Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (735)

Search Parameters:
Keywords = extended Kalman filtering (EKF)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1814 KiB  
Article
Student’s t Kernel-Based Maximum Correntropy Criterion Extended Kalman Filter for GPS Navigation
by Dah-Jing Jwo, Yi Chang, Yun-Han Hsu and Amita Biswal
Appl. Sci. 2025, 15(15), 8645; https://doi.org/10.3390/app15158645 (registering DOI) - 5 Aug 2025
Abstract
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting [...] Read more.
Global Navigation Satellite System (GNSS) receivers may produce measurement outliers in real-world applications owing to various circumstances, including poor signal quality, multipath effects, data loss, satellite signal loss, or electromagnetic interference. This can lead to a noise distribution that is non-Gaussian heavy-tailed, affecting the effectiveness of satellite navigation filters. This paper presents a robust Extended Kalman Filter (EKF) based on the Maximum Correntropy Criterion with a Student’s t kernel (STMCCEKF) for GPS navigation under non-Gaussian noise. Unlike traditional EKF and Gaussian-kernel MCCEKF, the proposed method enhances robustness by leveraging the heavy-tailed Student’s t kernel, which effectively suppresses outliers and dynamic observation noise. A fixed-point iterative algorithm is used for state update, and a new posterior error covariance expression is derived. The simulation results demonstrate that STMCCEKF outperforms conventional filters in positioning accuracy and robustness, particularly in environments with impulsive noise and multipath interference. The Student’s t-distribution kernel efficiently mitigates heavy-tailed non-Gaussian noise, while it adaptively adjusts process and measurement noise covariances, leading to improved estimation performance. A detailed explanation of several key concepts along with practical examples are discussed to aid in understanding and applying the Global Positioning System (GPS) navigation filter. By integrating cutting-edge reinforcement learning with robust statistical approaches, this work advances adaptive signal processing and estimation, offering a significant contribution to the field. Full article
Show Figures

Figure 1

18 pages, 603 KiB  
Article
Leveraging Dynamic Pricing and Real-Time Grid Analysis: A Danish Perspective on Flexible Industry Optimization
by Sreelatha Aihloor Subramanyam, Sina Ghaemi, Hessam Golmohamadi, Amjad Anvari-Moghaddam and Birgitte Bak-Jensen
Energies 2025, 18(15), 4116; https://doi.org/10.3390/en18154116 - 3 Aug 2025
Viewed by 113
Abstract
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming [...] Read more.
Flexibility is advocated as an effective solution to address the growing need to alleviate grid congestion, necessitating efficient energy management strategies for industrial operations. This paper presents a mixed-integer linear programming (MILP)-based optimization framework for a flexible asset in an industrial setting, aiming to minimize operational costs and enhance energy efficiency. The method integrates dynamic pricing and real-time grid analysis, alongside a state estimation model using Extended Kalman Filtering (EKF) that improves the accuracy of system state predictions. Model Predictive Control (MPC) is employed for real-time adjustments. A real-world case studies from aquaculture industries and industrial power grids in Denmark demonstrates the approach. By leveraging dynamic pricing and grid signals, the system enables adaptive pump scheduling, achieving a 27% reduction in energy costs while maintaining voltage stability within 0.95–1.05 p.u. and ensuring operational safety. These results confirm the effectiveness of grid-aware, flexible control in reducing costs and enhancing stability, supporting the transition toward smarter, sustainable industrial energy systems. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

21 pages, 1573 KiB  
Review
A Novel Real-Time Battery State Estimation Using Data-Driven Prognostics and Health Management
by Juliano Pimentel, Alistair A. McEwan and Hong Qing Yu
Appl. Sci. 2025, 15(15), 8538; https://doi.org/10.3390/app15158538 (registering DOI) - 31 Jul 2025
Viewed by 121
Abstract
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered [...] Read more.
This paper presents a novel data-driven framework for real-time State of Charge (SOC) estimation in lithium-ion battery systems using a data-driven Prognostics and Health Management (PHM) approach. The method leverages an optimized bidirectional Long Short-Term Memory (Bi-LSTM) network, trained with enhanced datasets filtered via exponentially weighted moving averages (EWMAs) and refined through SHAP-based feature attribution. Compared against a Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) across ten diverse drive cycles, the proposed model consistently achieved superior performance, with mean absolute errors (MAEs) as low as 0.40%, outperforming EKF (0.66%) and UKF (1.36%). The Bi-LSTM model also demonstrated higher R2 values (up to 0.9999) and narrower 95% confidence intervals, confirming its precision and robustness. Real-time implementation on embedded platforms yielded inference times of 1.3–2.2 s, validating its deployability for edge applications. The framework’s model-free nature makes it adaptable to other nonlinear, time-dependent systems beyond battery SOC estimation. Full article
(This article belongs to the Special Issue Design and Applications of Real-Time Embedded Systems)
Show Figures

Figure 1

25 pages, 8468 KiB  
Article
An Autonomous Localization Vest System Based on Advanced Adaptive PDR with Binocular Vision Assistance
by Tianqi Tian, Yanzhu Hu, Xinghao Zhao, Hui Zhao, Yingjian Wang and Zhen Liang
Micromachines 2025, 16(8), 890; https://doi.org/10.3390/mi16080890 (registering DOI) - 30 Jul 2025
Viewed by 151
Abstract
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and [...] Read more.
Despite significant advancements in indoor navigation technology over recent decades, it still faces challenges due to excessive dependency on external infrastructure and unreliable positioning in complex environments. This paper proposes an autonomous localization system that integrates advanced adaptive pedestrian dead reckoning (APDR) and binocular vision, designed to provide a low-cost, high-reliability, and high-precision solution for rescuers. By analyzing the characteristics of measurement data from various body parts, the chest is identified as the optimal placement for sensors. A chest-mounted advanced APDR method based on dynamic step segmentation detection and adaptive step length estimation has been developed. Furthermore, step length features are innovatively integrated into the visual tracking algorithm to constrain errors. Visual data is fused with dead reckoning data through an extended Kalman filter (EKF), which notably enhances the reliability and accuracy of the positioning system. A wearable autonomous localization vest system was designed and tested in indoor corridors, underground parking lots, and tunnel environments. Results show that the system decreases the average positioning error by 45.14% and endpoint error by 38.6% when compared to visual–inertial odometry (VIO). This low-cost, wearable solution effectively meets the autonomous positioning needs of rescuers in disaster scenarios. Full article
(This article belongs to the Special Issue Artificial Intelligence for Micro Inertial Sensors)
Show Figures

Figure 1

29 pages, 20494 KiB  
Article
Research on INS/GNSS Integrated Navigation Algorithm for Autonomous Vehicles Based on Pseudo-Range Single Point Positioning
by Zhongchao Liang, Kunfeng He, Zijian Wang, Haobin Yang and Junqiang Zheng
Electronics 2025, 14(15), 3048; https://doi.org/10.3390/electronics14153048 - 30 Jul 2025
Viewed by 129
Abstract
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical [...] Read more.
This study proposes an enhanced integration framework for the global navigation satellite system (GNSS) and inertial navigation system (INS). The framework combines real-time differential GNSS corrections with an adaptive extended Kalman filter (EKF) to address positional accuracy and system robustness challenges in practical navigation scenarios. The proposed method dynamically compensates for positioning inaccuracies and sensor drift by integrating differential GNSS corrections to reduce errors and employing an adaptive EKF to address temporal synchronization discrepancies and misalignment angle deviations. Simulation and experimental results demonstrate that the framework keeps horizontal positioning error within 2 m and achieves a maximum accuracy improvement of 4.2 m compared to conventional single-point positioning. This low-cost solution ensures robust performance for practical autonomous navigation scenarios. Full article
(This article belongs to the Section Systems & Control Engineering)
Show Figures

Figure 1

20 pages, 9169 KiB  
Article
Dynamic Mission Planning Framework for Collaborative Underwater Operations Using Behavior Trees
by Seunghyuk Choi and Jongdae Jung
J. Mar. Sci. Eng. 2025, 13(8), 1458; https://doi.org/10.3390/jmse13081458 - 30 Jul 2025
Viewed by 216
Abstract
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each [...] Read more.
This paper presents a behavior tree-based control architecture for end-to-end mission planning of an autonomous underwater vehicle (AUV) collaborating with a moving mothership in dynamic marine environments. The framework is organized into three phases—prepare and launch, execute the mission, and retrieval and docking—each encapsulated in an independent sub-tree to enable modular error handling and seamless phase transitions. The AUV and mothership operate entirely underwater, with real-time docking to a moving platform. An extended Kalman filter (EKF) fuses data from inertial, pressure, and acoustic sensors for accurate navigation and state estimation. At the same time, obstacle avoidance leverages forward-looking sonar (FLS)-based potential field methods to react to unpredictable underwater hazards. The system is implemented on the robot operating system (ROS) and validated in the Stonefish physics engine simulator. Simulation results demonstrate reliable mission execution, successful dynamic docking under communication delays and sensor noise, and robust retrieval from injected faults, confirming the validity and stability of the proposed architecture. Full article
(This article belongs to the Special Issue Innovations in Underwater Robotic Software Systems)
Show Figures

Figure 1

17 pages, 2378 KiB  
Article
Discrete Unilateral Constrained Extended Kalman Filter in an Embedded System
by Leonardo Herrera and Rodrigo Méndez-Ramírez
Sensors 2025, 25(15), 4636; https://doi.org/10.3390/s25154636 - 26 Jul 2025
Viewed by 200
Abstract
Since its publication in the 1960s, the Kalman Filter (KF) has been a powerful tool in optimal state estimation. However, the KF and most of its variants have mainly focused on the state estimation of smooth systems. In this work, we propose a [...] Read more.
Since its publication in the 1960s, the Kalman Filter (KF) has been a powerful tool in optimal state estimation. However, the KF and most of its variants have mainly focused on the state estimation of smooth systems. In this work, we propose a new algorithm called the Discrete Unilateral Constrained Extended Kalman Filter (DUCEKF) that expands the capabilities of the Extended Kalman Filter (EKF) to a class of hybrid mechanical systems known as systems with unilateral constraints. Such systems are non-smooth in position and discontinuous in velocity. Lyapunov stability theory is invoked to establish sufficient conditions for the estimation error stability of the proposed algorithm. A comparison of the proposed algorithm with the EKF is conducted in simulation through a case study to demonstrate the superiority of the DUCEKF for the state estimation tasks in this class of systems. Simulations and an experiment were developed in this case study to validate the performance of the proposed algorithm. The experiment was conducted using electronic hardware that consists of an Embedded System (ES) called “Mikromedia for dsPIC33EP” and an external DAC-12 Click board, which includes a Digital-to-Analog Converter (DAC) from Texas Instruments. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

22 pages, 3073 KiB  
Article
Research on Sliding-Window Batch Processing Orbit Determination Algorithm for Satellite-to-Satellite Tracking
by Yingjie Xu, Xuan Feng, Shuanglin Li, Jinghui Pu, Shixu Chen and Wenbin Wang
Aerospace 2025, 12(8), 662; https://doi.org/10.3390/aerospace12080662 - 25 Jul 2025
Viewed by 215
Abstract
In response to the increasing demand for high-precision navigation of satellites operating in the cislunar space, this study introduces an onboard orbit determination algorithm considering both convergence and computational efficiency, referred to as the Sliding-Window Batch Processing (SWBP) algorithm. This algorithm combines the [...] Read more.
In response to the increasing demand for high-precision navigation of satellites operating in the cislunar space, this study introduces an onboard orbit determination algorithm considering both convergence and computational efficiency, referred to as the Sliding-Window Batch Processing (SWBP) algorithm. This algorithm combines the strengths of data batch processing and the sequential processing algorithm, utilizing measurement data from multiple historical and current epochs to update the orbit state of the current epoch. This algorithm facilitates rapid convergence in orbit determination, even in instances where the initial orbit error is large. The SWBP algorithm has been used to evaluate the navigation performance in the Distant Retrograde Orbit (DRO) and the Earth–Moon transfer orbit. The scenario involves a low-Earth-orbit (LEO) satellite establishing satellite-to-satellite tracking (SST) links with both a DRO satellite and an Earth–Moon transfer satellite. The LEO satellite can determine its orbit accurately by receiving GNSS signals. The experiments show that the DRO satellite achieves an orbit determination accuracy of 100 m within 100 h under an initial position error of 500 km, and the transfer orbit satellite reaches an orbit determination accuracy of 600 m within 3.5 h under an initial position error of 100 km. When the Earth–Moon transfer satellite exhibits a large initial orbital error (on the order of hundreds of kilometers) or the LEO satellite’s positional accuracy is degraded, the SWBP algorithm demonstrates superior convergence speed and precision in orbit determination compared to the Extended Kalman Filter (EKF). This confirms the proposed algorithm’s capability to handle complex orbital determination scenarios effectively. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

19 pages, 2969 KiB  
Article
Damage Detection for Offshore Wind Turbines Subjected to Non-Stationary Ambient Excitations: A Noise-Robust Algorithm Using Partial Measurements
by Ning Yang, Peng Huang, Hongning Ye, Wuhua Zeng, Yusen Liu, Juhuan Zheng and En Lin
Energies 2025, 18(14), 3644; https://doi.org/10.3390/en18143644 - 10 Jul 2025
Viewed by 253
Abstract
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient [...] Read more.
Reliable damage detection in operational offshore wind turbines (OWTs) remains challenging due to the inherent non-stationarity of environmental excitations and signal degradation from noise-contaminated partial measurements. To address these limitations, this study proposes a robust damage detection method for OWTs under non-stationary ambient excitations using partial measurements with strong noise resistance. The method is first developed for a scenario with known non-stationary ambient excitations. By reformulating the time-domain equation of motion in terms of non-stationary cross-correlation functions, structural stiffness parameters are estimated using partially measured acceleration responses through the extended Kalman filter (EKF). To account for the more common case of unknown excitations, the method is enhanced via the extended Kalman filter under unknown input (EKF-UI). This improved approach enables the simultaneous identification of the physical parameters of OWTs and unknown non-stationary ambient excitations through the data fusion of partial acceleration and displacement responses. The proposed method is validated through two numerical cases: a frame structure subjected to known non-stationary ground excitation, followed by an OWT tower under unknown non-stationary wind and wave excitations using limited measurements. The numerical results confirm the method’s capability to accurately identify structural damage even under significant noise contamination, demonstrating its practical potential for OWTs’ damage detection applications. Full article
Show Figures

Figure 1

17 pages, 1117 KiB  
Article
Driver Clustering Based on Individual Curve Path Selection Preference
by Gergo Igneczi, Tamas Dobay, Erno Horvath and Krisztian Nyilas
Appl. Sci. 2025, 15(14), 7718; https://doi.org/10.3390/app15147718 - 9 Jul 2025
Viewed by 227
Abstract
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a [...] Read more.
The development of Advanced Driver Assistance Systems (ADASs) has reached a stage where, in addition to the traditional challenges of path planning and control, there is an increasing focus on the behavior of these systems. Assistance functions shall be personalized to deliver a full user experience. Therefore, driver modeling is a key area of research for next-generation ADASs. One of the most common tasks in everyday driving is lane keeping. Drivers are assisted by lane-keeping systems to keep their vehicle in the center of the lane. However, human drivers often deviate from the center line. It has been shown that the driver’s choice to deviate from the center line can be modeled by a linear combination of preview curvature information. This model is called the Linear Driver Model. In this paper, we fit the LDM parameters to real driving data. The drivers are then clustered based on the individual parameters. It is shown that clusters are not only formed by the numerical similarity of the driver parameters, but the drivers in a cluster actually have similar behavior in terms of path selection. Finally, an Extended Kalman Filter (EKF) is proposed to learn the model parameters at run-time. Any new driver can be classified into one of the driver type groups. This information can be used to modify the behavior of the lane-keeping system to mimic human driving, resulting in a more personalized driving experience. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

22 pages, 3432 KiB  
Article
Tracking Accuracy Evaluation of Autonomous Agricultural Tractors via Rear Three-Point Hitch Estimation Using a Hybrid Model of EKF Transformer
by Eun-Kuk Kim, Tae-Ho Han, Jun-Ho Lee, Cheol-Woo Han and Ryu-Gap Lim
Agriculture 2025, 15(14), 1475; https://doi.org/10.3390/agriculture15141475 - 9 Jul 2025
Viewed by 343
Abstract
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear [...] Read more.
The objective of this study was to improve measurement accuracy in the evaluation of autonomous agricultural tractor performance by addressing external disturbances, such as sensor installation errors, vibrations, and heading-induced bias that occur during the measurement of the conventional rear three-point hitch (Rear 3-Point) system. To mitigate these disturbances, the measurement point was relocated to the cab, where external interference is comparatively minimal. However, in compliance with the ISO 12188 standard, the Rear 3-Point system must be used as the reference measurement point. Therefore, its coordinates were indirectly estimated using an extended Kalman filter (EKF) and artificial intelligence (AI)-based techniques. A hybrid model was developed in which a transformer-based AI model was trained using the Rear 3-Point coordinates predicted by EKF as the ground truth. While traditional time-series models, such as LSTM and GRU, show limitations in predicting nonlinear data, the application of an attention mechanism was found to enhance prediction performance by effectively learning temporal dependencies and vibration patterns. The experimental results show that the EKF-based estimation achieved a precision of RMSE 1.6 mm, a maximum error of 12.6 mm, and a maximum standard deviation of 3.9 mm compared to actual measurements. From the perspective of experimental design, the proposed hybrid model was able to predict the trajectory of the autonomous agricultural tractor with significantly reduced external disturbances when compared to the actual measured Rear 3-Point coordinates, while also complying with the ISO 12188 standard. These findings suggest that the proposed approach provides an effective and integrated solution for developing high-precision autonomous agricultural systems. Full article
(This article belongs to the Special Issue Soil-Machine Systems and Its Related Digital Technologies Application)
Show Figures

Figure 1

24 pages, 4937 KiB  
Article
Performance Improvement of Pure Pursuit Algorithm via Online Slip Estimation for Off-Road Tracked Vehicle
by Çağıl Çiloğlu and Emir Kutluay
Sensors 2025, 25(14), 4242; https://doi.org/10.3390/s25144242 - 8 Jul 2025
Viewed by 466
Abstract
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) [...] Read more.
The motion control of a tracked mobile robot remains an important capability for autonomous navigation. Kinematic path-tracking algorithms are commonly used in mobile robotics due to their ease of implementation and real-time computational cost advantage. This paper integrates an extended Kalman filter (EKF) into a common kinematic controller for path-tracking performance improvement. The extended Kalman filter estimates the instantaneous center of rotation (ICR) of tracks using the sensor readings of GPS and IMU. These ICR estimations are then given as input to the motion control algorithm to generate the track velocity demands. The platform to be controlled is a heavyweight off-road tracked vehicle, which necessitates the investigation of slip values. A high-fidelity simulation model, which is verified with field tests, is used as the plant in the path-tracking simulations. The performance of the filter and the algorithm is also demonstrated in field tests on a stabilized road. The field results show that the proposed estimation increases the path-tracking accuracy significantly (about 44%) compared to the classical pure pursuit. Full article
(This article belongs to the Special Issue INS/GNSS Integrated Navigation Systems)
Show Figures

Figure 1

20 pages, 4572 KiB  
Article
Nonlinear Output Feedback Control for Parrot Mambo UAV: Robust Complex Structure Design and Experimental Validation
by Asmaa Taame, Ibtissam Lachkar, Abdelmajid Abouloifa, Ismail Mouchrif and Abdelali El Aroudi
Appl. Syst. Innov. 2025, 8(4), 95; https://doi.org/10.3390/asi8040095 - 7 Jul 2025
Viewed by 455
Abstract
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an [...] Read more.
This paper addresses the problem of controlling quadcopters operating in an environment characterized by unpredictable disturbances such as wind gusts. From a control point of view, this is a nonstandard, highly challenging problem. Fundamentally, these quadcopters are high-order dynamical systems characterized by an under-actuated and highly nonlinear model with coupling between several state variables. The main objective of this work is to achieve a trajectory by tracking desired altitude and attitude. The problem was tackled using a robust control approach with a multi-loop nonlinear controller combined with extended Kalman filtering (EKF). Specifically, the flight control system consists of two regulation loops. The first one is an outer loop based on the backstepping approach and allows for control of the elevation as well as the yaw of the quadcopter, while the second one is the inner loop, which allows the maintenance of the desired attitude by adjusting the roll and pitch, whose references are generated by the outer loop through a standard PID, to limit the 2D trajectory to a desired set path. The investigation integrates EKF technique for sensor signal processing to increase measurements accuracy, hence improving robustness of the flight. The proposed control system was formally developed and experimentally validated through indoor tests using the well-known Parrot Mambo unmanned aerial vehicle (UAV). The obtained results show that the proposed flight control system is efficient and robust, making it suitable for advanced UAV navigation in dynamic scenarios with disturbances. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

19 pages, 4219 KiB  
Article
Schur Complement Optimized Iterative EKF for Visual–Inertial Odometry in Autonomous Vehicles
by Guo Ma, Cong Li, Hui Jing, Bing Kuang, Ming Li, Xiang Wang and Guangyu Jia
Machines 2025, 13(7), 582; https://doi.org/10.3390/machines13070582 - 4 Jul 2025
Viewed by 259
Abstract
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO [...] Read more.
Accuracy and nonlinear processing capabilities are critical to the positioning and navigation of autonomous vehicles in visual–inertial odometry (VIO). Existing filtering-based VIO methods struggle to deal with strongly nonlinear systems and often exhibit low precision. To this end, this paper proposes a VIO method based on the Schur complement and Iterated Extended Kalman Filtering (IEKF). The algorithm first enhances ORB (Oriented FAST and Rotated BRIEF) features using Multi-Layer Perceptron (MLP) and Transformer architectures to improve feature robustness. It then integrates visual information and Inertial Measurement Unit (IMU) data through IEKF, constructing a complete residual model. The Schur complement is applied during covariance updates to compress the state dimension, improving computational efficiency and significantly enhancing the system’s ability to handle nonlinearities while maintaining real-time performance. Compared to traditional Extended Kalman Filtering (EKF), the proposed method demonstrates stronger stability and accuracy in high-dynamic scenarios. The experimental results show that the algorithm achieves superior state estimation performance on several typical visual–inertial datasets, demonstrating excellent accuracy and robustness. Full article
(This article belongs to the Topic Advances in Mobile Robotics Navigation, 2nd Volume)
Show Figures

Figure 1

19 pages, 598 KiB  
Article
Trajectory Planning and Optimisation for Following Drone to Rendezvous Leading Drone by State Estimation with Adaptive Time Horizon
by Javier Lee Hongrui and Sutthiphong Srigrarom
Aerospace 2025, 12(7), 606; https://doi.org/10.3390/aerospace12070606 - 4 Jul 2025
Viewed by 349
Abstract
With the increased proliferation of drone use for many purposes, counter drone technology has become crucial. This rapid expansion has inherently introduced significant opportunities and applications. This creates applications such as aerial surveillance, delivery services, agriculture monitoring, and, most importantly, security operations. Due [...] Read more.
With the increased proliferation of drone use for many purposes, counter drone technology has become crucial. This rapid expansion has inherently introduced significant opportunities and applications. This creates applications such as aerial surveillance, delivery services, agriculture monitoring, and, most importantly, security operations. Due to the relative simplicity of learning and operating a small-scale UAV, malicious organizations can field and use UAVs (drones) to form substantial threats. Their interception may then be hindered by evasive manoeuvres performed by the malicious UAV (mUAV). Novice operators may also unintentionally fly UAVs into restricted airspace such as civilian airports, posing a hazard to other air operations. This paper explores predictive trajectory code and methods for the neutralisation of mUAVs by following drones, using state estimation techniques such as the extended Kalman filter (EKF) and particle filter (PF). Interception strategies and optimization techniques are analysed to improve interception efficiency and robustness. The novelty introduced by this paper is the implementation of adaptive time horizon (ATH) and velocity control (VC) in the predictive process. Simulations in MATLAB were used to evaluate the effectiveness of trajectory prediction models and interception strategies against evasive manoeuvres. The tests discussed in this paper then demonstrated the following: the EKF predictive method achieved a significantly higher neutralisation rate (41%) compared to the PF method (30%) in linear trajectory scenarios, and a similar neutralisation rate of 5% in stochastic trajectory scenarios. Later, after incorporating adaptive time horizon (ATH) and 20 velocity control (VC) measures, the EKF method achieved a 98% neutralization rate, demonstrating significant improvement in performance. Full article
Show Figures

Figure 1

Back to TopTop