Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,578)

Search Parameters:
Keywords = extracellular vesicles/exosomes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 34589 KiB  
Article
Extracellular Vesicle-Mediated miR-155 from Visceral Adipocytes Induces Skeletal Muscle Dysplasia in Obesity
by Yunyan Ji, Zeen Gong, Rui Liang, Di Wu, Wen Sun, Xiaomao Luo, Yi Yan, Jiayin Lu, Juan Wang and Haidong Wang
Cells 2025, 14(17), 1302; https://doi.org/10.3390/cells14171302 - 22 Aug 2025
Abstract
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated [...] Read more.
Obesity poses a serious threat to human health, with induced skeletal muscle dysfunction significantly increasing the risk of metabolic syndrome. In obesity, it is known that visceral adipose tissue (VAT) mediates the dysregulation of the adipose–muscle axis through exosome-delivered miRNAs, but the associated regulatory mechanisms remain incompletely elucidated. This study established an AAV-mediated miR-155 obese mouse model and a co-culture system (HFD VAD-evs/RAW264.7 cells/C2C12 cells) to demonstrate that high-fat diet-induced VA-derived extracellular vesicles (HFD VAD-evs) preferentially accumulate in skeletal muscle and induce developmental impairment. HFD VAD-evs disrupt skeletal muscle homeostasis through dual mechanisms: the direct suppression of myoblast development via exosomal miR-155 cargo and the indirect inhibition of myogenesis through macrophage-mediated inflammatory responses in skeletal muscle. Notably, miR-155 inhibition in HFD VAD-evs reversed obesity-associated myogenic deficits. These findings provide novel mechanistic insights into obesity-induced skeletal muscle dysregulation and facilitate potential therapeutic strategies targeting exosomal miRNA signaling. Full article
Show Figures

Figure 1

23 pages, 3537 KiB  
Review
Therapeutic Potential of Stem Cell-Derived Exosomes in Skin Wound Healing
by ChanBee Jo, Yun Ji Choi and Tae-Jin Lee
Biomimetics 2025, 10(8), 546; https://doi.org/10.3390/biomimetics10080546 - 20 Aug 2025
Viewed by 222
Abstract
Chronic skin wounds are difficult to heal or nonhealing. These wounds may become infected and progress to tissue necrosis, potentially leading to limb amputation, sepsis, reduced quality of life, depression, economic burden on the healthcare system, and social isolation. Several clinical strategies, including [...] Read more.
Chronic skin wounds are difficult to heal or nonhealing. These wounds may become infected and progress to tissue necrosis, potentially leading to limb amputation, sepsis, reduced quality of life, depression, economic burden on the healthcare system, and social isolation. Several clinical strategies, including negative pressure wound therapy, antibiotic-based infection control, and wound debridement, have been developed to treat skin wounds. However, these approaches primarily target local wound conditions and offer only short-term relief, not achieving sustained functional regeneration. Stem cell-based therapy has emerged as an alternative therapeutic method for skin wound treatment owing to its ability to suppress inflammation, stimulate angiogenesis, and promote cellular proliferation. However, the low post-transplantation survival rate of stem cells remains a major limitation. Exosomes, nanosized extracellular vesicles, transport proteins, lipids, mRNAs, and miRNAs and mediate regenerative functions, including anti-inflammatory effects, angiogenesis promotion, and extracellular matrix remodeling. Stem cell-derived exosomes (SC-Exos) offer several advantages over their parent cells, including greater stability, lower immunogenicity, absence of tumorigenic risks, and ease of storage and distribution. These attributes render SC-Exos particularly attractive for cell-free regenerative therapies. In this review, we introduce exosomes derived from various types of stem cells and explore their therapeutic applications in skin wound regeneration. Full article
Show Figures

Graphical abstract

21 pages, 7477 KiB  
Article
Bidirectional Hypoxic Extracellular Vesicle Signaling Between Müller Glia and Retinal Pigment Epithelium Regulates Retinal Metabolism and Barrier Function
by Alaa M. Mansour, Mohamed S. Gad, Samar Habib and Khaled Elmasry
Biology 2025, 14(8), 1014; https://doi.org/10.3390/biology14081014 - 7 Aug 2025
Viewed by 273
Abstract
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia [...] Read more.
The retina is highly sensitive to oxygen and blood supply, and hypoxia plays a key role in retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD). Müller glial cells, which are essential for retinal homeostasis, respond to injury and hypoxia with reactive gliosis, characterized by the upregulation of the glial fibrillary acidic protein (GFAP) and vimentin, cellular hypertrophy, and extracellular matrix changes, which can impair retinal function and repair. The retinal pigment epithelium (RPE) supports photoreceptors, forms part of the blood–retinal barrier, and protects against oxidative stress; its dysfunction contributes to retinal degenerative diseases such as AMD, retinitis pigmentosa (RP), and Stargardt disease (SD). Extracellular vesicles (EVs) play a crucial role in intercellular communication, protein homeostasis, and immune modulation, and have emerged as promising diagnostic and therapeutic tools. Understanding the role of extracellular vesicles’ (EVs’) signaling machinery of glial cells and the retinal pigment epithelium (RPE) is critical for developing effective treatments for retinal degeneration. In this study, we investigated the bidirectional EV-mediated crosstalk between RPE and Müller cells under hypoxic conditions and its impact on cellular metabolism and retinal cell integrity. Our findings demonstrate that RPE-derived extracellular vesicles (RPE EVs) induce time-dependent metabolic reprogramming in Müller cells. Short-term exposure (24 h) promotes pathways supporting neurotransmitter cycling, calcium and mineral absorption, and glutamate metabolism, while prolonged exposure (72 h) shifts Müller cell metabolism toward enhanced mitochondrial function and ATP production. Conversely, Müller cell-derived EVs under hypoxia influenced RPE metabolic pathways, enhancing fatty acid metabolism, intracellular vesicular trafficking, and the biosynthesis of mitochondrial co-factors such as ubiquinone. Proteomic analysis revealed significant modulation of key regulatory proteins. In Müller cells, hypoxic RPE-EV exposure led to reduced expression of Dyskerin Pseudouridine Synthase 1 (DKc1), Eukaryotic Translation Termination Factor 1 (ETF1), and Protein Ser/Thr phosphatases (PPP2R1B), suggesting alterations in RNA processing, translational fidelity, and signaling. RPE cells exposed to hypoxic Müller cell EVs exhibited elevated Ribosome-binding protein 1 (RRBP1), RAC1/2, and Guanine Nucleotide-Binding Protein G(i) Subunit Alpha-1 (GNAI1), supporting enhanced endoplasmic reticulum (ER) function and cytoskeletal remodeling. Functional assays also revealed the compromised barrier integrity of the outer blood–retinal barrier (oBRB) under hypoxic co-culture conditions. These results underscore the adaptive but time-sensitive nature of retinal cell communication via EVs in response to hypoxia. Targeting this crosstalk may offer novel therapeutic strategies to preserve retinal structure and function in ischemic retinopathies. Full article
Show Figures

Graphical abstract

14 pages, 1400 KiB  
Article
Potential Roles of Extracellular Vesicles in Murine Tear Fluids in the Physiology of Corneal Epithelial Cells In Vitro
by Saya Oya, Kazunari Higa, Tomohiro Yasutake, Risa Yamazaki-Hokama and Masatoshi Hirayama
Int. J. Mol. Sci. 2025, 26(15), 7559; https://doi.org/10.3390/ijms26157559 - 5 Aug 2025
Viewed by 252
Abstract
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, [...] Read more.
Biological extracellular vesicles in tear fluids, such as exosomes, are thought to have physiological functions in the management of healthy ocular surface epithelium, including corneal epithelium. However, the physiological roles of tear extracellular vesicles in the ocular surface remain unclear. In this study, we investigated the physiological function of tear extracellular vesicles in mouse tear fluids in the ocular surface epithelium in vitro. Morphological analysis of the isolated extracellular vesicles from mouse tear fluids was performed using nanoparticle tracking analysis and transmission electron microscopy. The identified particles were characterised by immunoblotting for exosomal markers. After confirming the uptake of tear exosomes in cultured corneal epithelial cells, gene expression changes in mouse cultured corneal epithelial cells after tear exosome treatment were analysed. Immunostaining analysis was performed to confirm cell proliferation in the cultured corneal epithelial cells with tear exosome treatment. Tear fluids from mice contain nanoparticles with exosome-like morphologies, which express the representative exosomal markers CD9 and TSG101. The extracellular vesicles can be taken up by cultivated murine corneal epithelial cells in vitro and induce expression changes in genes related to the cell cycle, cell membranes, microtubules, and signal peptides. Treatment with the tear extracellular vesicles promoted cell proliferation of cultured murine corneal epithelial cells. Our study provides evidence that murine tear fluids contain extracellular vehicles like exosomes and they may contribute to the maintenance of the physiological homeostatic environment of the ocular surface. Full article
(This article belongs to the Special Issue Molecular Advances in Dry Eye Syndrome)
Show Figures

Figure 1

17 pages, 7024 KiB  
Article
Proteomic Analysis of Differentially Expressed Plasma Exosome Proteins in Heat-Stressed Holstein cows
by Shuwen Xia, Yingying Jiang, Wenjie Li, Zhenjiang An, Yangyang Shen, Qiang Ding and Kunlin Chen
Animals 2025, 15(15), 2286; https://doi.org/10.3390/ani15152286 - 5 Aug 2025
Viewed by 309
Abstract
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed [...] Read more.
Heat stress in dairy cows, caused by high temperature and humidity during summer, has led to significant declines in milk production and severe economic losses for farms. Exosomes—extracellular vesicles carrying bioactive molecules—are critical for intercellular communication and immunity but remain understudied in heat-stressed Holstein cows. In this study, we extracted exosomes from three heat-stressed (HS) cows and three non-heat-stressed (Ctr) cows and employed proteomics to analyze plasma exosomes. We identified a total of 28 upregulated and 18 downregulated proteins in the HS group compared to the control group. Notably, we observed a significant upregulation of key protein groups, including cytoskeletal regulators, signaling mediators, and coagulation factors, alongside the downregulation of HP-25_1. These differentially expressed proteins demonstrate strong potential as heat stress biomarkers. GO and KEGG analyses linked the differentially expressed proteins to actin cytoskeleton regulation and endoplasmic reticulum pathways. Additionally, protein–protein interaction (PPI) analysis revealed the PI3K-Akt signaling pathway as a central node in the cellular response to heat stress. These findings establish plasma exosomes as valuable biospecimens, provide valuable insights into the molecular mechanisms of heat stress response, and may contribute to the development of precision breeding strategies for enhanced thermal resilience in dairy herds. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

21 pages, 719 KiB  
Review
Intra-Arterial Administration of Stem Cells and Exosomes for Central Nervous System Disease
by Taishi Honda, Masahito Kawabori and Miki Fujimura
Int. J. Mol. Sci. 2025, 26(15), 7405; https://doi.org/10.3390/ijms26157405 - 31 Jul 2025
Viewed by 636
Abstract
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating [...] Read more.
Central nervous system (CNS) disorders present significant therapeutic challenges due to the limited regenerative capacity of neural tissues, resulting in long-term disability for many patients. Consequently, the development of novel therapeutic strategies is urgently warranted. Stem cell therapies show considerable potential for mitigating brain damage and restoring neural connectivity, owing to their multifaceted properties, including anti-apoptotic, anti-inflammatory, neurogenic, and vasculogenic effects. Recent research has also identified exosomes—small vesicles enclosed by a lipid bilayer, secreted by stem cells—as a key mechanism underlying the therapeutic effects of stem cell therapies, and given their enhanced stability and superior blood–brain barrier permeability compared to the stem cells themselves, exosomes have emerged as a promising alternative treatment for CNS disorders. A key challenge in the application of both stem cell and exosome-based therapies for CNS diseases is the method of delivery. Currently, several routes are being investigated, including intracerebral, intrathecal, intravenous, intranasal, and intra-arterial administration. Intracerebral injection can deliver a substantial quantity of stem cells directly to the brain, but it carries the potential risk of inducing additional brain injury. Conversely, intravenous transplantation is minimally invasive but results in limited delivery of cells and exosomes to the brain, which may compromise the therapeutic efficacy. With advancements in catheter technology, intra-arterial administration of stem cells and exosomes has garnered increasing attention as a promising delivery strategy. This approach offers the advantage of delivering a significant number of stem cells and exosomes to the brain while minimizing the risk of additional brain damage. However, the investigation into the therapeutic potential of intra-arterial transplantation for CNS injury is still in its early stages. In this comprehensive review, we aim to summarize both basic and clinical research exploring the intra-arterial administration of stem cells and exosomes for the treatment of CNS diseases. Additionally, we will elucidate the underlying therapeutic mechanisms and provide insights into the future potential of this approach. Full article
(This article belongs to the Special Issue Stem Cells Research: Advancing Science and Medicine)
Show Figures

Graphical abstract

22 pages, 1248 KiB  
Review
Navigating the Global Regulatory Landscape for Exosome-Based Therapeutics: Challenges, Strategies, and Future Directions
by Nagendra Verma and Swati Arora
Pharmaceutics 2025, 17(8), 990; https://doi.org/10.3390/pharmaceutics17080990 - 30 Jul 2025
Viewed by 1278
Abstract
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key [...] Read more.
Extracellular vesicle (EV)-based therapies have attracted considerable attention as a novel class of biologics with broad clinical potential. However, their clinical translation is impeded by the fragmented and rapidly evolving regulatory landscape, with significant disparities between the United States, European Union, and key Asian jurisdictions. In this review, we systematically analyze regional guidelines and strategic frameworks governing EV therapeutics, emphasizing critical hurdles in quality control, safety evaluation, and efficacy demonstration. We further explore the implications of EVs’ heterogeneity on product characterization and the emerging direct-to-consumer market for EVs and secretome preparations. Drawing on these insights, in this review, we aim to provide a roadmap for harmonizing regulatory requirements, advancing standardized analytical approaches, and fostering ongoing collaboration among regulatory authorities, industry stakeholders, and academic investigators. Such coordinated efforts are essential to safeguard patient welfare, ensure product consistency, and accelerate the responsible integration of EV-based interventions into clinical practice. Full article
Show Figures

Graphical abstract

29 pages, 2815 KiB  
Review
Plasmonic Nanostructures for Exosome Biosensing: Enabling High-Sensitivity Diagnostics
by Seungah Lee, Nayra A. M. Moussa and Seong Ho Kang
Nanomaterials 2025, 15(15), 1153; https://doi.org/10.3390/nano15151153 - 25 Jul 2025
Viewed by 563
Abstract
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of [...] Read more.
Exosomes are nanoscale extracellular vesicles (EVs) that carry biomolecular signatures reflective of their parent cells, making them powerful tools for non-invasive diagnostics and therapeutic monitoring. Despite their potential, clinical application is hindered by challenges such as low abundance, heterogeneity, and the complexity of biological samples. To address these limitations, plasmonic biosensing technologies—particularly propagating surface plasmon resonance (PSPR), localized surface plasmon resonance (LSPR), and surface-enhanced Raman scattering (SERS)—have been developed to enable label-free, highly sensitive, and multiplexed detection at the single-vesicle level. This review outlines recent advancements in nanoplasmonic platforms for exosome detection and profiling, emphasizing innovations in nanostructure engineering, microfluidic integration, and signal enhancement. Representative applications in oncology, neurology, and immunology are discussed, along with the increasingly critical role of artificial intelligence (AI) in spectral interpretation and diagnostic classification. Key technical and translational challenges—such as assay standardization, substrate reproducibility, and clinical validation—are also addressed. Overall, this review highlights the synergy between exosome biology and plasmonic nanotechnology, offering a path toward real-time, precision diagnostics via sub-femtomolar detection of exosomal miRNAs through next-generation biosensing strategies. Full article
Show Figures

Figure 1

13 pages, 8639 KiB  
Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by Shamundeeswari Anandan, Karina Maciak, Regina Breinbauer, Laura Otero-Ortega, Giancarlo Feliciello, Nataša Stojanović Gužvić, Oivind Torkildsen and Kjell-Morten Myhr
Int. J. Mol. Sci. 2025, 26(15), 7213; https://doi.org/10.3390/ijms26157213 - 25 Jul 2025
Viewed by 1157
Abstract
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, [...] Read more.
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

15 pages, 8667 KiB  
Article
A Novel Synthetic Tag Induces Palmitoylation and Directs the Subcellular Localization of Target Proteins
by Jun Ka, Gwanyeob Lee, Seunghyun Han, Haekwan Jeong and Suk-Won Jin
Biomolecules 2025, 15(8), 1076; https://doi.org/10.3390/biom15081076 - 25 Jul 2025
Viewed by 419
Abstract
Proper subcellular localization is essential to exert the designated function of a protein, not only for endogenous proteins but also transgene-encoded proteins. Post-translational modification is a frequently used method to regulate the subcellular localization of a specific protein. While there are a number [...] Read more.
Proper subcellular localization is essential to exert the designated function of a protein, not only for endogenous proteins but also transgene-encoded proteins. Post-translational modification is a frequently used method to regulate the subcellular localization of a specific protein. While there are a number of tags that are widely used to direct the target protein to a specific location within a cell, these tags often fail to emulate the dynamics of protein trafficking, necessitating an alternative approach to the direct subcellular localization of transgene-encoded proteins. Here, we report the development of a new synthetic polypeptide protein tag comprised of ten amino acids, which promotes membrane localization of a target protein. This short synthetic peptide tag, named “Palmito-Tag”, induces ectopic palmitoylation on the cysteine residue within the tag, thereby promoting membrane localization of the target proteins without affecting their innate function. We show that the target proteins with the Palmito-Tag are incorporated into the membranous organelles within the cells, including the endosomes, as well as extracellular vesicles. Given the reversible nature of palmitoylation, the Palmito-Tag may allow us to shift the subcellular localization of the target protein in a context-dependent manner. With the advent of therapeutic applications of exosomes and other extracellular vesicles, we believe that the ability to reversibly modify a target protein and direct its deposition to the specific subcellular milieu will help us explore more effective venues to harness the potential of extracellular vesicle-based therapies. Full article
(This article belongs to the Special Issue Feature Papers in Cellular Biochemistry)
Show Figures

Figure 1

27 pages, 1804 KiB  
Review
The 3D Language of Cancer: Communication via Extracellular Vesicles from Tumor Spheroids and Organoids
by Simona Campora and Alessandra Lo Cicero
Int. J. Mol. Sci. 2025, 26(15), 7104; https://doi.org/10.3390/ijms26157104 - 23 Jul 2025
Viewed by 637
Abstract
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their [...] Read more.
Extracellular vesicles (EVs) have emerged as key mediators of intercellular communication, gaining recognition as tumor biomarkers and promising therapeutic targets. As the study of EVs advances, it has become increasingly clear that the cellular context in which they are produced significantly influences their composition and function. Traditional two-dimensional in vitro models are being progressively replaced by more advanced three-dimensional systems, such as tumor spheroids and organoids. These 3D models are particularly valuable in cancer research, providing a more accurate representation of the complex cellular and molecular heterogeneity that characterizes tumors, better mimicking the in vivo microenvironment compared to standard monolayer cultures. This review explores the role of EVs derived from tumor spheroids and organoids in key oncogenic processes, including tumor growth, metastasis, and interactions within the tumor microenvironment. We highlight how EVs contribute to the spread of cancer cells, affecting surrounding tissues, and promote immune evasion, which poses significant challenges in cancer therapy. Full article
(This article belongs to the Special Issue Recent Advances in 3D Tumor Models for Cancer Research)
Show Figures

Figure 1

23 pages, 6645 KiB  
Article
Childhood Asthma Biomarkers Derived from Plasma and Saliva Exosomal miRNAs
by Abdelnaby Khalyfa, Mohit Verma, Meghan M. Alexander, Zhuanhong Qiao, Tammy Rood, Ragini Kapoor, Trupti Joshi, David Gozal and Benjamin D. Francisco
Int. J. Mol. Sci. 2025, 26(15), 7043; https://doi.org/10.3390/ijms26157043 - 22 Jul 2025
Viewed by 390
Abstract
Asthma, the most common chronic respiratory condition in children, involves airway inflammation, hyper-responsiveness, and frequent exacerbation that worsen the airflow and inflammation. Exosomes, extracellular vesicles carrying microRNAs (miRNAs), play a key role in cell communication alongside other types of communication and are promising [...] Read more.
Asthma, the most common chronic respiratory condition in children, involves airway inflammation, hyper-responsiveness, and frequent exacerbation that worsen the airflow and inflammation. Exosomes, extracellular vesicles carrying microRNAs (miRNAs), play a key role in cell communication alongside other types of communication and are promising markers of asthma severity. This study compares exosomal miRNA and long non-coding RNA (lncRNA) profiles in boys with asthma, focusing on differences between those with normal lung functions and those with severe airflow obstruction. This study enrolled 20 boys aged 9–18 years with asthma, split into two groups based on their lung function. Ten had normal lung function (NLF; FEV1/FVC > 0.84, FEF75% > 69% predicted), while ten had severe airflow obstruction (SAO; FEV1/FVC < 0.70, FEF75 < 50% predicted). Saliva and blood samples were collected. Exosomes were isolated, quantified, and analyzed via small RNA sequencing to identify differentially expressed (DE) miRNA and lncRNA profiles. Bioinformatic tools were then used to explore potential miRNA biomarkers linked to asthma severity. SAO subjects were more likely to exhibit allergen sensitization, higher IgE levels, and more eosinophils. We identified 27 DE miRNAs in plasma and 40 DE miRNAs in saliva. Additionally, five key miRNAs were identified in both saliva and plasma which underline important pathways such as neurotrophins, T-cell receptor, and B-cell receptor signaling. We further outlined key features and functions of miRNAs and long non-coding RNAS (lncRNAs) and their interactions in children with asthma. This study identified DE miRNAs and lncRNAs in children with SAO when compared to those with NLF. Exosomal miRNAs show strong potential as non-invasive biomarkers for personalized asthma diagnosis, treatment, and monitoring. These RNA markers may also aid in tracking disease progression and response to therapy, thereby supporting the need for future studies aimed at applications in precision medicine. Full article
(This article belongs to the Special Issue Exosomes—3rd Edition)
Show Figures

Figure 1

14 pages, 2459 KiB  
Article
Enhancement of Oral Mucosal Regeneration Using Human Exosomal Therapy in SD Rats
by Chien Ming Lee, Qasim Hussain, Kuo Pin Chuang and Hoang Minh
Biomedicines 2025, 13(7), 1785; https://doi.org/10.3390/biomedicines13071785 - 21 Jul 2025
Viewed by 750
Abstract
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in [...] Read more.
Background/Objectives: Oral cavity wound recovery presents unique challenges due to constant moisture exposure and functional mechanical stresses. Nanoscale extracellular vesicles (exosomes) with regenerative properties offer promising therapeutic potential for tissue regeneration, contributing to improved health outcomes. This study evaluated human exosomal preparations in promoting oral mucosal regeneration. Methods: We established standardized full-thickness wounds in the buccal mucosa of SD rats and divided subjects into experimental (receiving 50 billion human exosomes) and control (receiving carrier solution only) groups. Comprehensive wound assessment occurred at predetermined intervals (days 0, 3, 7, and 10) through photographic documentation, histological examination, and quantitative measurement. Results: Exosomal-treated tissues demonstrated statistically significant acceleration in closure rates (p < 0.05), achieving 87.3% reduction by day 10 versus 64.1% in the controls. Microscopic analysis revealed superior epithelial development, reduced inflammatory infiltration, and enhanced collagen architectural organization in exosomal-treated specimens. Semi-quantitative evaluation confirmed consistently superior healing metrics in the experimental group across all assessment timepoints. Conclusions: These findings demonstrate that human exosome preparations significantly enhance oral mucosal regeneration in SD rats, suggesting potential clinical applications for accelerating recovery following oral surgical procedures. Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

16 pages, 2201 KiB  
Article
Oral Squamous Cell Carcinoma Exosomes Upregulate PIK3/AKT, PTEN, and NOTCH Signaling Pathways in Normal Fibroblasts
by Dijana Mitic, Milica Jaksic Karisik, Milos Lazarevic, Jelena Carkic, Emilia Zivkovic, Olivera Mitrovic Ajtic and Jelena Milasin
Curr. Issues Mol. Biol. 2025, 47(7), 568; https://doi.org/10.3390/cimb47070568 - 19 Jul 2025
Viewed by 475
Abstract
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. [...] Read more.
Exosomes, small extracellular vesicles secreted by various cell types, have gained significant attention in cancer investigations. Isolation and characterization of exosomes derived from DOK (dysplastic oral keratinocyte), SCC (squamous cell carcinoma) and HaCaT (normal skin keratinocyte) cell lines and microRNA profiling were conducted. Magnetic sorting was applied to obtain pure exosomes. Morphology and size were characterized by transmission electron microscopy and nanoparticle tracking analysis. Validation of membrane exosomal markers (CD9, CD63) was performed via Western blotting. MiR-21, miR-31, and miR-133 levels were analyzed in exosomes and parent cells by qPCR. Biological effects of the exosomes were tested by adding them to fibroblast cultures and determining the expression of relevant carcinogenesis markers by qPCR. Exosomes appeared as cup-shaped nano-sized particles, and there was no difference regarding particle diameter and concentration between the three types of exosomes. The oncogenic miR-21 was significantly upregulated both in SCC and SCC-derived exosomes compared to DOK and HaCaT cells and their respective exosomes. However, miR-31 unexpectedly showed the highest expression in normal cells and the lowest in HaCaT exosomes. MiR-133, the tumor suppressor miRNA, was downregulated in both SCC and DOK cells compared to normal (HaCaT) cells, while the opposite situation was observed in exosomes, with HaCaT cells showing the lowest levels of miR-133. The differences in exosome content were reflected in signaling pathway activation in exosome-treated fibroblasts, with SCC exosomes exerting the most potent effect on several cancer-related pathways, notably PIK3/AKT, PTEN, and NOTCH signaling cascades. Full article
Show Figures

Figure 1

24 pages, 2860 KiB  
Review
Recent Evidence for Orthobiologics Combined with Hydrogels for Joint Tissue Regeneration: Focus on Osteoarthritis
by Carola Cavallo, Giovanna Desando, Martina D’Alessandro, Brunella Grigolo and Livia Roseti
Gels 2025, 11(7), 551; https://doi.org/10.3390/gels11070551 - 17 Jul 2025
Viewed by 582
Abstract
Osteoarthritis is a significant global problem, causing pain and limitations, and contributing to socioeconomic expenses. The etiopathogenesis of this disease encloses genetic, biological, and mechanical aspects. Regenerative medicine, utilizing tissue engineering, has opened the way to new therapeutic approaches employing various orthobiologics. Combined [...] Read more.
Osteoarthritis is a significant global problem, causing pain and limitations, and contributing to socioeconomic expenses. The etiopathogenesis of this disease encloses genetic, biological, and mechanical aspects. Regenerative medicine, utilizing tissue engineering, has opened the way to new therapeutic approaches employing various orthobiologics. Combined with hydrogels, these compounds may represent a notable option for treating degenerative and inflammatory lesions in OA. The review reports on the main orthobiologics used in preclinical and clinical studies, as well as their association with various types of natural and synthetic hydrogels. Research may increasingly focus on tailored therapies adjusted to suit the joint involved and the severity of the pathology encountered in each patient. Full article
Show Figures

Figure 1

Back to TopTop