Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,372)

Search Parameters:
Keywords = facility distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3037 KiB  
Article
Effectiveness of Firefighter Training for Indoor Intervention: Analysis of Temperature Profiles and Extinguishing Effectiveness
by Jan Hora
Fire 2025, 8(8), 304; https://doi.org/10.3390/fire8080304 (registering DOI) - 1 Aug 2025
Abstract
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A [...] Read more.
This study assessed the effectiveness of stress-based cognitive-behavioral training compared to standard training in firefighters, emphasizing their ability to distribute extinguishing water and cool environments evenly during enclosure fires. Experiments took place at the Zbiroh training facility with two firefighter teams (Team A with stress-based training and Team B with standard training) under realistic conditions. Using 58 thermocouples and 4 radiometers, temperature distribution and radiant heat flux were measured to evaluate water distribution efficiency and cooling performance during interventions. Team A consistently achieved temperature reductions of approximately 320 °C in the upper layers and 250–400 °C in the middle layers, maintaining stable conditions, whereas Team B only achieved partial cooling, with upper-layer temperatures remaining at 750–800 °C. Additionally, Team A recorded lower radiant heat flux densities (e.g., 20.74 kW/m2 at 0°) compared to Team B (21.81 kW/m2), indicating more effective water application and adaptability. The findings confirm that stress-based training enhances firefighters’ operational readiness and their ability to distribute water effectively during interventions. This skill is essential for safer and effective management of indoor fires under extreme conditions. This study supports the inclusion of stress-based and scenario-based training in firefighter education to enhance safety and operational performance. Full article
23 pages, 1706 KiB  
Article
Community-Based Halal Tourism and Information Digitalization: Sustainable Tourism Analysis
by Immas Nurhayati, Syarifah Gustiawati, Rofiáh Rofiáh, Sri Pujiastuti, Isbandriyati Mutmainah, Bambang Hengky Rainanto, Sri Harini and Endri Endri
Tour. Hosp. 2025, 6(3), 148; https://doi.org/10.3390/tourhosp6030148 (registering DOI) - 1 Aug 2025
Abstract
This study employs a mixed method. In-depth interviews and observational studies are among the data collection approaches used in qualitative research. The quantitative method measures the weight of respondents’ answers to the distributed questionnaire. The questionnaire, containing 82 items, was distributed to 202 [...] Read more.
This study employs a mixed method. In-depth interviews and observational studies are among the data collection approaches used in qualitative research. The quantitative method measures the weight of respondents’ answers to the distributed questionnaire. The questionnaire, containing 82 items, was distributed to 202 tourists to collect their perceptions based on the 4A tourist components. The results indicate that tourists’ perceptions of attractions, accessibility, and ancillary services are generally positive. In contrast, perceptions of amenity services are less favorable. Using the scores from IFAS, EFAS, and the I-E matrix, the total weighted scores for IFAS and EFAS are 2.68 and 2.83, respectively. The appropriate strategy for BTV is one of aggressive growth in a position of strengths and opportunities. The study highlights key techniques, including the application of information technology in service and promotion, the strengthening of community and government roles, the development of infrastructure and facilities, the utilization of external resources, sustainable innovation, and the encouragement of local governments to issue regulations for halal tourism villages. By identifying drivers and barriers from an economic, environmental, social, and cultural perspective, the SWOT analysis results help design strategies that can make positive contributions to the development of sustainable, community-based halal tourism and digital information in the future. Full article
Show Figures

Figure 1

58 pages, 681 KiB  
Review
In Silico ADME Methods Used in the Evaluation of Natural Products
by Robert Ancuceanu, Beatrice Elena Lascu, Doina Drăgănescu and Mihaela Dinu
Pharmaceutics 2025, 17(8), 1002; https://doi.org/10.3390/pharmaceutics17081002 - 31 Jul 2025
Abstract
The pharmaceutical industry faces significant challenges when promising drug candidates fail during development due to suboptimal ADME (absorption, distribution, metabolism, excretion) properties or toxicity concerns. Natural compounds are subject to the same pharmacokinetic considerations. In silico approaches offer a compelling advantage—they eliminate the [...] Read more.
The pharmaceutical industry faces significant challenges when promising drug candidates fail during development due to suboptimal ADME (absorption, distribution, metabolism, excretion) properties or toxicity concerns. Natural compounds are subject to the same pharmacokinetic considerations. In silico approaches offer a compelling advantage—they eliminate the need for physical samples and laboratory facilities, while providing rapid and cost-effective alternatives to expensive and time-consuming experimental testing. Computational methods can often effectively address common challenges associated with natural compounds, such as chemical instability and poor solubility. Through a review of the relevant scientific literature, we present a comprehensive analysis of in silico methods and tools used for ADME prediction, specifically examining their application to natural compounds. Whereas we focus on identifying the predominant computational approaches applicable to natural compounds, these tools were developed for conventional drug discovery and are of general use. We examine an array of computational approaches for evaluating natural compounds, including fundamental methods like quantum mechanics calculations, molecular docking, and pharmacophore modeling, as well as more complex techniques such as QSAR analysis, molecular dynamics simulations, and PBPK modeling. Full article
13 pages, 3341 KiB  
Article
Regulation of Electrochemical Activity via Controlled Integration of NiS2 over Co3O4 Nanomaterials for Hydrogen Evolution Reaction
by Mrunal Bhosale, Rutuja U. Amate, Pritam J. Morankar and Chan-Wook Jeon
Coatings 2025, 15(8), 887; https://doi.org/10.3390/coatings15080887 - 30 Jul 2025
Abstract
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and [...] Read more.
Electrochemical water splitting represents a sustainable approach for hydrogen production, yet efficient hydrogen evolution reaction (HER) catalysts operating in alkaline environments remain critically needed. Herein, we report the fabrication of Co3O4–NiS2 nanocomposites synthesized through a facile coprecipitation and subsequent thermal treatment method. Detailed characterization via physicochemical techniques confirmed the successful formation of a hybrid Co3O4–NiS2 heterostructure with tunable compositional and morphological characteristics. Among the synthesized catalysts (Co–Ni–1, Co–Ni–2, and Co–Ni–3), the Co–Ni–2 sample demonstrated optimal structural integration, displaying interconnected nanosheet morphologies and balanced elemental distribution. Remarkably, Co–Ni–2 achieved exceptional HER performance in 1 M KOH electrolyte, requiring an ultralow overpotential of only 84 mV at 10 mA cm−2 and exhibiting a favorable Tafel slope of 67.5 mV dec−1. Electrochemical impedance spectroscopy and electrochemical surface area measurements further substantiated the superior electrocatalytic kinetics, rapid charge transport, and abundant active site accessibility in the optimized Co–Ni–2 composite. Additionally, Co–Ni–2 demonstrated outstanding durability with negligible activity decay over 5000 cycles. This study not only highlights the strategic synthesis of Co3O4–NiS2 nanostructures but also provides valuable insights for designing advanced, stable, and efficient non-noble electrocatalysts for sustainable hydrogen generation. Full article
Show Figures

Graphical abstract

22 pages, 3025 KiB  
Article
Exploring the Spatial Association Between Spatial Categorical Data Using a Fuzzy Geographically Weighted Colocation Quotient Method
by Ling Li, Lian Duan, Meiyi Li and Xiongfa Mai
ISPRS Int. J. Geo-Inf. 2025, 14(8), 296; https://doi.org/10.3390/ijgi14080296 - 29 Jul 2025
Viewed by 94
Abstract
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to [...] Read more.
Spatial association analysis is essential for understanding interdependencies, spatial proximity, and distribution patterns within spatial data. The spatial scale is a key factor that significantly affects the result of spatial association mining. Traditional methods often rely on a fixed distance threshold (bandwidth) to define the scale effect, which can lead to scale sensitivity and discontinuity results. To address these limitations, this study introduces the Fuzzy Geographically Weighted Colocation Quotient (FGWCLQ) method. By integrating fuzzy theory, FGWCLQ replaces binary distance cutoffs with continuous membership functions, providing a more flexible and stable approach to spatial association mining. Using Point of Interest (POI) data from the Beijing urban area, FGWCLQ was applied to explore both intra- and inter-category spatial association patterns among star hotels, transportation facilities, and tourist attractions at different fuzzy neighborhoods. The results indicate that FGWCLQ can reliably discover global prevalent spatial associations among diverse facility types and visualize the spatial heterogeneity at various spatial scales. Compared to the deterministic GWCLQ method, FGWCLQ delivers more stable and robust results across varying spatial scales and generates more continuous association surfaces, which enable clear visualization of hierarchical clustering. Empirical findings provide valuable insights for optimizing the location of star hotels and supporting decision-making in urban planning. The method is available as an open-source Matlab package, providing a practical tool for diverse spatial association investigations. Full article
(This article belongs to the Special Issue Spatial Data Science and Knowledge Discovery)
Show Figures

Figure 1

14 pages, 1829 KiB  
Article
Investigating the Spatial Biases and Temporal Trends in Insect Pollinator Occurrence Data on GBIF
by Ehsan Rahimi and Chuleui Jung
Insects 2025, 16(8), 769; https://doi.org/10.3390/insects16080769 - 26 Jul 2025
Viewed by 338
Abstract
Research in biogeography, ecology, and biodiversity hinges on the availability of comprehensive datasets that detail species distributions and environmental conditions. At the forefront of this endeavor is the Global Biodiversity Information Facility (GBIF). This study focuses on investigating spatial biases and temporal trends [...] Read more.
Research in biogeography, ecology, and biodiversity hinges on the availability of comprehensive datasets that detail species distributions and environmental conditions. At the forefront of this endeavor is the Global Biodiversity Information Facility (GBIF). This study focuses on investigating spatial biases and temporal trends in insect pollinator occurrence data within the GBIF dataset, specifically focusing on three pivotal pollinator groups: bees, hoverflies, and butterflies. Addressing these gaps in GBIF data is essential for comprehensive analyses and informed pollinator conservation efforts. We obtained occurrence data from GBIF for seven bee families, six butterfly families, and the Syrphidae family of hoverflies in 2024. Spatial biases were addressed by eliminating duplicate records with identical latitude and longitude coordinates. Species richness was assessed for each family and country. Temporal trends were examined by tallying annual occurrence records for each pollinator family, and the diversity of data sources within GBIF was evaluated by quantifying unique data publishers. We identified initial occurrence counts of 4,922,390 for bees, 1,703,131 for hoverflies, and 31,700,696 for butterflies, with a substantial portion containing duplicate records. On average, 81.4% of bee data, 77.2% of hoverfly data, and 65.4% of butterfly data were removed post-duplicate elimination for dataset refinement. Our dataset encompassed 9286 unique bee species, 2574 hoverfly species, and 17,895 butterfly species. Our temporal analysis revealed a notable trend in data recording, with 80% of bee and butterfly data collected after 2022, and a similar threshold for hoverflies reached after 2023. The United States, Germany, the United Kingdom, and Sweden consistently emerged as the top countries for occurrence data across all three groups. The analysis of data publishers highlighted iNaturalist.org as a top contributor to bee data. Overall, we uncovered significant biases in the occurrence data of pollinators from GBIF. These biases pose substantial challenges for future research on pollinator ecology and biodiversity conservation. Full article
(This article belongs to the Special Issue Insect Pollinators and Pollination Service Provision)
Show Figures

Figure 1

22 pages, 1921 KiB  
Article
Cooperative Game-Theoretic Scheduling for Low-Carbon Integrated Energy Systems with P2G–CCS Synergy
by Huijia Liu, Sheng Ye, Chengkai Yin, Lei Wang and Can Zhang
Energies 2025, 18(15), 3942; https://doi.org/10.3390/en18153942 - 24 Jul 2025
Viewed by 284
Abstract
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. [...] Read more.
In the context of the dual-carbon goals, this study proposes a cooperative game-theoretic optimization strategy to enhance the energy utilization efficiency, operational efficiency, and cost-effectiveness of integrated energy systems (IESs) while simultaneously reducing carbon emissions, improving operational flexibility, and mitigating renewable energy variability. To achieve these goals, an IES framework integrating power-to-gas (P2G) technology and carbon capture and storage (CCS) facilities is established to regulate carbon emissions. The system incorporates P2G conversion units and thermal components—specifically, hydrogen fuel cells, electrolyzers, reactors, and electric boilers—aiming to maximize energy conversion efficiency and asset utilization. A cooperative game-theoretic optimization model is developed to facilitate collaboration among multiple stakeholders within the coalition, which employs the Shapley value method to ensure equitable distribution of the cooperative surplus, thereby maximizing collective benefits. The model is solved using an improved gray wolf optimizer (IGWO). The simulation results demonstrate that the proposed strategy effectively coordinates multi-IES scheduling, significantly reduces carbon emissions, facilitates the efficient allocation of cooperation gains, and maximizes overall system utility. Full article
Show Figures

Figure 1

13 pages, 25732 KiB  
Article
Simple Cobalt Nanoparticle-Catalyzed Reductive Amination for Selective Synthesis of a Broad Range of Primary Amines
by Bingxiao Zheng, Liqin Yang, Yashuang Hei, Ling Yu, Sisi Wen, Lisi Ba, Long Ao and Zhiju Zhao
Molecules 2025, 30(15), 3089; https://doi.org/10.3390/molecules30153089 - 23 Jul 2025
Viewed by 182
Abstract
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO [...] Read more.
In the field of green chemistry, the development of more sustainable and cost-efficient methods for synthesizing primary amines is of paramount importance, with catalyst research being central to this effort. This work presents a facile, aqueous-phase synthesis of highly active cobalt catalysts (Co-Ph@SiO2(x)) via pyrolysis of silica-supported cobalt–phenanthroline complexes. The optimized Co-Ph@SiO2(900) catalyst achieved exceptional performance (>99% conversion, >98% selectivity) in the reductive amination of acetophenone to 1-phenylethanamine using NH3/H2. Systematic studies revealed that its exceptional performance originates from the in situ pyrolysis of the cobalt–phyllosilicate complex. This process promotes the uniform distribution of metal cobalt nanoparticles, simultaneously enhancing porosity and imparting bifunctional (acidic and basic) properties to the catalyst, resulting in outstanding catalytic activity and selectivity. The catalyst demonstrated broad applicability, efficiently converting diverse ketones (aryl-alkyl, dialkyl, bioactive) and aldehydes (halogenated, heterocyclic, biomass-derived) into primary amines with high yields (up to 99%) and chemoselectivity (>40 examples). This sustainable, non-noble metal-based catalyst system offers significant potential for industrial primary amine synthesis and provides a versatile tool for developing highly selective and active heterogeneous catalysts. Full article
Show Figures

Figure 1

18 pages, 840 KiB  
Article
Centralized vs. Decentralized Black-Mass Production: A Comparative Analysis of Lithium Reverse Logistics Supply Chain Networks
by Oluwatosin S. Atitebi and Erick C. Jones
Logistics 2025, 9(3), 97; https://doi.org/10.3390/logistics9030097 - 23 Jul 2025
Viewed by 255
Abstract
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study [...] Read more.
Background: The transition to renewable energy is intensifying demand for lithium-ion batteries (LIBs), thereby increasing the need for sustainable lithium sourcing. Traditional mining practices pose environmental and health risks, which can be mitigated through efficient end-of-life recycling systems. Methods: This study proposes a modified lithium reverse logistics network that decentralizes black-mass production at distributed facilities before centralized extraction, contrasting with conventional models that transport raw LIBs directly to central processing sites. Using the United States as a case study, two mathematical optimization (mixed-integer linear programming) models were developed to compare the traditional and modified networks in terms of cost efficiency and carbon emissions. Results: The model indicates that the proposed network significantly reduces both operational costs and emissions. Conclusions: This study highlights its potential to support a greener economy and inform policy development. Full article
Show Figures

Figure 1

20 pages, 3338 KiB  
Article
Mitigation of Reverse Power Flows in a Distribution Network by Power-to-Hydrogen Plant
by Fabio Massaro, John Licari, Alexander Micallef, Salvatore Ruffino and Cyril Spiteri Staines
Energies 2025, 18(15), 3931; https://doi.org/10.3390/en18153931 - 23 Jul 2025
Viewed by 230
Abstract
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this [...] Read more.
The increase in power generation facilities from nonprogrammable renewable sources is posing several challenges for the management of electrical systems, due to phenomena such as congestion and reverse power flows. In mitigating these phenomena, Power-to-Gas plants can make an important contribution. In this paper, a linear optimisation study is presented for the sizing of a Power-to-Hydrogen plant consisting of a PEM electrolyser, a hydrogen storage system composed of multiple compressed hydrogen tanks, and a fuel cell for the eventual reconversion of hydrogen to electricity. The plant was sized with the objective of minimising reverse power flows in a medium-voltage distribution network characterised by a high presence of photovoltaic systems, considering economic aspects such as investment costs and the revenue obtainable from the sale of hydrogen and excess energy generated by the photovoltaic systems. The study also assessed the impact that the electrolysis plant has on the power grid in terms of power losses. The results obtained showed that by installing a 737 kW electrolyser, the annual reverse power flows are reduced by 81.61%, while also reducing losses in the transformer and feeders supplying the ring network in question by 17.32% and 29.25%, respectively, on the day with the highest reverse power flows. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

20 pages, 3122 KiB  
Article
Spatial Analysis of Medical Service Accessibility in the Context of Quality of Life and Sustainable Development: A Case Study of Olsztyn County, Poland
by Iwona Cieślak, Bartłomiej Eźlakowski, Andrzej Biłozor and Adam Senetra
Sustainability 2025, 17(15), 6687; https://doi.org/10.3390/su17156687 - 22 Jul 2025
Viewed by 179
Abstract
This study investigates the accessibility of public healthcare services in Olsztyn County, a major urban center in the Warmia and Mazury region of Poland. The aim was to develop a methodological framework using Geographic Information System (GIS) tools and spatial data to assess [...] Read more.
This study investigates the accessibility of public healthcare services in Olsztyn County, a major urban center in the Warmia and Mazury region of Poland. The aim was to develop a methodological framework using Geographic Information System (GIS) tools and spatial data to assess the local availability of healthcare infrastructure. The analysis included key facilities such as hospitals, clinics, pharmacies, and specialized outpatient services. A spatial accessibility indicator was constructed to evaluate and compare access levels across municipalities. The results show a clear disparity between urban and rural areas, with significantly better access in cities. Several rural municipalities were found to have limited or no access to essential healthcare services. These findings highlight the uneven spatial distribution of medical infrastructure and point to the need for targeted strategies to improve service availability in underserved areas. The proposed methodological approach may support future studies and inform local and regional planning aimed at reducing healthcare inequalities and improving access for all residents, regardless of their location. This research contributes to the growing body of evidence emphasizing the role of spatial analysis in assessing public service accessibility and supports the development of more equitable healthcare systems at the local level. Full article
(This article belongs to the Special Issue Quality of Life in the Context of Sustainable Development)
Show Figures

Figure 1

18 pages, 1768 KiB  
Article
Comparative Risk Assessment of Legionella spp. Colonization in Water Distribution Systems Across Hotels, Passenger Ships, and Healthcare Facilities During the COVID-19 Era
by Antonios Papadakis, Eleftherios Koufakis, Elias Ath Chaidoutis, Dimosthenis Chochlakis and Anna Psaroulaki
Water 2025, 17(14), 2149; https://doi.org/10.3390/w17142149 - 19 Jul 2025
Viewed by 389
Abstract
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare [...] Read more.
The colonization of Legionella spp. in engineered water systems constitutes a major public health threat. In this study, a six-year environmental surveillance (2020–2025) of Legionella colonization in five different types of facilities in Crete, Greece is presented, including hotels, passenger ships, primary healthcare facilities, public hospitals, and private clinics. A total of 1081 water samples were collected and analyzed, and the overall positivity was calculated using culture-based methods. Only 16.46% of the samples exceeded the regulatory limit (>103 CFU/L) in the total sample, with 44.59% overall Legionella positivity. Colonization by facility category showed the highest rates in primary healthcare facilities with 85.96%, followed by public hospitals (46.36%), passenger ships with 36.93%, hotels with 38.08%, and finally private clinics (21.42%). The association of environmental risk factors with Legionella positivity revealed a strong effect at hot water temperatures < 50 °C (RR = 2.05) and free chlorine residuals < 0.2 mg/L (RR = 2.22) (p < 0.0001). Serotyping analysis revealed the overall dominance of Serogroups 2–15 of L. pneumophila; nevertheless, Serogroup 1 was particularly prevalent in hospitals, passenger ships, and hotels. Based on these findings, the requirement for continuous environmental monitoring and risk management plans with preventive thermochemical controls tailored to each facility is highlighted. Finally, operational disruptions, such as those experienced during the COVID-19 pandemic, especially in primary care facilities and marine systems, require special attention. Full article
(This article belongs to the Special Issue Legionella: A Key Organism in Water Management)
Show Figures

Figure 1

15 pages, 5876 KiB  
Article
Quantifying the Impact of Sports Stadiums on Urban Morphology: The Case of Jiangwan Stadium, Shanghai
by Hanyue Lu and Zong Xuan
Buildings 2025, 15(14), 2510; https://doi.org/10.3390/buildings15142510 - 17 Jul 2025
Viewed by 245
Abstract
Sports stadiums significantly influence urban morphology; however, empirical quantification of these effects remains limited. This study quantitatively examines the spatiotemporal relationship between sports architecture and urban functional evolution using Jiangwan Stadium in Shanghai—China’s first Western-style sports facility—as a case study. Employing Point of [...] Read more.
Sports stadiums significantly influence urban morphology; however, empirical quantification of these effects remains limited. This study quantitatively examines the spatiotemporal relationship between sports architecture and urban functional evolution using Jiangwan Stadium in Shanghai—China’s first Western-style sports facility—as a case study. Employing Point of Interest (POI) data, ArcGIS spatial analyses, chi-square tests, and linear regression-based predictive modeling, we illustrate how the stadium has catalyzed urban regeneration and functional diversification over nearly a century. Our findings demonstrate a transition from sparse distributions to concentrated commercial and service clusters within a 1000 m radius around the stadium, notably in food and beverage, shopping, finance, insurance, and transportation sectors, significantly boosting local economic vitality. The area achieved peak functional diversity in 2016, showcasing a balanced integration of residential, commercial, and service activities. This research provides actionable insights for urban planners and policymakers on leveraging sports facilities to foster sustainable urban regeneration. Full article
Show Figures

Figure 1

24 pages, 7613 KiB  
Article
Spatial Distribution Characteristics and Influencing Factors of Public Service Facilities for Children—A Case Study of the Central Urban Area of Shenyang
by Ruiqiu Pang, Jiawei Xiao, Jun Yang and Weisong Sun
Land 2025, 14(7), 1485; https://doi.org/10.3390/land14071485 - 17 Jul 2025
Viewed by 248
Abstract
With the rapid advancement of urbanization, the increasing demand and insufficient supply of public service facilities for children have become urgent problems requiring resolution. This study employs the Shannon diversity index, the location entropy, spatial autocorrelation, and the Geographically Weighted Regression (GWR) to [...] Read more.
With the rapid advancement of urbanization, the increasing demand and insufficient supply of public service facilities for children have become urgent problems requiring resolution. This study employs the Shannon diversity index, the location entropy, spatial autocorrelation, and the Geographically Weighted Regression (GWR) to analyze the spatial distribution characteristics and influencing factors of children’s public service facilities in the central urban area of Shenyang. The findings of the study are as follows: (1) There are significant differences in the spatial distribution of children’s public service facilities. Higher quantity distribution and diversity index are observed in the core area and Hunnan District compared to the peripheral areas. The Gini coefficient of various facilities is below the fair threshold of 0.4, but 90.32% of the study units have location entropy values below 1, indicating a supply–demand imbalance. (2) The spatial distribution of various facilities exhibits significant clustering characteristics, with distinct differences between high-value and low-value cluster patterns. (3) The spatial distribution of facilities is shaped by four factors: population, transportation, economy, and environmental quality. Residential area density and commercial service facility density emerge as the primary positive drivers, whereas road density and average housing price act as the main negative inhibitors. (4) The mechanisms of influencing factors exhibit spatial heterogeneity. Positive driving factors exert significant effects on new urban areas and peripheral zones, while negative factors demonstrate pronounced inhibitory effects on old urban areas. Non-linear threshold effects are observed in factors such as subway station density and public transport station density. Full article
Show Figures

Figure 1

19 pages, 4141 KiB  
Article
Prediction of Potential Habitat for Korean Endemic Firefly, Luciola unmunsana Doi, 1931 (Coleoptera: Lampyridae), Using Species Distribution Models
by ByeongJun Jung, JuYeong Youn and SangWook Kim
Land 2025, 14(7), 1480; https://doi.org/10.3390/land14071480 - 17 Jul 2025
Viewed by 344
Abstract
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, [...] Read more.
This study aimed to predict the potential habitats of Luciola unmunsana using a species distribution model (SDM). Luciola unmunsana is an endemic species that lives only in South Korea, and because its females do not have genus wings and are less fluid, it is difficult to collect, so research related to its distribution and restoration is relatively understudied. Therefore, this study predicted the potential habitats of Luciola unmunsana across South Korea using the single model Maximum Entropy (MaxEnt) and a multi-model ensemble model to prepare basic data necessary for a conservation and habitat restoration plan for the species. A total of 39 points of occurrence were built based on public data and prior research from the Jeonbuk Green Environment Support Center (JGESC), the Global Biodiversity Information Facility (GBIF), and the National Institute of Biological Resources (NIBR). Among the input variables, climate variables were based on the shared socioeconomic pathway (SSP) scenario-based ecological climate index, while nonclimate variables were based on topography, land cover maps, and the Enhanced Vegetation Index (EVI). The main findings of this study are summarized below. First, in predicting Luciola unmunsana potential habitats, the EVI, water network analysis, land cover, and annual precipitation (Bio12) were identified as good predictors in both models. Accordingly, areas with high vegetation activity in their forests, adjacent to water resources, and stable humidity were predicted as potential habitats. Second, by overlaying the predicted potential habitats and highly significant variables, we found that areas with high vegetation vigor within their forests, proximity to water systems, and relatively high annual precipitation, which can maintain stable humidity, are potential habitats for Luciola unmunsana. Third, literature surveys used to predict potential habitat sites, including Geumsan-gun, Chungcheongnam-do, Yeongam-gun, Jeollabuk-do, Mudeungsan Mountain, Gwangju-si, Korea, and Gijang-gun, Busan-si, Korea, confirmed the occurrence of Luciola unmunsana. This study is significant in that it is the first to develop a regional SDM for Luciola unmunsana, whose population is declining due to urbanization. In addition, by applying various environmental variables that reflect ecological characteristics, it contributes to more accurate predictions of the potential habitats of this species. The predicted results can be used as basic data for the future conservation of Luciola unmunsana and the establishment of habitat restoration strategies. Full article
Show Figures

Figure 1

Back to TopTop