Subparsec Jet in M87 Based on 50 VLBA Observations over 17 Years at 43 GHz. ApJ 2018, 855, 128. [Google Scholar] [CrossRef] [Green Version]
- Park, J.; Hada, K.; Kino, M.; Nakamura, M.; Hodgson, J.; Ro, H.; Cui, Y.; Asada, K.; Algaba, J.C.; Sawada-Satoh, S.; et al. Kinematics of the M87 Jet in the Collimation Zone: Gradual Acceleration and Velocity Stratification. ApJ 2019, 887, 147. [Google Scholar] [CrossRef]
- Burn, B.J. On the depolarization of discrete radio sources by Faraday dispersion. Mon. Not. R. Astron. Soc. 1966, 133, 67. [Google Scholar] [CrossRef] [Green Version]
- Homan, D.C. Inverse Depolarization: A Potential Probe of Internal Faraday Rotation and Helical Magnetic Fields in Extragalactic Radio Jets. ApJL 2012, 747, L24. [Google Scholar] [CrossRef]
- Sokoloff, D.D.; Bykov, A.A.; Shukurov, A.; Berkhuijsen, E.M.; Beck, R.; Poezd, A.D. Depolarization and Faraday effects in galaxies. Mon. Not. R. Astron. Soc. 1998, 299, 189–206. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Narayan, R. Hot Accretion Flows Around Black Holes. ARA&A 2014, 52, 529–588. [Google Scholar] [CrossRef] [Green Version]
- Hirose, S.; Krolik, J.H.; De Villiers, J.P.; Hawley, J.F. Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the Magnetic Field. ApJ 2004, 606, 1083–1097. [Google Scholar] [CrossRef]
- Clausen-Brown, E.; Savolainen, T.; Pushkarev, A.B.; Kovalev, Y.Y.; Zensus, J.A. Causal connection in parsec-scale relativistic jets: Results from the MOJAVE VLBI survey. A&A 2013, 558, A144. [Google Scholar] [CrossRef]
- Broderick, A.E.; McKinney, J.C. Parsec-scale Faraday Rotation Measures from General Relativistic Magnetohydrodynamic Simulations of Active Galactic Nucleus Jets. ApJ 2010, 725, 750–773. [Google Scholar] [CrossRef]
- Gabuzda, D. Evidence for Helical Magnetic Fields Associated with AGN Jets and the Action of a Cosmic Battery. Galaxies 2018, 7, 5. [Google Scholar] [CrossRef] [Green Version]
- Russell, H.R.; Fabian, A.C.; McNamara, B.R.; Broderick, A.E. Inside the Bondi radius of M87. Mon. Not. R. Astron. Soc. 2015, 451, 588–600. [Google Scholar] [CrossRef]
- Blandford, R.D.; Begelman, M.C. On the fate of gas accreting at a low rate on to a black hole. Mon. Not. R. Astron. Soc. 1999, 303, L1–L5. [Google Scholar] [CrossRef] [Green Version]
- Blandford, R.D.; Begelman, M.C. Two-dimensional adiabatic flows on to a black hole—I. Fluid accretion. Mon. Not. R. Astron. Soc. 2004, 349, 68–86. [Google Scholar] [CrossRef]
- Begelman, M.C. Radiatively inefficient accretion: Breezes, winds and hyperaccretion. Mon. Not. R. Astron. Soc. 2012, 420, 2912–2923. [Google Scholar] [CrossRef] [Green Version]
- Yuan, F.; Gan, Z.; Narayan, R.; Sadowski, A.; Bu, D.; Bai, X.N. Numerical Simulation of Hot Accretion Flows. III. Revisiting Wind Properties Using the Trajectory Approach. ApJ 2015, 804, 101. [Google Scholar] [CrossRef] [Green Version]
- Vlahakis, N. Theory of Relativistic Jets. In The Formation and Disruption of Black Hole Jets; Contopoulos, I., Gabuzda, D., Kylafis, N., Eds.; Astrophysics and Space Science Library; Spring: Cham, Switzerland, 2015; Volume 414, p. 177. [Google Scholar] [CrossRef]
- Chatterjee, K.; Liska, M.; Tchekhovskoy, A.; Markoff, S.B. Accelerating AGN jets to parsec scales using general relativistic MHD simulations. Mon. Not. R. Astron. Soc. 2019, 490, 2200–2218. [Google Scholar] [CrossRef]
- Vlahakis, N.; Königl, A. Relativistic Magnetohydrodynamics with Application to Gamma-Ray Burst Outflows. I. Theory and Semianalytic Trans-Alfvénic Solutions. ApJ 2003, 596, 1080–1103. [Google Scholar] [CrossRef] [Green Version]
- Biretta, J.A.; Zhou, F.; Owen, F.N. Detection of Proper Motions in the M87 Jet. ApJ 1995, 447, 582. [Google Scholar] [CrossRef]
- Giroletti, M.; Hada, K.; Giovannini, G.; Casadio, C.; Beilicke, M.; Cesarini, A.; Cheung, C.C.; Doi, A.; Krawczynski, H.; Kino, M.; et al. The kinematic of HST-1 in the jet of M 87. A&A 2012, 538, L10. [Google Scholar] [CrossRef]
- Meyer, E.T.; Sparks, W.B.; Biretta, J.A.; Anderson, J.; Sohn, S.T.; van der Marel, R.P.; Norman, C.; Nakamura, M. Optical Proper Motion Measurements of the M87 Jet: New Results from the Hubble Space Telescope. ApJL 2013, 774, L21. [Google Scholar] [CrossRef] [Green Version]
- Event Horizon Telescope Collaboration; Akiyama, K.; Algaba, J.C.; Alberdi, A.; Alef, W.; Anantua, R.; Asada, K.; Azulay, R.; Baczko, A.K.; Ball, D.; et al. First M87 Event Horizon Telescope Results. VIII. Magnetic Field Structure near The Event Horizon. ApJL 2021, 910, L13. [Google Scholar] [CrossRef]
- Narayan, R.; Palumbo, D.C.M.; Johnson, M.D.; Gelles, Z.; Himwich, E.; Chang, D.O.; Ricarte, A.; Dexter, J.; Gammie, C.F.; Chael, A.A.; et al. The Polarized Image of a Synchrotron-emitting Ring of Gas Orbiting a Black Hole. ApJ 2021, 912, 35. [Google Scholar] [CrossRef]
- Narayan, R.; Sadowski, A.; Penna, R.F.; Kulkarni, A.K. GRMHD simulations of magnetized advection-dominated accretion on a non-spinning black hole: Role of outflows. Mon. Not. R. Astron. Soc. 2012, 426, 3241–3259. [Google Scholar] [CrossRef]
- Ricarte, A.; Qiu, R.; Narayan, R. Black hole magnetic fields and their imprint on circular polarization images. Mon. Not. R. Astron. Soc. 2021, 505, 523–539. [Google Scholar] [CrossRef]
- Bisnovatyi-Kogan, G.S.; Ruzmaikin, A.A. The Accretion of Matter by a Collapsing Star in the Presence of a Magnetic Field. Ap&SS 1974, 28, 45–59. [Google Scholar] [CrossRef]
- Igumenshchev, I.V.; Narayan, R.; Abramowicz, M.A. Three-dimensional Magnetohydrodynamic Simulations of Radiatively Inefficient Accretion Flows. ApJ 2003, 592, 1042–1059. [Google Scholar] [CrossRef]
- Tchekhovskoy, A.; McKinney, J.C.; Narayan, R. General Relativistic Modeling of Magnetized Jets from Accreting Black Holes. J. Phys. Conf. Ser. 2012, 372, 012040. [Google Scholar] [CrossRef] [Green Version]
- Bicknell, G.V.; Begelman, M.C. Understanding the Kiloparsec-Scale Structure of M87. ApJ 1996, 467, 597. [Google Scholar] [CrossRef]
- Owen, F.N.; Eilek, J.A.; Kassim, N.E. M87 at 90 Centimeters: A Different Picture. ApJ 2000, 543, 611–619. [Google Scholar] [CrossRef]
- Allen, S.W.; Dunn, R.J.H.; Fabian, A.C.; Taylor, G.B.; Reynolds, C.S. The relation between accretion rate and jet power in X-ray luminous elliptical galaxies. Mon. Not. R. Astron. Soc. 2006, 372, 21–30. [Google Scholar] [CrossRef] [Green Version]
- Rafferty, D.A.; McNamara, B.R.; Nulsen, P.E.J.; Wise, M.W. The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion and Starbursts in Cluster Central Dominant Galaxies. ApJ 2006, 652, 216–231. [Google Scholar] [CrossRef]
- Stawarz, Ł.; Aharonian, F.; Kataoka, J.; Ostrowski, M.; Siemiginowska, A.; Sikora, M. Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet. Mon. Not. R. Astron. Soc. 2006, 370, 981–992. [Google Scholar] [CrossRef] [Green Version]
- Broderick, A.E.; Loeb, A. Imaging the Black Hole Silhouette of M87: Implications for Jet Formation and Black Hole Spin. ApJ 2009, 697, 1164–1179. [Google Scholar] [CrossRef]
- Broderick, A.E.; Narayan, R.; Kormendy, J.; Perlman, E.S.; Rieke, M.J.; Doeleman, S.S. The Event Horizon of M87. ApJ 2015, 805, 179. [Google Scholar] [CrossRef] [Green Version]
- Strauss, M.A.; Huchra, J.P.; Davis, M.; Yahil, A.; Fisher, K.B.; Tonry, J. A Redshift Survey of IRAS Galaxies. VII. The Infrared and Redshift Data for the 1.936 Jansky Sample. ApJS 1992, 83, 29. [Google Scholar] [CrossRef]
- Scharwächter, J.; McGregor, P.J.; Dopita, M.A.; Beck, T.L. Kinematics and excitation of the molecular hydrogen accretion disc in NGC 1275. Mon. Not. R. Astron. Soc. 2013, 429, 2315–2332. [Google Scholar] [CrossRef]
- Giovannini, G.; Savolainen, T.; Orienti, M.; Nakamura, M.; Nagai, H.; Kino, M.; Giroletti, M.; Hada, K.; Bruni, G.; Kovalev, Y.Y.; et al. A wide and collimated radio jet in 3C84 on the scale of a few hundred gravitational radii. Nat. Astron. 2018, 2, 472–477. [Google Scholar] [CrossRef] [Green Version]
- Walker, R.C.; Dhawan, V.; Romney, J.D.; Kellermann, K.I.; Vermeulen, R.C. VLBA Absorption Imaging of Ionized Gas Associated with the Accretion Disk in NGC 1275. ApJ 2000, 530, 233–244. [Google Scholar] [CrossRef] [Green Version]
- Kino, M.; Niinuma, K.; Kawakatu, N.; Nagai, H.; Giovannini, G.; Orienti, M.; Wajima, K.; D’Ammando, F.; Hada, K.; Giroletti, M.; et al. Morphological Transition of the Compact Radio Lobe in 3C 84 via the Strong Jet-Cloud Collision. ApJL 2021, 920, L24. [Google Scholar] [CrossRef]
- Savolainen, T.; Giovannini, G.; Kovalev, Y.Y.; Perucho, M.; Anderson, J.M.; Bruni, G.; Edwards, P.G.; Fuentes, A.; Giroletti, M.; Gómez, J.L.; et al. RadioAstron discovers a mini-cocoon around the restarted parsec-scale jet in 3C 84. arXiv 2021, arXiv:2111.04481. [Google Scholar]
- Taylor, G.B.; Gugliucci, N.E.; Fabian, A.C.; Sanders, J.S.; Gentile, G.; Allen, S.W. Magnetic fields in the centre of the Perseus cluster. Mon. Not. R. Astron. Soc. 2006, 368, 1500–1506. [Google Scholar] [CrossRef] [Green Version]
- Plambeck, R.L.; Bower, G.C.; Rao, R.; Marrone, D.P.; Jorstad, S.G.; Marscher, A.P.; Doeleman, S.S.; Fish, V.L.; Johnson, M.D. Probing the Parsec-scale Accretion Flow of 3C 84 with Millimeter Wavelength Polarimetry. ApJ 2014, 797, 66. [Google Scholar] [CrossRef] [Green Version]
- Bower, G.C.; Wright, M.C.H.; Falcke, H.; Backer, D.C. Interferometric Detection of Linear Polarization from Sagittarius A* at 230 GHz. ApJ 2003, 588, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Marrone, D.P.; Moran, J.M.; Zhao, J.H.; Rao, R. An Unambiguous Detection of Faraday Rotation in Sagittarius A*. ApJL 2007, 654, L57–L60. [Google Scholar] [CrossRef] [Green Version]
- Nagai, H.; Fujita, Y.; Nakamura, M.; Orienti, M.; Kino, M.; Asada, K.; Giovannini, G. Enhanced Polarized Emission from the One-parsec-scale Hotspot of 3C 84 as a Result of the Interaction with the Clumpy Ambient Medium. ApJ 2017, 849, 52. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y.; Krichbaum, T.P.; Marscher, A.P.; Jorstad, S.G.; Agudo, I.; Thum, C.; Hodgson, J.A.; MacDonald, N.R.; Ros, E.; Lu, R.S.; et al. Spatially resolved origin of millimeter-wave linear polarization in the nuclear region of 3C 84. A&A 2019, 622, A196. [Google Scholar] [CrossRef] [Green Version]
- Owen, F.N.; Eilek, J.A.; Keel, W.C. Detection of Large Faraday Rotation in the Inner 2 Kiloparsecs of M87. ApJ 1990, 362, 449. [Google Scholar] [CrossRef]
- Pasetto, A.; Carrasco-González, C.; O’Sullivan, S.; Basu, A.; Bruni, G.; Kraus, A.; Curiel, S.; Mack, K.H. Broadband radio spectro-polarimetric observations of high-Faraday-rotation-measure AGN. A&A 2018, 613, A74. [Google Scholar] [CrossRef] [Green Version]
- Paltani, S.; Courvoisier, T.J.L.; Walter, R. The blue-bump of 3C 273. A&A 1998, 340, 47–61. [Google Scholar]
- Meyer, E.T.; Sparks, W.B.; Georganopoulos, M.; Anderson, J.; van der Marel, R.; Biretta, J.; Sohn, S.T.; Chiaberge, M.; Perlman, E.; Norman, C. An HST Proper-motion Study of the Large-scale Jet of 3C273. ApJ 2016, 818, 195. [Google Scholar] [CrossRef] [Green Version]
- Lobanov, A.P.; Zensus, J.A. A Cosmic Double Helix in the Archetypical Quasar 3C273. Science 2001, 294, 128–131. [Google Scholar] [CrossRef]
- Okino, H.; Akiyama, K.; Asada, K.; Gómez, J.L.; Hada, K.; Honma, M.; Krichbaum, T.P.; Kino, M.; Nagai, H.; Nakamura, M.; et al. Collimation of the relativistic jet in the quasar 3C 273. arXiv 2021, arXiv:2112.12233. [Google Scholar]
- Attridge, J.M.; Wardle, J.F.C.; Homan, D.C. Concurrent 43 and 86 GHz Very Long Baseline Polarimetry of 3C 273. ApJL 2005, 633, L85–L88. [Google Scholar] [CrossRef]
- Hada, K.; Kino, M.; Doi, A.; Nagai, H.; Honma, M.; Akiyama, K.; Tazaki, F.; Lico, R.; Giroletti, M.; Giovannini, G.; et al. High-sensitivity 86 GHz (3.5 mm) VLBI Observations of M87: Deep Imaging of the Jet Base at a Resolution of 10 Schwarzschild Radii. ApJ 2016, 817, 131. [Google Scholar] [CrossRef]
- Hovatta, T.; O’Sullivan, S.; Martí-Vidal, I.; Savolainen, T.; Tchekhovskoy, A. Magnetic field at a jet base: Extreme Faraday rotation in 3C 273 revealed by ALMA. A&A 2019, 623, A111. [Google Scholar] [CrossRef]
- Asada, K.; Inoue, M.; Uchida, Y.; Kameno, S.; Fujisawa, K.; Iguchi, S.; Mutoh, M. A Helical Magnetic Field in the Jet of 3C 273. Publ. Astron. Soc. Jpn. 2002, 54, L39–L43. [Google Scholar] [CrossRef]
- Asada, K.; Inoue, M.; Kameno, S.; Nagai, H. Time Variation of the Rotation Measure Gradient in the 3C 273 Jet. ApJ 2008, 675, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Zavala, R.T.; Taylor, G.B. Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C 273. ApJL 2005, 626, L73–L76. [Google Scholar] [CrossRef]
- Hovatta, T.; Lister, M.L.; Aller, M.F.; Aller, H.D.; Homan, D.C.; Kovalev, Y.Y.; Pushkarev, A.B.; Savolainen, T. MOJAVE: Monitoring of Jets in Active Galactic Nuclei with VLBA Experiments. VIII. Faraday Rotation in Parsec-scale AGN Jets. AJ 2012, 144, 105. [Google Scholar] [CrossRef]
- Lisakov, M.M.; Kravchenko, E.V.; Pushkarev, A.B.; Kovalev, Y.Y.; Savolainen, T.K.; Lister, M.L. An Oversized Magnetic Sheath Wrapping around the Parsec-scale Jet in 3C 273. ApJ 2021, 910, 35. [Google Scholar] [CrossRef]
- Thompson, A.R.; Moran, J.M. ; Swenson, George W., J. Interferometry and Synthesis in Radio Astronomy, 3rd ed.; Springer Nature: Cham, Switzerland, 2017. [Google Scholar] [CrossRef] [Green Version]
- Leppanen, K.J.; Zensus, J.A.; Diamond, P.J. Linear Polarization Imaging with Very Long Baseline Interferometry at High Frequencies. AJ 1995, 110, 2479. [Google Scholar] [CrossRef]
- Greisen, E.W. AIPS, the VLA, and the VLBA. In Information Handling in Astronomy—Historical Vistas; Heck, A., Ed.; Astrophysics and Space Science Library; Spring: Cham, Switzerland, 2003; Volume 285, p. 109. [Google Scholar] [CrossRef]
- Park, J.; Byun, D.Y.; Asada, K.; Yun, Y. GPCAL: A Generalized Calibration Pipeline for Instrumental Polarization in VLBI Data. ApJ 2021, 906, 85. [Google Scholar] [CrossRef]
- Martí-Vidal, I.; Mus, A.; Janssen, M.; de Vicente, P.; González, J. Polarization calibration techniques for the new-generation VLBI. A&A 2021, 646, A52. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Narayan, R.; Doeleman, S.S.; Wardle, J.F.C.; Bouman, K.L. High-resolution Linear Polarimetric Imaging for the Event Horizon Telescope. ApJ 2016, 829, 11. [Google Scholar] [CrossRef]
- Chael, A.A.; Johnson, M.D.; Bouman, K.L.; Blackburn, L.L.; Akiyama, K.; Narayan, R. Interferometric Imaging Directly with Closure Phases and Closure Amplitudes. ApJ 2018, 857, 23. [Google Scholar] [CrossRef]
- Pesce, D.W. A D-term Modeling Code (DMC) for Simultaneous Calibration and Full-Stokes Imaging of Very Long Baseline Interferometric Data. AJ 2021, 161, 178. [Google Scholar] [CrossRef]
- Broderick, A.E.; Gold, R.; Karami, M.; Preciado-López, J.A.; Tiede, P.; Pu, H.Y.; Akiyama, K.; Alberdi, A.; Alef, W.; Asada, K.; et al. THEMIS: A Parameter Estimation Framework for the Event Horizon Telescope. ApJ 2020, 897, 139. [Google Scholar] [CrossRef]
- Park, J.; Asada, K.; Nakamura, M.; Kino, M.; Pu, H.Y.; Hada, K.; Kravchenko, E.V.; Giroletti, M. A Revised View of the Linear Polarization in the Subparsec Core of M87 at 7 mm. ApJ 2021, 922, 180. [Google Scholar] [CrossRef]
- Kravchenko, E.; Giroletti, M.; Hada, K.; Meier, D.L.; Nakamura, M.; Park, J.; Walker, R.C. Linear polarization in the nucleus of M87 at 7 mm and 1.3 cm. A&A 2020, 637, L6. [Google Scholar] [CrossRef]
- Broderick, A.E.; Pesce, D.W. Closure Traces: Novel Calibration-insensitive Quantities for Radio Astronomy. ApJ 2020, 904, 126. [Google Scholar] [CrossRef]
- Jones, T.W. Polarization as a Probe of magnetic Fields and Plasma Properties of Compact Radio Sources: Simulation of Relativistic Jets. ApJ 1988, 332, 678. [Google Scholar] [CrossRef]
- Gilbert, J.A.; Conway, R.G. Circular Polarization of Quasars at λ49 Cm. Nature 1970, 227, 585–586. [Google Scholar] [CrossRef]
- Weiler, K.W.; de Pater, I. A catalog of high accuracy polarization measurements. ApJS 1983, 52, 293–327. [Google Scholar] [CrossRef]
- Komesaroff, M.M.; Roberts, J.A.; Milne, D.K.; Rayner, P.T.; Cooke, D.J. Circular and linear polarization variations of compact radio sources. Mon. Not. R. Astron. Soc. 1984, 208, 409–425. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, J.; Algaba, J.C. Polarization Observations of AGN Jets: Past and Future. Galaxies 2022, 10, 102. https://doi.org/10.3390/galaxies10050102
Park J, Algaba JC. Polarization Observations of AGN Jets: Past and Future. Galaxies. 2022; 10(5):102. https://doi.org/10.3390/galaxies10050102
Chicago/Turabian StylePark, Jongho, and Juan Carlos Algaba. 2022. "Polarization Observations of AGN Jets: Past and Future" Galaxies 10, no. 5: 102. https://doi.org/10.3390/galaxies10050102
APA StylePark, J., & Algaba, J. C. (2022). Polarization Observations of AGN Jets: Past and Future. Galaxies, 10(5), 102. https://doi.org/10.3390/galaxies10050102