Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (707)

Search Parameters:
Keywords = extreme learning machine (ELM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 5549 KiB  
Article
Intrusion Detection and Real-Time Adaptive Security in Medical IoT Using a Cyber-Physical System Design
by Faeiz Alserhani
Sensors 2025, 25(15), 4720; https://doi.org/10.3390/s25154720 - 31 Jul 2025
Viewed by 273
Abstract
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical [...] Read more.
The increasing reliance on Medical Internet of Things (MIoT) devices introduces critical cybersecurity vulnerabilities, necessitating advanced, adaptive defense mechanisms. Recent cyber incidents—such as compromised critical care systems, modified therapeutic device outputs, and fraudulent clinical data inputs—demonstrate that these threats now directly impact life-critical aspects of patient security. In this paper, we introduce a machine learning-enabled Cognitive Cyber-Physical System (ML-CCPS), which is designed to identify and respond to cyber threats in MIoT environments through a layered cognitive architecture. The system is constructed on a feedback-looped architecture integrating hybrid feature modeling, physical behavioral analysis, and Extreme Learning Machine (ELM)-based classification to provide adaptive access control, continuous monitoring, and reliable intrusion detection. ML-CCPS is capable of outperforming benchmark classifiers with an acceptable computational cost, as evidenced by its macro F1-score of 97.8% and an AUC of 99.1% when evaluated with the ToN-IoT dataset. Alongside classification accuracy, the framework has demonstrated reliable behaviour under noisy telemetry, maintained strong efficiency in resource-constrained settings, and scaled effectively with larger numbers of connected devices. Comparative evaluations, radar-style synthesis, and ablation studies further validate its effectiveness in real-time MIoT environments and its ability to detect novel attack types with high reliability. Full article
Show Figures

Figure 1

28 pages, 5698 KiB  
Article
Hybrid Metaheuristic Optimized Extreme Learning Machine for Sustainability Focused CO2 Emission Prediction Using Globalization-Driven Indicators
by Mahmoud Almsallti, Ahmad Bassam Alzubi and Oluwatayomi Rereloluwa Adegboye
Sustainability 2025, 17(15), 6783; https://doi.org/10.3390/su17156783 - 25 Jul 2025
Viewed by 209
Abstract
The escalating threat of climate change has intensified the global urgency to accurately predict carbon dioxide (CO2) emissions for sustainable development, particularly in developing economies experiencing rapid industrialization and globalization. Traditional Extreme Learning Machines (ELMs) offer rapid learning but often yield [...] Read more.
The escalating threat of climate change has intensified the global urgency to accurately predict carbon dioxide (CO2) emissions for sustainable development, particularly in developing economies experiencing rapid industrialization and globalization. Traditional Extreme Learning Machines (ELMs) offer rapid learning but often yield unstable performance due to random parameter initialization. This study introduces a novel hybrid model, Red-Billed Blue Magpie Optimizer-tuned ELM (RBMO-ELM) which harnesses the intelligent foraging behavior of red-billed blue magpies to optimize input-to-hidden layer weights and biases. The RBMO algorithm is first benchmarked on 15 functions from the CEC2015 test suite to validate its optimization effectiveness. Subsequently, RBMO-ELM is applied to predict Indonesia’s CO2 emissions using a multidimensional dataset that combines economic, technological, environmental, and globalization-driven indicators. Empirical results show that the RBMO-ELM significantly surpasses several state-of-the-art hybrid models in accuracy (higher R2) and convergence efficiency (lower error). A permutation-based feature importance analysis identifies social globalization, GDP, and ecological footprint as the strongest predictors underscoring the socio-economic influences on emission patterns. These findings offer both theoretical and practical implications that inform data-driven Artificial Intelligence (AI) and Machine Learning (ML) applications in environmental policy and support sustainable governance models. Full article
Show Figures

Figure 1

26 pages, 3959 KiB  
Article
Fault Diagnosis Method of Planetary Gearboxes Based on Multi-Scale Wavelet Packet Energy Entropy and Extreme Learning Machine
by Rui Meng, Junpeng Zhang, Ming Chen and Liangliang Chen
Entropy 2025, 27(8), 782; https://doi.org/10.3390/e27080782 - 24 Jul 2025
Viewed by 251
Abstract
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and [...] Read more.
As critical components of planetary gearboxes, gears directly affect mechanical system reliability when faults occur. Traditional feature extraction methods exhibit limitations in accurately identifying fault characteristics and achieving satisfactory diagnostic accuracy. This research is concerned with the gear of the planetary gearbox and proposes a new approach termed multi-scale wavelet packet energy entropy (MSWPEE) for extracting gear fault features. The signal is split into sub-signals at three different scale factors. Following decomposition and reconstruction using the wavelet packet algorithm, the wavelet packet energy entropy for each node is computed under different operating conditions. A feature vector is formed by combining the wavelet packet energy entropy at different scale factors. Furthermore, this study proposes a method combining multi-scale wavelet packet energy entropy with extreme learning machine (MSWPEE-ELM). The experimental findings validate the precision of this approach in extracting features and diagnosing faults in sun gears with varying degrees of tooth breakage severity. Full article
Show Figures

Figure 1

20 pages, 1022 KiB  
Article
A Double Inertial Mann-Type Method for Two Nonexpansive Mappings with Application to Urinary Tract Infection Diagnosis
by Krittin Naravejsakul, Pasa Sukson, Waragunt Waratamrongpatai, Phatcharapon Udomluck, Mallika Khwanmuang, Watcharaporn Cholamjiak and Watcharapon Yajai
Mathematics 2025, 13(15), 2352; https://doi.org/10.3390/math13152352 - 23 Jul 2025
Viewed by 164
Abstract
This study proposes a double inertial technique integrated with the Mann algorithm to address the fixed-point problem. Our method is further employed to tackle the split-equilibrium problem and perform classification using a urinary tract infection dataset in practical scenarios. The Extreme Learning Machine [...] Read more.
This study proposes a double inertial technique integrated with the Mann algorithm to address the fixed-point problem. Our method is further employed to tackle the split-equilibrium problem and perform classification using a urinary tract infection dataset in practical scenarios. The Extreme Learning Machine (ELM) model is utilized to categorize urinary tract infection cases based on both clinical and demographic features. It exhibits excellent precision and efficiency in differentiating infected from non-infected individuals. The results validate that the ELM provides a rapid and reliable method for handling classification tasks related to urinary tract infections. Full article
(This article belongs to the Special Issue Variational Analysis, Optimization, and Equilibrium Problems)
Show Figures

Figure 1

23 pages, 5310 KiB  
Article
Prediction of the Calorific Value and Moisture Content of Caragana korshinskii Fuel Using Hyperspectral Imaging Technology and Various Stoichiometric Methods
by Xuehong De, Haoming Li, Jianchao Zhang, Nanding Li, Huimeng Wan and Yanhua Ma
Agriculture 2025, 15(14), 1557; https://doi.org/10.3390/agriculture15141557 - 21 Jul 2025
Viewed by 267
Abstract
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the [...] Read more.
Calorific value and moisture content are the key indices to evaluate Caragana pellet fuel’s quality and combustion characteristics. Calorific value is the key index to measure the energy released by energy plants during combustion, which determines energy utilization efficiency. But at present, the determination of solid fuel is still carried out in the laboratory by oxygen bomb calorimetry. This has seriously hindered the ability of large-scale, rapid detection of fuel particles in industrial production lines. In response to this technical challenge, this study proposes using hyperspectral imaging technology combined with various chemometric methods to establish quantitative models for determining moisture content and calorific value in Caragana korshinskii fuel. A hyperspectral imaging system was used to capture the spectral data in the 935–1720 nm range of 152 samples from multiple regions in Inner Mongolia Autonomous Region. For water content and calorific value, three quantitative detection models, partial least squares regression (PLSR), random forest regression (RFR), and extreme learning machine (ELM), respectively, were established, and Monte Carlo cross-validation (MCCV) was chosen to remove outliers from the raw spectral data to improve the model accuracy. Four preprocessing methods were used to preprocess the spectral data, with standard normal variate (SNV) preprocessing performing best on the quantitative moisture content detection model and Savitzky–Golay (SG) preprocessing performing best on the calorific value detection method. Meanwhile, to improve the prediction accuracy of the model to reduce the redundant wavelength data, we chose four feature extraction methods, competitive adaptive reweighted sampling (CARS), successive pojections algorithm (SPA), genetic algorithm (GA), iteratively retains informative variables (IRIV), and combined the three models to build a quantitative detection model for the characteristic wavelengths of moisture content and calorific value of Caragana korshinskii fuel. Finally, a comprehensive comparison of the modeling effectiveness of all methods was carried out, and the SNV-IRIV-PLSR modeling combination was the best for water content prediction, with its prediction set determination coefficient (RP2), root mean square error of prediction (RMSEP), and relative percentage deviation (RPD) of 0.9693, 0.2358, and 5.6792, respectively. At the same time, the moisture content distribution map of Caragana fuel particles is established by using this model. The SG-CARS-RFR modeling combination was the best for calorific value prediction, with its RP2, RMSEP, and RPD of 0.8037, 0.3219, and 2.2864, respectively. This study provides an innovative technical solution for Caragana fuel particles’ value and quality assessment. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

20 pages, 3636 KiB  
Article
The Prediction of Civil Building Energy Consumption Using a Hybrid Model Combining Wavelet Transform with SVR and ELM: A Case Study of Jiangsu Province
by Xiangxu Chen, Jinjin Mu, Zihan Shang and Xinnan Gao
Mathematics 2025, 13(14), 2293; https://doi.org/10.3390/math13142293 - 17 Jul 2025
Viewed by 207
Abstract
As a pivotal economic province in China, Jiangsu’s efforts in civil building energy conservation are critical to achieving the national “dual carbon” goals. This paper proposes a hybrid model that integrates wavelet transform, support vector regression (SVR), and extreme learning machine (ELM) to [...] Read more.
As a pivotal economic province in China, Jiangsu’s efforts in civil building energy conservation are critical to achieving the national “dual carbon” goals. This paper proposes a hybrid model that integrates wavelet transform, support vector regression (SVR), and extreme learning machine (ELM) to predict the civil building energy consumption of Jiangsu Province. Based on data from statistical yearbooks, the historical energy consumption of civil buildings is calculated. Through a grey relational analysis (GRA), the key factors influencing the civil building energy consumption are identified. The wavelet transform technique is then applied to decompose the energy consumption data into a trend component and a fluctuation component. The SVR model predicts the trend component, while the ELM model captures the fluctuation patterns. The final prediction results are generated by combining these two predictions. The results demonstrate that the hybrid model achieves superior performance with a Mean Absolute Percentage Error (MAPE) of merely 1.37%, outperforming both individual prediction methods and alternative hybrid approaches. Furthermore, we develop three prospective scenarios to analyze civil building energy consumption trends from 2023 to 2030. The analysis reveals that the observed patterns align with the Environmental Kuznets Curve (EKC). These findings provide valuable insights for provincial governments in future policy-making and energy planning. Full article
Show Figures

Figure 1

25 pages, 1272 KiB  
Article
Complex Environmental Geomagnetic Matching-Assisted Navigation Algorithm Based on Improved Extreme Learning Machine
by Jian Huang, Zhe Hu and Wenjun Yi
Sensors 2025, 25(14), 4310; https://doi.org/10.3390/s25144310 - 10 Jul 2025
Viewed by 418
Abstract
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the [...] Read more.
In complex environments where satellite signals may be interfered with, it is difficult to achieve precise positioning of high-speed aerial vehicles solely through the inertial navigation system. To overcome this challenge, this paper proposes an NGO-ELM geomagnetic matching-assisted navigation algorithm, in which the Northern Goshawk Optimization (NGO) algorithm is used to optimize the initial weights and biases of the Extreme Learning Machine (ELM). To enhance the matching performance of the NGO-ELM algorithm, three improvements are proposed to the NGO algorithm. The effectiveness of these improvements is validated using the CEC2005 benchmark function suite. Additionally, the IGRF-13 model is utilized to generate a geomagnetic matching dataset, followed by comparative testing of five geomagnetic matching models: INGO-ELM, NGO-ELM, ELM, INGO-XGBoost, and INGO-BP. The simulation results show that after the airborne equipment acquires the geomagnetic data, it only takes 0.27 µs to obtain the latitude, longitude, and altitude of the aerial vehicle through the INGO-ELM model. After unit conversion, the average absolute errors are approximately 6.38 m, 6.43 m, and 0.0137 m, respectively, which significantly outperform the results of four other models. Furthermore, when noise is introduced into the test set inputs, the positioning error of the INGO-ELM model remains within the same order of magnitude as those before the noise was added, indicating that the model exhibits excellent robustness. It has been verified that the geomagnetic matching-assisted navigation algorithm proposed in this paper can achieve real-time, accurate, and stable positioning, even in the presence of observational errors from the magnetic sensor. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

26 pages, 1566 KiB  
Article
Predictive Framework for Regional Patent Output Using Digital Economic Indicators: A Stacked Machine Learning and Geospatial Ensemble to Address R&D Disparities
by Amelia Zhao and Peng Wang
Analytics 2025, 4(3), 18; https://doi.org/10.3390/analytics4030018 - 8 Jul 2025
Viewed by 341
Abstract
As digital transformation becomes an increasingly central focus of national and regional policy agendas, parallel efforts are intensifying to stimulate innovation as a critical driver of firm competitiveness and high-quality economic growth. However, regional disparities in innovation capacity persist. This study proposes an [...] Read more.
As digital transformation becomes an increasingly central focus of national and regional policy agendas, parallel efforts are intensifying to stimulate innovation as a critical driver of firm competitiveness and high-quality economic growth. However, regional disparities in innovation capacity persist. This study proposes an integrated framework in which regionally tracked digital economy indicators are leveraged to predict firm-level innovation performance, measured through patent activity, across China. Drawing on a comprehensive dataset covering 13 digital economic indicators from 2013 to 2022, this study spans core, broad, and narrow dimensions of digital development. Spatial dependencies among these indicators are assessed using global and local spatial autocorrelation measures, including Moran’s I and Geary’s C, to provide actionable insights for constructing innovation-conducive environments. To model the predictive relationship between digital metrics and innovation output, this study employs a suite of supervised machine learning techniques—Random Forest, Extreme Learning Machine (ELM), Support Vector Machine (SVM), XGBoost, and stacked ensemble approaches. Our findings demonstrate the potential of digital infrastructure metrics to serve as early indicators of regional innovation capacity, offering a data-driven foundation for targeted policymaking, strategic resource allocation, and the design of adaptive digital innovation ecosystems. Full article
Show Figures

Figure 1

17 pages, 2217 KiB  
Article
Prediction of Thermomechanical Behavior of Wood–Plastic Composites Using Machine Learning Models: Emphasis on Extreme Learning Machine
by Xueshan Hua, Yan Cao, Baoyu Liu, Xiaohui Yang, Hailong Xu, Lifen Li and Jing Wu
Polymers 2025, 17(13), 1852; https://doi.org/10.3390/polym17131852 - 2 Jul 2025
Viewed by 305
Abstract
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different [...] Read more.
The dynamic thermomechanical properties of wood–plastic composites (WPCs) are influenced by various factors, such as the selection of raw materials and processing parameters. To investigate the effects of different wood fiber content ratios and temperature on the loss modulus of WPCs, seven different proportions of Masson pine (Pinus massoniana Lamb.) and Chinese fir [Cunninghamia lanceolata (Lamb.) Hook.] mixed-fiber-reinforced HDPE composites were prepared using the extrusion molding method. Their dynamic thermomechanical properties were tested and analyzed. The storage modulus of WPCs showed a decreasing trend with increasing temperature. A reduction in the mass ratio of Masson pine wood fibers to Chinese fir wood fibers resulted in an increase in the storage modulus of WPCs. The highest storage modulus was achieved when the mass ratio of Masson pine wood fibers to Chinese fir wood fibers was 1:5. In addition, the loss modulus of the composites increased as the content of Masson pine fiber decreased, with the lowest loss modulus observed in HDPE composites reinforced with Masson pine wood fibers. The loss tangent for all seven types of WPCs increased with rising temperatures, with the maximum loss tangent observed in WPCs reinforced with Masson pine wood fibers and HDPE. A prediction method based on the Extreme Learning Machine (ELM) model was introduced to predict the dynamic thermomechanical properties of WPCs. The prediction accuracy of the ELM model was compared comprehensively with that of other models, including Support Vector Machines (SVMs), Random Forest (RF), Back Propagation (BP) neural networks, and Particle Swarm Optimization-BP (PSO-BP) neural network models. Among these, the ELM model showed superior data fitting and prediction accuracy, with an R2 value of 0.992, Mean Absolute Error (MAE) of 1.363, and Root Mean Square Error (RMSE) of 3.311. Compared to the other models, the ELM model demonstrated the best performance. This study provides a solid basis and reference for future research on the dynamic thermomechanical properties of WPCs. Full article
Show Figures

Figure 1

20 pages, 5757 KiB  
Article
Application of Soft Computing Represented by Regression Machine Learning Model and Artificial Lemming Algorithm in Predictions for Hydrogen Storage in Metal-Organic Frameworks
by Jiamin Zhang, Yanzhe Li, Chuanqi Li, Xiancheng Mei and Jian Zhou
Materials 2025, 18(13), 3122; https://doi.org/10.3390/ma18133122 - 1 Jul 2025
Viewed by 392
Abstract
Metal-organic frameworks (MOFs) have been extensively studied for hydrogen storage due to their unique properties. This paper aims to develop several regression-based machine learning models to predict the hydrogen storage capacity of MOFs, including artificial neuron network (ANN), support vector regression (SVR), random [...] Read more.
Metal-organic frameworks (MOFs) have been extensively studied for hydrogen storage due to their unique properties. This paper aims to develop several regression-based machine learning models to predict the hydrogen storage capacity of MOFs, including artificial neuron network (ANN), support vector regression (SVR), random forest (RF), extreme learning machine (ELM), kernel extreme learning machine (KELM), and generalized regression neural network (GRNN). An improved population-based metaheuristic optimization algorithm, the artificial lemming algorithm (ALA), is employed to select the hyperparameters of these machine learning models, enhancing their performance. All developed models are trained and tested using experimental data from multiple studies. The performance of the models is evaluated using various statistical metrics, complemented by regression plots, error analysis, and Taylor graphs to further identify the most effective predictive model. The results show that the ALA-RF model obtains the best performance in predicting hydrogen storage, with optimal values of coefficient of determination (R2), root mean square error (RMSE), Willmott’s index (WI), and weighted average percentage error (WAPE) in both training and testing phases (0.9845 and 0.9840, 0.2719 and 0.2828, 0.9961 and 0.9959, and 0.0667 and 0.0714, respectively). Additionally, pressure is identified as the most significant feature for predicting hydrogen storage in MOFs. These findings provide an intelligent solution for the selection of MOFs and optimization of operational conditions in hydrogen storage processes. Full article
(This article belongs to the Special Issue Hydrides for Energy Storage: Materials, Technologies and Applications)
Show Figures

Figure 1

30 pages, 2494 KiB  
Article
A Novel Framework for Mental Illness Detection Leveraging TOPSIS-ModCHI-Based Feature-Driven Randomized Neural Networks
by Santosh Kumar Behera and Rajashree Dash
Math. Comput. Appl. 2025, 30(4), 67; https://doi.org/10.3390/mca30040067 - 30 Jun 2025
Viewed by 396
Abstract
Mental illness has emerged as a significant global health crisis, inflicting immense suffering and causing a notable decrease in productivity. Identifying mental health disorders at an early stage allows healthcare professionals to implement more targeted and impactful interventions, leading to a significant improvement [...] Read more.
Mental illness has emerged as a significant global health crisis, inflicting immense suffering and causing a notable decrease in productivity. Identifying mental health disorders at an early stage allows healthcare professionals to implement more targeted and impactful interventions, leading to a significant improvement in the overall well-being of the patient. Recent advances in Artificial Intelligence (AI) have opened new avenues for analyzing medical records and behavioral data of patients to assist mental health professionals in their decision-making processes. In this study performance of four Randomized Neural Networks (RandNNs) such as Board Learning System (BLS), Random Vector Functional Link Network (RVFLN), Kernelized RVFLN (KRVFLN), and Extreme Learning Machine (ELM) are explored for detecting the type of mental illness a user may have by analyzing the random text of the user posted on social media. To improve the performance of the RandNNs during handling the text documents with unbalanced class distributions, a hybrid feature selection (FS) technique named as TOPSIS-ModCHI is suggested in the preprocessing stage of the classification framework. The effectiveness of the suggested FS with all the four randomized networks is assessed over the publicly available Reddit Mental Health Dataset after experimenting on two benchmark multiclass unbalanced datasets. From the experimental results, it is inferred that detecting the mental illness using BLS with TOPSIS-ModCHI produces the highest precision value of 0.92, recall value of 0.66, f-measure value of 0.77, and Hamming loss value of 0.06 as compared to ELM, RVFLN, and KRVFLN with a minimum feature size of 900. Overall, utilizing BLS for mental health analysis can offer a promising avenue toward improved interventions and a better understanding of mental health issues, aiding in decision-making processes. Full article
Show Figures

Figure 1

28 pages, 7612 KiB  
Article
Machine Learning Models for Predicting Freeze–Thaw Damage of Concrete Under Subzero Temperature Curing Conditions
by Yanhua Zhao, Bo Yang, Kai Zhang, Aojun Guo, Yonghui Yu and Li Chen
Materials 2025, 18(12), 2856; https://doi.org/10.3390/ma18122856 - 17 Jun 2025
Viewed by 443
Abstract
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed [...] Read more.
In high-elevation or high-latitude permafrost areas, persistent subzero temperatures significantly impact the freeze–thaw durability of concrete structures. Traditional methods for studying the frost resistance of concrete in permafrost regions do not provide a complete picture for predicting properties, and new approaches are needed using, for example, machine learning algorithms. This study utilizes four machine learning models—Support Vector Machine (SVM), extreme learning machine (ELM), long short-term memory (LSTM), and radial basis function neural network (RBFNN)—to predict freeze–thaw damage factors in concrete under low and subzero temperature conservation conditions. Building on the prediction results, the optimal model is refined to develop a new machine learning model: the Sparrow Search Algorithm-optimized Extreme Learning Machine (SSA-ELM). Furthermore, the SHapley Additive exPlanations (SHAP) value analysis method is employed to interpret this model, clarifying the relationship between factors affecting the freezing resistance of concrete and freeze–thaw damage factors. In conclusion, the empirical formula for concrete freeze–thaw damage is compared and validated against the prediction results from the SSA-ELM model. The study results indicate that the SSA-ELM model offers the most accurate predictions for concrete freeze–thaw resistance compared to the SVM, ELM, LSTM, and RBFNN models. SHAP value analysis quantitatively confirms that the number of freeze–thaw cycles is the most significant input parameter affecting the freeze–thaw damage coefficient of concrete. Comparative analysis shows that the accuracy of the SSA-ELMDE prediction set is improved by 15.46%, 9.19%, 21.79%, and 11.76%, respectively, compared with the prediction results of SVM, ELM, LSTM, and RBF. This parameter positively influences the prediction results for the freeze–thaw damage coefficient. Curing humidity has the least influence on the freeze–thaw damage factor of concrete. Comparing the prediction results with empirical formulas shows that the machine learning model provides more accurate predictions. This introduces a new approach for predicting the extent of freeze–thaw damage to concrete under low and subzero temperature conservation conditions. Full article
(This article belongs to the Special Issue Artificial Intelligence in Materials Science and Engineering)
Show Figures

Figure 1

18 pages, 5361 KiB  
Article
Multi-Algorithm Comparison for Water Quality Retrieval: Integrating Landsat-8 OLI and Machine Learning in Karst Plateau Reservoirs
by Rukai Xie, Zhongfa Zhou, Jie Kong, Cui Wang, Yanbi Wang, Li Li, Caixia Ding, Rui Li and Xinyue Zhang
Water 2025, 17(12), 1781; https://doi.org/10.3390/w17121781 - 13 Jun 2025
Viewed by 451
Abstract
Chlorophyll a (Chla), total phosphorus (TP), total nitrogen (TN), and turbidity (Turb) are key indicators for assessing water eutrophication. To overcome the limitations of conventional regression methods, this study developed and compared inversion models for these parameters using Landsat-8 OLI imagery and field [...] Read more.
Chlorophyll a (Chla), total phosphorus (TP), total nitrogen (TN), and turbidity (Turb) are key indicators for assessing water eutrophication. To overcome the limitations of conventional regression methods, this study developed and compared inversion models for these parameters using Landsat-8 OLI imagery and field data, comparing multiple linear regression and seven machine learning algorithms: Genetic Algorithm- and Particle Swarm-optimized Backpropagation Neural Networks (BPNNs), Convolutional Neural Network (CNN), Extreme Learning Machine (ELM), Random Forest (RF), XGBoost, and Support Vector Regression (SVR). The results revealed that traditional regression performed better for optically active parameters (Chla and Turb) than for non-optically active ones (TP and TN), whereas machine learning models significantly improved accuracy, particularly for TP and TN. The XGBoost model achieved the highest performance (R2 > 0.90 for all parameters). Post-calibration analysis further delineated the spatial distributions and inter-parameter correlations in Pingzhai Reservoir, providing a robust method for water quality monitoring and assessment. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

24 pages, 12119 KiB  
Article
A Method for Predicting Trajectories of Concealed Targets via a Hybrid Decomposition and State Prediction Framework
by Zhengpeng Yang, Jiyan Yu, Miao Liu, Tongxing Peng and Huaiyan Wang
Sensors 2025, 25(12), 3639; https://doi.org/10.3390/s25123639 - 10 Jun 2025
Viewed by 456
Abstract
Accurate trajectory prediction of concealed targets in complex, interference-laden environments present a formidable challenge for millimeter-wave sensor tracking systems. To address this, we propose a state-of-the-art autonomous prediction framework that integrates an Improved Sequential Variational Mode Decomposition (ISVMD) algorithm with an Extreme Learning [...] Read more.
Accurate trajectory prediction of concealed targets in complex, interference-laden environments present a formidable challenge for millimeter-wave sensor tracking systems. To address this, we propose a state-of-the-art autonomous prediction framework that integrates an Improved Sequential Variational Mode Decomposition (ISVMD) algorithm with an Extreme Learning Machine (ELM), synergistically optimized by the novel Red-billed Blue Magpie Optimizer (RBMO). The ISVMD enhances signal reconstruction by transforming noisy target echo signals into robust feature sequences, effectively mitigating the impacts of environmental disturbances and intentional concealment. Subsequently, the RBMO-optimized ELM leverages these feature sequences to predict the future trajectories of concealed targets with high precision. The RBMO further refines critical parameters within the ISVMD-ELM pipeline, ensuring adaptability and computational efficiency across diverse scenarios. Experimental validation using real-world data demonstrates that the RBMO-ISVMD-ELM approach surpasses state-of-the-art algorithms in both accuracy and robustness when predicting the trajectories of concealed ground targets, achieving optimal performance metrics under demanding conditions. Full article
(This article belongs to the Section Remote Sensors)
Show Figures

Figure 1

37 pages, 6517 KiB  
Article
Forecast Natural Gas Price by an Extreme Learning Machine Framework Based on Multi-Strategy Grey Wolf Optimizer and Signal Decomposition
by Zhuolin Wu, Jiaqi Zhou and Xiaobing Yu
Sustainability 2025, 17(12), 5249; https://doi.org/10.3390/su17125249 - 6 Jun 2025
Viewed by 681
Abstract
Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to [...] Read more.
Natural gas is one of the most important sources of energy in modern society. However, its strong volatility highlights the importance of accurately forecasting natural gas price trends and movements. The nonlinear nature of the natural gas price series makes it difficult to capture. Therefore, we propose a forecasting framework based on signal decomposition and intelligent optimization algorithms to predict natural gas prices. In this forecasting framework, we implement point, probability interval, and quantile interval forecasting. First, the natural gas price sequence is decomposed into multiple Intrinsic Mode Functions (IMFs) using the Ensemble Empirical Mode Decomposition (EEMD) technique. Each decomposed sequence is then predicted using an optimized Extreme Learning Machine (ELM), and the individual results are aggregated as the final result. To improve the efficiency of the intelligent algorithm, a Multi-Strategy Grey Wolf Optimizer (MSGWO) is developed to optimize the hidden layer matrices of the ELM. The experimental results prove that the proposed framework not only provides more reliable point forecasts with good nonlinear adaptability but also describes the uncertainty of natural gas price series more accurately and completely. Full article
(This article belongs to the Special Issue Energy Price Forecasting and Sustainability on Energy Transition)
Show Figures

Figure 1

Back to TopTop