Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,232)

Search Parameters:
Keywords = external uncertainties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 1669 KiB  
Article
Predefined-Time Adaptive Neural Control with Event-Triggering for Robust Trajectory Tracking of Underactuated Marine Vessels
by Hui An, Zhanyang Yu, Jianhua Zhang, Xinxin Wang and Cheng Siong Chin
Processes 2025, 13(8), 2443; https://doi.org/10.3390/pr13082443 (registering DOI) - 1 Aug 2025
Abstract
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues [...] Read more.
This paper addresses the trajectory tracking control problem of underactuated ships in ocean engineering, which faces the dual challenges of tracking error time–performance regulation and robustness design due to the system’s underactuated characteristics, model uncertainties, and external disturbances. Aiming to address the issues of traditional finite-time control (convergence time dependent on initial states) and fixed-time control (control chattering and parameter conservativeness), this paper proposes a predefined-time adaptive control framework that integrates an event-triggered mechanism and neural networks. By constructing a Lyapunov function with time-varying weights and designing non-periodic dynamically updated dual triggering conditions, the convergence process of tracking errors is strictly constrained within a user-prespecified time window without relying on initial states or introducing non-smooth terms. An adaptive approximator based on radial basis function neural networks (RBF-NNs) is employed to compensate for unknown nonlinear dynamics and external disturbances in real-time. Combined with the event-triggered mechanism, it dynamically adjusts the update instances of control inputs, ensuring prespecified tracking accuracy while significantly reducing computational resource consumption. Theoretical analysis shows that all signals in the closed-loop system are uniformly ultimately bounded, tracking errors converge to a neighborhood of the origin within the predefined-time, and the update frequency of control inputs exhibits a linear relationship with the predefined-time, avoiding Zeno behavior. Simulation results verify the effectiveness of the proposed method in complex marine environments. Compared with traditional control strategies, it achieves more accurate trajectory tracking, faster response, and a substantial reduction in control input update frequency, providing an efficient solution for the engineering implementation of embedded control systems in unmanned ships. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
20 pages, 2054 KiB  
Article
Change Management in Aviation Organizations: A Multi-Method Theoretical Framework for External Environmental Uncertainty
by Ilona Skačkauskienė and Virginija Leonavičiūtė
Sustainability 2025, 17(15), 6994; https://doi.org/10.3390/su17156994 (registering DOI) - 1 Aug 2025
Abstract
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid [...] Read more.
In today’s dynamic and highly uncertain environment, organizations, particularly in the aviation sector, face increasing challenges that demand resilient, flexible, and data-driven change management decisions. Responding to the growing need for structured approaches to managing complex uncertainties—geopolitical tensions, economic volatility, social shifts, rapid technological advancements, environmental pressures and regulatory changes—this research proposes a theoretical change management model for aviation service providers, such as airports. Integrating three analytical approaches, the model offers a robust, multi-method approach for supporting sustainable transformation under uncertainty. Normative analysis using Bayesian decision theory identifies influential external environmental factors, capturing probabilistic relationships, and revealing causal links under uncertainty. Prescriptive planning through scenario theory explores alternative future pathways and helps to identify possible predictions, offer descriptive evaluation employing fuzzy comprehensive evaluation, and assess decision quality under vagueness and complexity. The proposed four-stage model—observation, analysis, evaluation, and response—offers a methodology for continuous external environment monitoring, scenario development, and data-driven, proactive change management decision-making, including the impact assessment of change and development. The proposed model contributes to the theoretical advancement of the change management research area under uncertainty and offers practical guidance for aviation organizations (airports) facing a volatile external environment. This framework strengthens aviation organizations’ ability to anticipate, evaluate, and adapt to multifaceted external changes, supporting operational flexibility and adaptability and contributing to the sustainable development of aviation services. Supporting aviation organizations with tools to proactively manage systemic uncertainty, this research directly supports the integration of sustainability principles, such as resilience and adaptability, for long-term value creation through change management decision-making. Full article
Show Figures

Figure 1

26 pages, 4297 KiB  
Article
Finite-Time RBFNN-Based Observer for Cooperative Multi-Missile Tracking Control Under Dynamic Event-Triggered Mechanism
by Jiong Li, Yadong Tang, Lei Shao, Xiangwei Bu and Jikun Ye
Aerospace 2025, 12(8), 693; https://doi.org/10.3390/aerospace12080693 (registering DOI) - 31 Jul 2025
Abstract
This paper proposes a hierarchical cooperative tracking control method for multi-missile formations under dynamic event-triggered mechanisms, addressing parameter uncertainties and saturated overload constraints. The proposed hierarchical structure consists of a reference-trajectory generator and a trajectory-tracking controller. The reference-trajectory generator considers communication and collaboration [...] Read more.
This paper proposes a hierarchical cooperative tracking control method for multi-missile formations under dynamic event-triggered mechanisms, addressing parameter uncertainties and saturated overload constraints. The proposed hierarchical structure consists of a reference-trajectory generator and a trajectory-tracking controller. The reference-trajectory generator considers communication and collaboration among multiple interceptors, imposes saturation constraints on virtual control inputs, and generates reference trajectories for each receptor, effectively suppressing aggressive motions caused by overload saturation. On this basis, a radial basis function neural network (RBFNN) combined with a sliding-mode disturbance observer is adopted to estimate unknown external disturbances and unmodeled dynamics, and the finite-time convergence of the disturbance observer is proved. A tracking controller is then designed to ensure precise tracking of the reference trajectory by missile. This approach not only reduces communication and computational burdens but also effectively avoids Zeno behavior, enhancing the practical feasibility and robustness of the proposed method in engineering applications. The simulation results verify the effectiveness and superiority of the proposed method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

28 pages, 8732 KiB  
Article
Acceleration Command Tracking via Hierarchical Neural Predictive Control for the Effectiveness of Unknown Control
by Zhengpeng Yang, Chao Ming, Huaiyan Wang and Tongxing Peng
Aerospace 2025, 12(8), 689; https://doi.org/10.3390/aerospace12080689 (registering DOI) - 31 Jul 2025
Abstract
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and [...] Read more.
This paper presents a flight control framework based on neural network Model Predictive Control (NN-MPC) to tackle the challenges of acceleration command tracking for supersonic vehicles (SVs) in complex flight environments, addressing the shortcomings of traditional methods in managing nonlinearity, random disturbances, and real-time performance requirements. Initially, a dynamic model is developed through a comprehensive analysis of the vehicle’s dynamic characteristics, incorporating strong cross-coupling effects and disturbance influences. Subsequently, a predictive mechanism is employed to forecast future states and generate virtual control commands, effectively resolving the issue of sluggish responses under rapidly changing commands. Furthermore, the approximation capability of neural networks is leveraged to optimize the control strategy in real time, ensuring that rudder deflection commands adapt to disturbance variations, thus overcoming the robustness limitations inherent in fixed-parameter control approaches. Within the proposed framework, the ultimate uniform bounded stability of the control system is rigorously established using the Lyapunov method. Simulation results demonstrate that the method exhibits exceptional performance under conditions of system state uncertainty and unknown external disturbances, confirming its effectiveness and reliability. Full article
(This article belongs to the Section Aeronautics)
24 pages, 1821 KiB  
Review
An Overview on LCA Integration in BIM: Tools, Applications, and Future Trends
by Cecilia Bolognesi, Deida Bassorizzi, Simone Balin and Vasili Manfredi
Digital 2025, 5(3), 31; https://doi.org/10.3390/digital5030031 (registering DOI) - 31 Jul 2025
Abstract
The integration of Life Cycle Assessment (LCA) into Building Information Modeling (BIM) processes is becoming increasingly important for enhancing the environmental performance of construction projects. This scoping review examines how LCA methods and environmental data are currently integrated into BIM workflows, focusing on [...] Read more.
The integration of Life Cycle Assessment (LCA) into Building Information Modeling (BIM) processes is becoming increasingly important for enhancing the environmental performance of construction projects. This scoping review examines how LCA methods and environmental data are currently integrated into BIM workflows, focusing on automation, data standardization, and visualization strategies. We selected 43 peer-reviewed studies (January 2010–May 2025) via structured searches in five major academic databases. The review identifies five main types of BIM–LCA integration workflows; the most common approach involves exporting quantity data from BIM models to external LCA tools. More recent studies explore the use of artificial intelligence for improving automation and accuracy in data mapping between BIM objects and LCA databases. Key challenges include inconsistent levels of data granularity, a lack of harmonized EPD formats, and limited interoperability between BIM and LCA software environments. Visualization methods such as color-coded 3D models are used to support early-stage decision-making, although uncertainty representation remains limited. To address these issues, future research should focus on standardizing EPD data structures, enriching BIM objects with validated environmental information, and developing explainable AI solutions for automated classification and matching. These advancements would improve the reliability and usability of LCA in BIM-based design, contributing to more informed decisions in sustainable construction. Full article
(This article belongs to the Special Issue Advances in Data Management)
Show Figures

Figure 1

27 pages, 12164 KiB  
Article
Neural Network Adaptive Attitude Control of Full-States Quad Tiltrotor UAV
by Jiong He, Binwu Ren, Yousong Xu, Qijun Zhao, Siliang Du and Bo Wang
Aerospace 2025, 12(8), 684; https://doi.org/10.3390/aerospace12080684 - 30 Jul 2025
Abstract
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics [...] Read more.
The control stability and accuracy of quad tiltrotor UAVs is improved when encountering external disturbances during automatic flight by an active disturbance rejection control (ADRC) parameter self-tuning control strategy based on a radial basis function (RBF) neural network. Firstly, a nonlinear flight dynamics model of the quad tiltrotor UAV is established based on the approach of component-based mechanistic modeling. Secondly, the effects of internal uncertainties and external disturbances on the model are eliminated, whilst the online adaptive parameter tuning problem for the nonlinear active disturbance rejection controller is addressed. The superior nonlinear function approximation capability of the RBF neural network is then utilized by taking both the control inputs computed by the controller and the system outputs of the quad tiltrotor model as neural network inputs to implement adaptive parameter adjustments for the Extended State Observer (ESO) component responsible for disturbance estimation and the Nonlinear State Error Feedback (NLSEF) control law of the active disturbance rejection controller. Finally, an adaptive attitude control system for the quad tiltrotor UAV is constructed, centered on the ADRC-RBF controller. Subsequently, the efficacy of the attitude control system is validated through simulation, encompassing a range of flight conditions. The simulation results demonstrate that the Integral of Absolute Error (IAE) of the pitch angle response controlled by the ADRC-RBF controller is reduced to 37.4° in comparison to the ADRC controller in the absence of external disturbance in the full-states mode state of the quad tiltrotor UAV, and the oscillation amplitude of the pitch angle response controlled by the ADRC-RBF controller is generally reduced by approximately 50% in comparison to the ADRC controller in the presence of external disturbance. In comparison with the conventional ADRC controller, the proposed ADRC-RBF controller demonstrates superior performance with regard to anti-disturbance capability, adaptability, and tracking accuracy. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 2070 KiB  
Article
Reinforcement Learning-Based Finite-Time Sliding-Mode Control in a Human-in-the-Loop Framework for Pediatric Gait Exoskeleton
by Matthew Wong Sang and Jyotindra Narayan
Machines 2025, 13(8), 668; https://doi.org/10.3390/machines13080668 - 30 Jul 2025
Abstract
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop [...] Read more.
Rehabilitation devices such as actuated lower-limb exoskeletons can provide essential mobility assistance for pediatric patients with gait impairments. Enhancing their control systems under conditions of user variability and dynamic disturbances remains a significant challenge, particularly in active-assist modes. This study presents a human-in-the-loop control architecture for a pediatric lower-limb exoskeleton, combining outer-loop admittance control with robust inner-loop trajectory tracking via a non-singular terminal sliding-mode (NSTSM) controller. Designed for active-assist gait rehabilitation in children aged 8–12 years, the exoskeleton dynamically responds to user interaction forces while ensuring finite-time convergence under system uncertainties. To enhance adaptability, we augment the inner-loop control with a twin delayed deep deterministic policy gradient (TD3) reinforcement learning framework. The actor–critic RL agent tunes NSTSM gains in real-time, enabling personalized model-free adaptation to subject-specific gait dynamics and external disturbances. The numerical simulations show improved trajectory tracking, with RMSE reductions of 27.82% (hip) and 5.43% (knee), and IAE improvements of 40.85% and 10.20%, respectively, over the baseline NSTSM controller. The proposed approach also reduced the peak interaction torques across all the joints, suggesting more compliant and comfortable assistance for users. While minor degradation is observed at the ankle joint, the TD3-NSTSM controller demonstrates improved responsiveness and stability, particularly in high-load joints. This research contributes to advancing pediatric gait rehabilitation using RL-enhanced control, offering improved mobility support and adaptive rehabilitation outcomes. Full article
Show Figures

Figure 1

34 pages, 3350 KiB  
Article
Distributed Robust Predefined-Time Sliding Mode Control for AUV-USV Heterogeneous Multi-Agent Systems Based on Memory Event-Triggered Mechanism Under Input Saturation
by Haitao Liu, Luchuan Li, Xuehong Tian and Qingqun Mai
J. Mar. Sci. Eng. 2025, 13(8), 1428; https://doi.org/10.3390/jmse13081428 - 27 Jul 2025
Viewed by 165
Abstract
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation [...] Read more.
This paper studies the distributed robust predefined-time sliding mode control (DRPSC) problem for high-order heterogeneous multi-agent systems under input saturation while considering external disturbances and model uncertainties. Firstly, a distributed predefined-time state observer (PTSO) is designed for each agent to achieve individual estimation of the state information of the virtual leader within a predefined time, and the observer does not need to count on the global information of the system. Secondly, a predefined-time auxiliary dynamic system (PTADS) is developed to solve the actuator’s input saturation problem. Thirdly, a distributed predefined-time sliding mode controller (PTSMC) is proposed, which ensures that the error converges to a small region near zero within a predefined time and combines H control to deal with the lumped uncertainty disturbances in the system to improve the robustness of the system. In addition, a memory event-triggered mechanism (METM) is designed to reduce the communication frequency of the underactuated AUV-USV multi-agent system and reduce the consumption of communication resources. Finally, Lyapunov theory is employed to prove that the closed-loop system is predefined-time stable, and the simulation results demonstrate that the proposed method is effective. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

18 pages, 7481 KiB  
Article
Fuzzy Reinforcement Learning Disturbance Cancellation Optimized Course Tracking Control for USV Autopilot Under Actuator Constraint
by Xiaoyang Gao, Xin Hu and Ang Yang
J. Mar. Sci. Eng. 2025, 13(8), 1429; https://doi.org/10.3390/jmse13081429 - 27 Jul 2025
Viewed by 196
Abstract
Unmanned surface vehicles (USVs) course control research constitutes a vital branch of ship motion control studies and serves as a key technology for the development of marine critical equipment. Aiming at the problems of model uncertainties, external marine disturbances, performance optimization, and actuator [...] Read more.
Unmanned surface vehicles (USVs) course control research constitutes a vital branch of ship motion control studies and serves as a key technology for the development of marine critical equipment. Aiming at the problems of model uncertainties, external marine disturbances, performance optimization, and actuator constraints encountered by the autopilot system, this paper proposes a composite disturbance cancellation optimized control method based on fuzzy reinforcement learning. Firstly, a coupling design of the finite-time disturbance observer and fuzzy logic system is conducted to estimate and reject the composite disturbance composed of internal model uncertainty and ocean disturbances. Secondly, a modified backstepping control technique is employed to design the autopilot controller and construct the error system. Based on the designed performance index function, the fuzzy reinforcement learning is utilized to propose an optimized compensation term for the error system. Meanwhile, to address the actuator saturation issue, an auxiliary system is introduced to modify the error surface, reducing the impact of saturation on the system. Finally, the stability of the autopilot system is proved using the Lyapunov stability theory. Simulation studies conducted on the ocean-going training ship “Yulong” demonstrate the effectiveness of the proposed algorithm. Under the strong and weak ocean conditions designed, this algorithm can ensure that the tracking error converges within 7 s. Full article
(This article belongs to the Special Issue Control and Optimization of Ship Propulsion System)
Show Figures

Figure 1

13 pages, 1718 KiB  
Article
Accurate Dual-Channel Broadband RF Attenuation Measurement System with High Attenuation Capability Using an Optical Fiber Assembly for Optimal Channel Isolation
by Anton Widarta
Electronics 2025, 14(15), 2963; https://doi.org/10.3390/electronics14152963 - 24 Jul 2025
Viewed by 154
Abstract
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage [...] Read more.
In this study, an accurate attenuation measurement system with high attenuation capability (≥100 dB) is presented, covering a broad radio frequency range from 1 GHz to 25 GHz. The system employs a dual-channel intermediate frequency (IF) substitution method, utilizing a programmable inductive voltage divider (IVD) that provides precise voltage ratios at a 1 kHz operating IF, serving as the primary attenuation standard. To ensure optimal inter-channel isolation, essential for accurate high-attenuation measurements, an optical fiber assembly, consisting of a laser diode, a wideband external electro-optic modulator, and a photodetector, is integrated between the channels. A comprehensive performance evaluation is presented, with particular emphasis on the programmable IVD calibration technique, which achieves an accuracy better than 0.001 dB across all attenuation levels, and on the role of the optical fiber assembly in enhancing isolation, demonstrating levels exceeding 120 dB across the entire frequency range. The system demonstrates measurement capabilities with expanded uncertainties (k = 2) of 0.004 dB, 0.008 dB, and 0.010 dB at attenuation levels of 20 dB, 60 dB, and 100 dB, respectively. Full article
(This article belongs to the Special Issue RF/MM-Wave Circuits Design and Applications, 2nd Edition)
Show Figures

Figure 1

22 pages, 1149 KiB  
Review
A Review of Influencing and Controlling Vortex-Induced Vibrations for Deepwater Risers
by Chao Yan, Qi Feng and Shuangchun Yang
Processes 2025, 13(8), 2353; https://doi.org/10.3390/pr13082353 - 24 Jul 2025
Viewed by 300
Abstract
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the [...] Read more.
With the expansion of offshore oil and gas resources to deepwater areas, the problem of the vortex-induced vibration of marine risers, as a key structure connecting offshore platforms and subsea wellheads, has become increasingly prominent. At present, there are few reviews on the vortex-induced vibration of flexible risers. This review provides a detailed discussion of vortex-induced vibration in marine risers. This review begins with the engineering background. It then systematically analyzes the key factors that influence VIV response. These factors include the riser’s structural parameters, such as aspect ratio and mass ratio. They also include the external fluid environment. Next, this review evaluates current VIV suppression strategies by analyzing specific experimental results. It compares the effectiveness and trade-offs of passive techniques. It also examines the potential and limitations of active methods, which often use smart materials, like piezoelectrics. This study highlights the major challenges in VIV research today. These challenges relate to prediction accuracy and suppression efficiency. Key problems include model uncertainty at high Reynolds numbers and the practical implementation of suppression devices in engineering systems. Finally, this paper presents an outlook on the future directions. It concludes that an intelligent, full-lifecycle integrity management system is the best path forward. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

23 pages, 811 KiB  
Article
Backstepping-Based Finite-Horizon Optimization for Pitching Attitude Control of Aircraft
by Ang Li, Yaohua Shen and Bin Du
Aerospace 2025, 12(8), 653; https://doi.org/10.3390/aerospace12080653 - 23 Jul 2025
Viewed by 114
Abstract
In this paper, the problem of pitching attitude finite-horizon optimization for aircraft is posed with system uncertainties, external disturbances, and input constraints. First, a neural network (NN) and a nonlinear disturbance observer (NDO) are employed to estimate the value of system uncertainties and [...] Read more.
In this paper, the problem of pitching attitude finite-horizon optimization for aircraft is posed with system uncertainties, external disturbances, and input constraints. First, a neural network (NN) and a nonlinear disturbance observer (NDO) are employed to estimate the value of system uncertainties and external disturbances. Taking input constraints into account, an auxiliary system is designed to compensate for the constrained input. Subsequently, the backstepping control containing NN and NDO is used to ensure the stability of systems and suppress the adverse effects caused by the system uncertainties and external disturbances. In order to avoid the derivation operation in the process of backstepping, a dynamic surface control (DSC) technique is utilized. Simultaneously, the estimations of the NN and NDO are applied to derive the backstepping control law. For the purpose of achieving finite-horizon optimization for pitching attitude control, an adaptive method termed adaptive dynamic programming (ADP) with a single NN-termed critic is applied to obtain the optimal control. Time-varying feature functions are applied to construct the critic NN in order to approximate the value function in the Hamilton–Jacobi–Bellman (HJB) equation. Furthermore, a supplementary term is added to the weight update law to minimize the terminal constraint. Lyapunov stability theory is used to prove that the signals in the control system are uniformly ultimately bounded (UUB). Finally, simulation results illustrate the effectiveness of the proposed finite-horizon optimal attitude control method. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

20 pages, 281 KiB  
Article
Older Caregivers of Children with Physical Disabilities: A Dual Challenge for Social Participation?
by Mercedes Molina-Montoya and Yolanda Domenech-López
Societies 2025, 15(8), 206; https://doi.org/10.3390/soc15080206 - 22 Jul 2025
Viewed by 315
Abstract
Older people’s social participation is being shaped by the current context of “liquid modernity,” characterized by the erosion of traditional roles and identity, fragile social ties, individualism, economic precariousness, and uncertainty. The challenges entailed by these trends can be exacerbated when a circumstance, [...] Read more.
Older people’s social participation is being shaped by the current context of “liquid modernity,” characterized by the erosion of traditional roles and identity, fragile social ties, individualism, economic precariousness, and uncertainty. The challenges entailed by these trends can be exacerbated when a circumstance, such as being the parent of an adult with a physical disability, is combined with old age. This study aimed to explore how this dual condition influences processes of aging and community participation. This work presents the findings of a phenomenological study conducted in 2025 through semi-structured interviews with a sample of 24 elderly people with children diagnosed with spina bifida. The results show that the children’s support needs, especially when they live with their parents, but also if they have become independent, impact the parents’ aging and social participation processes. Likewise, concern for the future is identified as a recurring aspect due to the children’s lack of support from a social network. It was concluded that public administrations and non-profit organizations should develop social intervention strategies aimed at promoting social participation, guaranteeing external assistance in the home, and providing coexistence resources. Full article
(This article belongs to the Special Issue Challenges for Social Inclusion of Older Adults in Liquid Modernity)
18 pages, 606 KiB  
Article
The Challenges of the VUCA World and the Education System: The Need for Change to Ensure Sustainable Learning Process
by Mihaela Minciu, Cristina Veith, Razvan Catalin Dobrea and Carmen Nadia Ciocoiu
Sustainability 2025, 17(14), 6600; https://doi.org/10.3390/su17146600 - 19 Jul 2025
Viewed by 481
Abstract
The accelerated transformations in the education system marked by volatility, uncertainty, complexity, and ambiguity (VUCA) require a rethinking of pedagogical approaches. The VUCA environment requires a new educational management system in line with new technological trends in order to respond effectively to all [...] Read more.
The accelerated transformations in the education system marked by volatility, uncertainty, complexity, and ambiguity (VUCA) require a rethinking of pedagogical approaches. The VUCA environment requires a new educational management system in line with new technological trends in order to respond effectively to all the internal and external factors that may affect the quality of teaching. A particularly important course of action is updating teaching methods by combining traditional teaching methods with new interactive methods that promote the introduction of certain digital applications during the teaching of new topics. In this sense, the quantitative research carried out in the present study among second-year students from the psycho-pedagogical program organized by the Bucharest University of Economic Studies, Romania, has highlighted the fact that innovative teaching methods are more effective, contributing to the development of personality and communication skills among pupils and students. Also, the results obtained after applying the Mann–Whitney test showed that there is a significant difference between students involved in different educational activities and those who do not have contact with the educational environment in terms of perceiving the volatility, uncertainty, complexity and ambiguity of the educational environment. At the same time, in the context of the VUCA world, in order to ensure the effectiveness of the teaching–learning process, teachers need to develop new skills such as stress management, adaptability, creativity, technological skills, and time management. Addressing the specific competencies that teachers need to acquire in order to improve their teaching and to respond effectively to the volatility, uncertainty, complexity and ambiguity in education, this study contributes to the creation of a sustainable education system, which is able to cope with all transformations (technological, legislative, socio-economic, etc.). The article is based on the results obtained in the postdoctoral research conducted at the end of 2024. Full article
(This article belongs to the Special Issue Creating an Innovative Learning Environment)
Show Figures

Figure 1

38 pages, 1216 KiB  
Article
Development of a Fuzzy Logic-Based Tool for Evaluating KPIs in a Lean, Agile, Resilient, and Green (LARG) Supply Chain
by Laura Monferdini, Giorgia Casella and Eleonora Bottani
Appl. Sci. 2025, 15(14), 8010; https://doi.org/10.3390/app15148010 - 18 Jul 2025
Viewed by 327
Abstract
This study proposes a fuzzy logic-based approach to better manage supply chain uncertainty and improve decision-making flexibility. The developed framework categorizes supply chain activities into procurement, production, distribution and reverse logistics and integrates Lean, Agile, Resilient, and Green (LARG) KPIs within a hierarchical [...] Read more.
This study proposes a fuzzy logic-based approach to better manage supply chain uncertainty and improve decision-making flexibility. The developed framework categorizes supply chain activities into procurement, production, distribution and reverse logistics and integrates Lean, Agile, Resilient, and Green (LARG) KPIs within a hierarchical structure. The tool was implemented using Microsoft ExcelTM to enhance usability for practitioners. To test its applicability, the model was applied to a real case study. The results show that lean and resilient practices are consistently well-established across all supply chain phases, while agility and green practices vary significantly depending on the operational area—particularly between internal function (i.e., production and reverse logistics) and external ones (i.e., procurement and distribution). These findings help to better understand how the LARG capabilities are distributed across the different operational areas of the supply chain and offer practical guidance for managers seeking targeted performance improvement. Although the numerical results are context-specific, the framework’s adaptability makes it suitable for diverse supply chain environments. Full article
Show Figures

Figure 1

Back to TopTop