Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (114)

Search Parameters:
Keywords = extinction risk assessments

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
31 pages, 5203 KiB  
Article
Projecting Extinction Risk and Assessing Conservation Effectiveness for Three Threatened Relict Ferns in the Western Mediterranean Basin
by Ángel Enrique Salvo-Tierra, Jaime Francisco Pereña-Ortiz and Ángel Ruiz-Valero
Plants 2025, 14(15), 2380; https://doi.org/10.3390/plants14152380 - 1 Aug 2025
Viewed by 502
Abstract
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. [...] Read more.
Relict fern species, confined to microhabitats with stable historical conditions, are especially vulnerable to climate change. The Alboran Arc hosts a unique relict fern flora, including Culcita macrocarpa, Diplazium caudatum, and Pteris incompleta, and functions as a major Pleistocene refuge. This study assesses the population trends and climate sensitivity of these species in Los Alcornocales Natural Park using annual abundance time series for a decade, empirical survival projections, and principal component analysis to identify key climatic drivers. Results reveal distinct climate response clusters among populations, though intra-specific variation highlights the importance of local conditions. Climate change is already impacting population viability, especially for P. incompleta, which shows high sensitivity to rising maximum temperatures and prolonged heatwaves. Climate-driven models forecast more severe declines than empirical ones, particularly for C. macrocarpa and P. incompleta, with the latter showing a projected collapse by the mid-century. In contrast, D. caudatum exhibits moderate vulnerability. Crucially, the divergence between models underscores the impact of conservation efforts: without reinforcement and reintroduction actions, projected declines would likely be more severe. These results project a decline in the populations of the studied ferns, highlighting the urgent need to continue implementing both in situ and ex situ conservation measures. Full article
(This article belongs to the Special Issue Plant Conservation Science and Practice)
Show Figures

Figure 1

13 pages, 2629 KiB  
Article
Seed Germination Requirements of the Threatened Local Greek Endemic Campanula pangea Hartvig Facilitating Species-Specific Conservation Efforts
by Margarita Paradisiotis, Elias Pipinis, Stefanos Kostas, Georgios Tsoktouridis, Stefanos Hatzilazarou, Anna Mastrogianni, Ioannis Tsiripidis and Nikos Krigas
Conservation 2025, 5(3), 39; https://doi.org/10.3390/conservation5030039 - 1 Aug 2025
Viewed by 369
Abstract
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the [...] Read more.
Ex situ conservation is a vital strategy of preserving plant species at risk, offering practical methods to obtain information regarding species-specific germination characteristics. Campanula pangea, a local endemic species of NE Greece, has been previously classified as vulnerable, partly due to the lack of knowledge about its biology. This study focused on the germination behaviour of C. pangea stored seeds by assessing their germination success under the effects of incubation temperature and gibberellic acid (GA3). To contextualize the experimental conditions, a bioclimatic profile of the species was developed using open-access temperature and precipitation data that characterize its natural habitat. The results showed that the optimal germination temperature range for C. pangea is 15–20 °C. Pre-treatment of seeds with GA3 solution (1000 mg L−1) widened the germination range of the seeds only at the low temperature of 10 °C. The experimentation results showed that the seeds of C. pangea exhibit dormancy. These findings contribute to the development of a species-specific germination protocol for ex situ propagation and conservation, enhance understanding of the species’ germination requirements, and thus support future conservation efforts and assessments of extinction risk, or other ornamental applications and/or targeted medicinal research. Full article
Show Figures

Figure 1

18 pages, 2238 KiB  
Article
Dispersal Patterns of Euphydryas aurinia provincialis (Lepidoptera: Nymphalidae) in the Colfiorito Highlands, Central Italy
by Andrea Brusaferro, Silvia Marinsalti, Federico Maria Tardella, Emilio Insom and Antonietta La Terza
Environments 2025, 12(8), 263; https://doi.org/10.3390/environments12080263 - 30 Jul 2025
Viewed by 210
Abstract
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, [...] Read more.
We investigated the dispersal ability of Euphydryas aurinia provincialis in a local-scale analysis within a single habitat patch of the Colfiorito highlands metapopulation. Our findings indicate that inside a single node, the organization of nesting patches can be conceptualized as a metapopulation itself, where reproductive sites, despite their spatial proximity, can act as either source or sink habitats depending on environmental conditions. We conducted fieldwork in six nesting patches inside a single node, capturing, marking, and recapturing individuals to assess their spatial distribution and movement tendencies at a large landscape scale. We found a high degree of site fidelity among individuals, with many recaptures occurring within the original marking site, but also a sex-based difference in movement patterns; females dispersed farther than males, likely driven by reproductive strategies, while males remained more localized, prioritizing mate-searching. Our findings suggest a complex dynamic in habitat connectivity: pastures and abandoned fields, despite being open, seem to act like sink areas, while breeding sites with shrub and tree cover act as source habitats, offering optimal conditions for reproduction. Individuals, especially females, from these source areas were later compelled to disperse into open habitats, highlighting a nuanced interaction between landscape structure and population dynamics. These results highlight the importance of maintaining habitat corridors to support metapopulation dynamics and prevent genetic isolation; the abandonment of traditional grazing practices is leading to the rapid closure of these source habitats, posing a severe risk of local extinction. Conservation efforts should prioritize the preservation of these source habitats to ensure the long-term viability of E. a. provincialis populations in fragmented landscapes. Full article
Show Figures

Figure 1

14 pages, 2347 KiB  
Article
Linking Life History Traits to the Threat Level of European Freshwater Fish
by Olga Petriki and Dimitra C. Bobori
Water 2025, 17(15), 2254; https://doi.org/10.3390/w17152254 - 29 Jul 2025
Viewed by 230
Abstract
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish [...] Read more.
Over 40% of freshwater fish species in Europe are currently at risk of extinction, highlighting the need for improved conservation planning. This study examines whether the threat status is associated with life-history and ecological traits across 580 autochthonous (native and endemic) freshwater fish species in European inland waters. Using data from FishBase and the IUCN Red List, we assessed associations between threat level and both categorical (e.g., migratory behavior, commercial importance, reproductive guild, and body shape) and numerical traits (e.g., maximum length, weight, age, growth parameters, and maturity traits). Significant, though modest, associations were identified between species threat level and migratory behavior and reproductive guild. Non-migratory species exhibited higher median threat levels, while amphidromous species showed a non-significant trend toward higher threat, suggesting that limited dispersal ability and dependence on fragmented freshwater networks may increase extinction vulnerability. Species with unclassified reproductive strategies also showed elevated threat levels, possibly reflecting both actual risk and underlying data gaps. In contrast, body shape and trophic level were not significantly associated with threat status. Critically Endangered species tend to be larger, heavier, and mature later—traits characteristic of slow life history strategies that limit population recovery. Although length at maturity and maximum age did not differ significantly among IUCN categories, age at maturity was significantly higher in more threatened species, and growth rate (K) was negatively correlated with threat level. Together, these patterns suggest that slower-growing, later-maturing species face elevated extinction risk. Overall, the findings underscore that the threat level in European freshwater fish is shaped by complex interactions between intrinsic biological traits and external pressures. Trait-based approaches can enhance extinction risk assessments and conservation prioritization, especially in data-deficient freshwater ecosystems facing multifaceted environmental challenges. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

20 pages, 7143 KiB  
Article
Predicting Potentially Suitable Habitats and Analyzing the Distribution Patterns of the Rare and Endangered Genus Syndiclis Hook. f. (Lauraceae) in China
by Lang Huang, Weihao Yao, Xu Xiao, Yang Zhang, Rui Chen, Yanbing Yang and Zhi Li
Plants 2025, 14(15), 2268; https://doi.org/10.3390/plants14152268 - 23 Jul 2025
Viewed by 275
Abstract
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current [...] Read more.
Changes in habitat suitability are critical indicators of the ecological impacts of climate change. Syndiclis Hook. f., a rare and endangered genus endemic to montane limestone and cloud forest ecosystems in China, holds considerable ecological and economic value. However, knowledge of its current distribution and the key environmental factors influencing its habitat suitability remains limited. In this study, we employed the MaxEnt model, integrated with geographic information systems (ArcGIS), to predict the potential distribution of Syndiclis under current and future climate scenarios, identify dominant bioclimatic drivers, and assess temporal and spatial shifts in habitat patterns. We also analyzed spatial displacement of habitat centroids to explore potential migration pathways. The model demonstrated excellent performance (AUC = 0.988), with current suitable habitats primarily located in Hainan, Taiwan, Southeastern Yunnan, and along the Yunnan–Guangxi border. Temperature seasonality (bio7) emerged as the most important predictor (67.00%), followed by precipitation of the driest quarter (bio17, 14.90%), while soil factors played a relatively minor role. Under future climate projections, Hainan and Taiwan are expected to serve as stable climatic refugia, whereas the overall suitable habitat area is projected to decline significantly. Combined with topographic constraints, population decline, and limited dispersal ability, these changes elevate the risk of extinction for Syndiclis in the wild. Landscape pattern analysis revealed increased habitat fragmentation under warming conditions, with only 4.08% of suitable areas currently under effective protection. We recommend prioritizing conservation efforts in regions with habitat contraction (e.g., Guangxi and Yunnan) and stable refugia (e.g., Hainan and Taiwan). Conservation strategies should integrate targeted in situ and ex situ actions, guided by dominant environmental variables and projected migration routes, to ensure the long-term persistence of Syndiclis populations and support evidence-based conservation planning. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

19 pages, 3821 KiB  
Article
Species Conservation Dependence on a Reliable Taxonomy as Emphasized by the Extinction Risk Assessment of Grindelia atlantica (Asteraceae: Astereae)
by Fernando Fernandes, João Iganci, Tatiana Teixeira de Souza-Chies and Gustavo Heiden
Conservation 2025, 5(3), 36; https://doi.org/10.3390/conservation5030036 - 16 Jul 2025
Viewed by 535
Abstract
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field [...] Read more.
Accurate taxonomy is fundamental for assessing extinction risks and implementing conservation strategies. We evaluated the extinction risk of Grindelia atlantica (Asteraceae), endemic to southern Brazil, using the IUCN criteria, and comparing three scenarios of taxonomic accuracy and data availability. Herbaria records and field surveys confirmed the historical existence of five records and currently only two remaining, isolated populations, totaling 633 individuals (513 in Pelotas and Rio Grande; 120 in Jaguarão). Habitat loss and invasive species are the primary threats. Analyses resulted in an Extent of Occurrence of 475.832 km2 and an Area of Occupancy of 36 km2. These findings, coupled with significant population decline, justify the classification as Critically Endangered. The results emphasize the critical role of reliable taxonomy in conservation biology. They demonstrate the impact of a few errors on extinction risk assessments, which can unfold in the misallocation of resources or insufficient protection. This is critical, particularly for endemic species like G. atlantica in the threatened Pampas, one of Brazil’s most degraded biomes and the least represented in preserves. The creation of a conservation unit is proposed as an urgent measure to ensure the survival of this species and its habitat, benefiting other endemic and rare threatened animal and plant species. Full article
Show Figures

Figure 1

18 pages, 4937 KiB  
Article
Impacts of Captive Domestication and Geographical Divergence on the Gut Microbiome of Endangered Forest Musk Deer
by Huilin Liu, Lu Xiao, Zhiqiang Liu, You Deng, Jinpeng Zhu, Chengzhong Yang, Qing Liu, Di Tian, Xiaojuan Cui and Jianjun Peng
Animals 2025, 15(13), 1954; https://doi.org/10.3390/ani15131954 - 2 Jul 2025
Viewed by 223
Abstract
Forest musk deer (Moschus berezovskii Flerov), a critically endangered ruminant species, faces extinction risks, with captive populations further threatened by prevalent digestive and immune disorders. This study utilized comparative metagenomic sequencing to assess intestinal microbiota structure and functional profiles between wild populations [...] Read more.
Forest musk deer (Moschus berezovskii Flerov), a critically endangered ruminant species, faces extinction risks, with captive populations further threatened by prevalent digestive and immune disorders. This study utilized comparative metagenomic sequencing to assess intestinal microbiota structure and functional profiles between wild populations in Chongqing and Hunan and captive individuals. Wild populations exhibited a Pseudomonadota-dominated gut microbiota (significantly more abundant than in captive counterparts), enriched with lignin-degrading genera Novosphingobium and Acinetobacter. In contrast, the captive group demonstrated increased abundances of Bacillota/Bacteroidota, alongside abnormal proliferation of Escherichia and Clostridium. Both alpha and beta diversity analyses confirmed significant compositional divergences among the three groups, with wild populations maintaining higher diversity than captive populations. Notably, while substantial disparities in microbial abundance existed between wild populations (attributed to habitat vegetation differences), core microbial diversity and carbohydrate metabolic functions exhibited convergence. Functional analyses marked divergences in metabolic pathways: Captive microbiota showed enrichment in translation and glycan metabolism pathways, whereas wild populations displayed pronounced enrichment in immune regulation and environmental sensing pathways. These findings establish a theoretical foundation for optimizing wild population conservation strategies and developing science-based captive management protocols. Full article
(This article belongs to the Special Issue Protecting Endangered Species: Second Edition)
Show Figures

Figure 1

24 pages, 3774 KiB  
Article
A Novel Stochastic SVIR Model Capturing Transmission Variability Through Mean-Reverting Processes and Stationary Reproduction Thresholds
by Yassine Sabbar and Saud Fahad Aldosary
Mathematics 2025, 13(13), 2097; https://doi.org/10.3390/math13132097 - 26 Jun 2025
Viewed by 364
Abstract
This study presents a stochastic SVIR epidemic model in which disease transmission rates fluctuate randomly over time, driven by independent, mean-reverting processes with multiplicative noise. These dynamics capture environmental variability and behavioral changes affecting disease spread. We derive analytical expressions for the conditional [...] Read more.
This study presents a stochastic SVIR epidemic model in which disease transmission rates fluctuate randomly over time, driven by independent, mean-reverting processes with multiplicative noise. These dynamics capture environmental variability and behavioral changes affecting disease spread. We derive analytical expressions for the conditional moments of the transmission rates and establish the existence of their stationary distributions under broad conditions. By averaging over these distributions, we define a stationary effective reproduction number that enables a probabilistic classification of outbreak scenarios. Specifically, we estimate the likelihood of disease persistence or extinction based on transmission uncertainty. Sensitivity analyses reveal that the shape and intensity of transmission variability play a decisive role in epidemic outcomes. Monte Carlo simulations validate our theoretical findings, showing strong agreement between empirical distributions and theoretical predictions. Our results underscore how randomness in disease transmission can fundamentally alter epidemic trajectories, offering a robust mathematical framework for risk assessment under uncertainty. Full article
Show Figures

Figure 1

23 pages, 331 KiB  
Review
Reviving the Dire Wolf? A Case Study in Welfare Ethics, Legal Gaps, and Ontological Ambiguity
by Alexandre Azevedo and Manuel Magalhães-Sant’Ana
Animals 2025, 15(13), 1839; https://doi.org/10.3390/ani15131839 - 21 Jun 2025
Viewed by 1072
Abstract
The recent birth of genetically modified canids phenotypically resembling the extinct dire wolf (Aenocyon dirus) was hailed as a landmark in synthetic biology. Using genome editing and cloning, the biotech company Colossal Biosciences created three such animals from gray wolf cells, [...] Read more.
The recent birth of genetically modified canids phenotypically resembling the extinct dire wolf (Aenocyon dirus) was hailed as a landmark in synthetic biology. Using genome editing and cloning, the biotech company Colossal Biosciences created three such animals from gray wolf cells, describing the project as an effort in “functional de-extinction”. This case raises significant questions regarding animal welfare, moral justification, and regulatory governance. We used the five domains model framework to assess the welfare risks for the engineered animals, the surrogate mothers used in reproduction, and other animals potentially affected by future reintroduction or escape scenarios. Ethical implications are examined through utilitarian, deontological, virtue, relational, and environmental ethics. Our analysis suggests that the project suffers from ontological ambiguity: it is unclear whether the animals created are resurrected species, hybrids, or novel organisms. While the current welfare of the engineered animals may be manageable, their long-term well-being, particularly under rewilding scenarios, is likely to be compromised. The moral arguments for reviving long-extinct species are weak, particularly in cases where extinction was not anthropogenic. Legally, the current EU frameworks lack the clarity and scope to classify, regulate, or protect genetically engineered extinct animals. We recommend that functional de-extinction involving sentient beings be approached with caution, supported by revised welfare tools and regulatory mechanisms. Full article
(This article belongs to the Special Issue Wild Animal Welfare: Science, Ethics and Law)
13 pages, 1949 KiB  
Article
Population Viability Analysis Revealed the Vulnerability of Yangtze Finless Porpoise (Neophocaena asiaeorientalis) in Poyang Lake
by Bin Wu, Weiping Wang, Yuehua Wang and Zhihong Zhang
Diversity 2025, 17(6), 410; https://doi.org/10.3390/d17060410 - 10 Jun 2025
Viewed by 640
Abstract
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a [...] Read more.
Poyang Lake in China is the most critical habitat and final refuge for the Yangtze finless porpoise (Neophocaena asiaeorientalis), YFP. In 2022, its population reached approximately 492 individuals, an increase of 35 from the 457 individuals recorded in 2017, showing a steady upward trend. The infrequent movement of YFPs between Poyang Lake and the Yangtze River represents a considerable threat to the long-term viability of this population. Additionally, serious water shortages in the lake during the dry season have led the government to consider the establishment of a hydraulic project. Therefore, a reliable risk assessment and quantitative analysis of conservation scenarios are urgently needed for this population. Population viability analysis of the YFP population in Poyang Lake was conducted using the VORTEX software. The baseline model predicted a probability of extinction of 0.241 over the next 100 years, with no probability of extinction in the first 30 years; the genetic diversity would be on a continuous downward trend and decline by 91.5%. The comprehensive protection model predicted a probability of extinction of 0.0028 and that the genetic diversity would be maintained at about 0.996 in 100 years. Breeding rate, sex ratio at birth, mortality rate, and gene flow were the factors that were sensitive to maintaining population viability. The results showed that the population of YFPs in Poyang Lake was at a high risk of extinction due to the decline in genetic diversity and the higher mortality and lower birth rate caused by habitat degradation. A total ban on productive fishing and the rescue and interchange of YFPs are conducive to enhancing the viability of the YFP population in Poyang Lake. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Ecosystem Conservation)
Show Figures

Figure 1

19 pages, 2361 KiB  
Article
Genetic Variation and Metapopulation Structure Inform Recovery Goals in a Threatened Species
by Molly J. Garrett, Courtney J. Conway, Lisette P. Waits and Paul A. Hohenlohe
Genes 2025, 16(6), 694; https://doi.org/10.3390/genes16060694 - 8 Jun 2025
Viewed by 652
Abstract
Background: Monitoring genetic parameters is important for setting effective conservation and management strategies, particularly for small, fragmented, and isolated populations. Small, isolated populations face increased rates of genetic drift and inbreeding, which increase extinction risk especially when gene flow is limited. Methods: Here, [...] Read more.
Background: Monitoring genetic parameters is important for setting effective conservation and management strategies, particularly for small, fragmented, and isolated populations. Small, isolated populations face increased rates of genetic drift and inbreeding, which increase extinction risk especially when gene flow is limited. Methods: Here, we applied a Genotyping-in-Thousands by sequencing (GT-seq) panel to inform recovery action for the federally threatened northern Idaho ground squirrel (Urocitellus brunneus). We evaluated genetic diversity, structure, connectivity, and effective population size to address species recovery goals. Results: We delineated three types of conservation units: (1) three evolutionarily significant units that represent long-term population structure and variation, (2) nine management units that reflect current demographic connectivity and restrictions to gene flow, and (3) three adaptive units that capture adaptive differentiation across the species range. Effective population sizes per management unit were small overall (mean 38.16, range 2.3–220.9), indicating that recovery goals of 10 subpopulations with Ne > 500 have not been reached. Conclusions: Our results support the maintenance of connectivity within evolutionarily significant units through the restoration of dispersal corridors. Next steps could include further sampling of some subpopulations with low sample sizes, unsampled subpopulations, and subpopulations that are geographically isolated. Genotyping future samples with the same GT-seq panel would help to detect dispersal, assess effective population size, monitor the effects of inbreeding, and evaluate adaptive differentiation to monitor the effects of management action and environmental change. Full article
(This article belongs to the Special Issue Advances of Genetics in Wildlife Conservation and Management)
Show Figures

Figure 1

19 pages, 2272 KiB  
Article
Environmental Pollution and Biological Invasions Threaten Native Freshwater Infaunal Bivalves in the Guandu River Basin, Southeast Brazil
by Nathália Rodrigues, Igor C. Miyahira, Antonio J. S. Rodrigues, Luciano N. Santos and Raquel A. F. Neves
Limnol. Rev. 2025, 25(2), 24; https://doi.org/10.3390/limnolrev25020024 - 3 Jun 2025
Viewed by 394
Abstract
Freshwater bivalves play essential ecological roles in ecosystems, but they are among the most threatened fauna worldwide. Despite receiving industrial and domestic wastes, the Guandu River is the main source of drinking water for more than nine million people in the Rio de [...] Read more.
Freshwater bivalves play essential ecological roles in ecosystems, but they are among the most threatened fauna worldwide. Despite receiving industrial and domestic wastes, the Guandu River is the main source of drinking water for more than nine million people in the Rio de Janeiro metropolitan region. This study aimed to assess how infaunal bivalves respond to water and sediment quality in the Guandu River basin. Samples were collected at 10 sites across reservoirs, lotic, and lentic systems during cold–dry and warm–rainy seasons. Four bivalves were identified: Anodontites trapesialis, Diplodon ellipticus, Corbicula fluminea (non-native), and C. largillierti (non-native). Native species were restricted to two lentic sites at Guandu Lagoon, with the poorest environmental quality, significantly affected by high chlorophyll a and ammonia in the water. In contrast, C. fluminea was widely distributed and more abundant in the basin but restricted to less degraded sites, suggesting a lower tolerance to environmental pollution. Multivariate analyses indicated significant differences in environmental conditions and species–environment correlation. The non-native species spread and poor environmental quality threaten native bivalves in the Guandu River basin, leading them to a local extinction risk. Results highlight the need for effective management and conservation actions to protect biodiversity in tropical river basins. Full article
Show Figures

Figure 1

14 pages, 2177 KiB  
Article
Assessing Climate Change Risks and Conservation Needs for Carpinus Species in China Using Ensemble Distribution Modeling
by Wenjie Yang, Chenlong Fu, Zhuang Zhao, Wenjing Zhang, Xiaoyue Yang, Quanjun Hu and Zefu Wang
Forests 2025, 16(6), 888; https://doi.org/10.3390/f16060888 - 24 May 2025
Viewed by 516
Abstract
Climate change is reshaping the distribution of forest species globally, yet its effects on the temperate tree genus Carpinus in China remain understudied. This study used an ensemble species distribution modeling framework to predict current and future suitable habitats for 32 Carpinus taxa [...] Read more.
Climate change is reshaping the distribution of forest species globally, yet its effects on the temperate tree genus Carpinus in China remain understudied. This study used an ensemble species distribution modeling framework to predict current and future suitable habitats for 32 Carpinus taxa under three shared socioeconomic pathway (SSP) climate scenarios for the 2090s. Five algorithms were integrated, and models with high predictive performance (AUC > 0.9) were used to generate ensemble forecasts. The ensemble models achieved AUC values no lower than 0.987 and TSS values no lower than 0.904. The results showed a clear trend of northwestward and upslope range shifts, with substantial habitat contractions under high-emission scenarios. Temperature seasonality and annual precipitation were identified as key environmental drivers. Two narrowly distributed species, C. omeiensis and C. londoniana var. lanceolata, are projected to lose all suitable habitats under SSP585, indicating a high extinction risk. These findings emphasize the importance of integrating climate-based risk assessments into conservation strategies and highlight the need to prioritize vulnerable species and high-elevation refugia to safeguard the long-term persistence of Carpinus diversity in China. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

25 pages, 8520 KiB  
Article
The Distribution, Similarity, and Conservation Status of the Amphibians and Reptiles of the Biogeographic Provinces of Northwestern Mexico
by Julio A. Lemos-Espinal and Geoffrey R. Smith
Diversity 2025, 17(5), 304; https://doi.org/10.3390/d17050304 - 22 Apr 2025
Viewed by 839
Abstract
The herpetofaunal diversity of northwestern Mexico, encompassing the Californian, Baja California, and Sonoran Desert biogeographic provinces, is characterized by relatively low species richness but a high degree of endemism. This region, particularly the islands of the Gulf of California, is recognized as a [...] Read more.
The herpetofaunal diversity of northwestern Mexico, encompassing the Californian, Baja California, and Sonoran Desert biogeographic provinces, is characterized by relatively low species richness but a high degree of endemism. This region, particularly the islands of the Gulf of California, is recognized as a biodiversity hotspot. However, amphibian and reptile species in this area, especially those on the Gulf islands, are facing significant threats to their survival, including non-native species, habitat loss, and climate change. These factors pose considerable challenges to their conservation. In this study, we compiled updated lists of amphibian and reptile species across these three provinces, assessed their conservation status, identified the threats they face, and compared them with those in neighboring biogeographic provinces. Our analysis recorded a total of 228 species, comprising 29 amphibians and 199 reptiles, with a notable proportion of endemics, particularly in Baja California. Amphibians, due to the region’s arid conditions, are underrepresented and generally face a lower level of conservation concern. In contrast, reptiles, especially those on the islands, are at higher risk, primarily due to habitat loss, invasive species, and climate change. Of the 228 species, one amphibian and 21 reptiles are classified in a category of conservation concern (Vulnerable, Endangered, Critically Endangered) by the International Union for Conservation of Nature (IUCN) Red List. In addition, 47 species (one amphibian and 46 reptiles) are listed as threatened (A) or at risk of extinction (P) by the Secretaría del Medio Ambiente y Recursos Naturales (SEMARNAT). These findings emphasize the urgent need for conservation strategies, particularly for island reptile species, that involve collaboration among scientists, local communities, and federal and state authorities to address these threats and safeguard the region’s herpetofauna. Similarity analysis revealed significant ecological connectivity among the amphibian and reptile communities across the three provinces. The similarity in species between the Californian, Baja California, and Sonoran Desert provinces highlights the role of historical climatic events, geographic barriers, and ecological factors in shaping species distributions of amphibians and reptiles in northwestern Mexico. Full article
(This article belongs to the Special Issue Animal Diversity Hot Topics in 2025)
Show Figures

Figure 1

15 pages, 14838 KiB  
Article
Centaurea pumilio (Asteraceae): Conservation Status, Threats and Population Size of a Critically Endangered Species in Italy
by Alessio Turco, Robert Philipp Wagensommer, Pietro Medagli, Saverio D’Emerico, Fabio Ippolito, Giuseppe Scordella and Antonella Albano
Plants 2025, 14(7), 1074; https://doi.org/10.3390/plants14071074 - 1 Apr 2025
Cited by 1 | Viewed by 572
Abstract
This paper presents a comprehensive study of the size and conservation status of the only Italian population of Centaurea pumilio (Asteraceae) and the threats to its survival. The population is located on a short stretch of sandy shoreline along the Ionian coast of [...] Read more.
This paper presents a comprehensive study of the size and conservation status of the only Italian population of Centaurea pumilio (Asteraceae) and the threats to its survival. The population is located on a short stretch of sandy shoreline along the Ionian coast of Puglia, near Torre S. Giovanni (Ugento, Lecce). It was estimated in the 1990s to number about 500 plants, but in recent years a significant reduction, bringing the population to fewer than 100 individuals, has been observed. This study involved a census of the individuals (differentiating young plants from adult and reproductive ones) conducted with a precision GPS tool, phytosociological analysis and high-definition orthophoto image acquisition using a drone. Concerning the latter, to evaluate anthropic pressure from tourism, data were acquired in spring 2023 and autumn 2024 and compared using GIS geoprocessing, showing a significant increase in the area occupied by footpaths. GIS analysis also revealed that the survival of C. pumilio is strongly linked to the intensity of the walking routes, which have fragmented the population into small and isolated clusters. On the basis of all the collected data, the current conservation status of the species in Italy was assessed as critically endangered. Finally, our study provides a series of suggestions to improve the conservation status of the species and strategies to reduce the risk of extinction in Italy. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

Back to TopTop