Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,294)

Search Parameters:
Keywords = exposure combinations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3125 KB  
Article
Polymyxin E-Modified Conjugated Polymer Nanoparticle for Photodynamic and Photothermal Combined Antimicrobial Therapy
by Qi Jiang, Yulu Hu, Huimin Ye, Xinyue Hu, Yue Yang, Minghui Yang, Fang Wang, Mengna Zhang and Lisheng Qian
Molecules 2026, 31(3), 409; https://doi.org/10.3390/molecules31030409 (registering DOI) - 25 Jan 2026
Abstract
The irrational or excessive use of antibiotics causes the emergence of bacterial resistance, making antibiotics less effective or ineffective. As the number of resistant antibiotics increases, it is crucial to develop new strategies and innovative approaches to potentiate the efficacy of existing antibiotics. [...] Read more.
The irrational or excessive use of antibiotics causes the emergence of bacterial resistance, making antibiotics less effective or ineffective. As the number of resistant antibiotics increases, it is crucial to develop new strategies and innovative approaches to potentiate the efficacy of existing antibiotics. Prior to this, we discovered that some of the traditional antibiotics produce reactive oxygen species (ROS) under specific light exposure. In this paper, we report a multifunctional polymeric nanoparticle (F8IC NPs-PME) that combines targeted and photodynamic–photothermal therapy (PDT-PTT) in one device. The PME on the surface of F8IC enables the selective binding of F8IC NPs-PME to the surface of Gram-negative bacteria. In addition, PME and F8IC can generate ROS and photothermia under near-infrared light excitation, respectively. The results showed that the sterilization efficiency of F8IC NPs-PME at a concentration of 8 μg/mL was as high as 94.7% against kanamycin-resistant E. coli under 808 nm near-infrared light irradiation (0.8 W/cm2, 10 min). This antimicrobial strategy can achieve efficient bacteria killing with a low dosage of antibiotics and opens up a new avenue for fighting bacterial resistance. Full article
(This article belongs to the Section Nanochemistry)
Show Figures

Figure 1

19 pages, 1781 KB  
Review
Diet–Oral Microbiota Interactions and Salivary Biomarkers of Nutritional Health: A Narrative Review
by Liliana Anchidin-Norocel, Andrei Lobiuc and Mihai Covasa
Nutrients 2026, 18(3), 396; https://doi.org/10.3390/nu18030396 (registering DOI) - 25 Jan 2026
Abstract
Diet plays a central role in shaping the composition and metabolic activity of the oral microbiota, thereby influencing both oral and systemic health. Disturbances in this delicate host–microbe balance, triggered by dietary factors, smoking, poor oral hygiene, or antibiotic use, can lead to [...] Read more.
Diet plays a central role in shaping the composition and metabolic activity of the oral microbiota, thereby influencing both oral and systemic health. Disturbances in this delicate host–microbe balance, triggered by dietary factors, smoking, poor oral hygiene, or antibiotic use, can lead to microbial dysbiosis and increase the risk of oral diseases such as periodontitis, as well as chronic systemic disorders including diabetes, cardiovascular disease, Alzheimer’s disease, and certain cancers. Among dietary contaminants, exposure to toxic heavy metals such as cadmium (Cd), lead (Pb), mercury (Hg), nickel (Ni), and arsenic (As) represents an underrecognized modifier of the oral microbial ecosystem. Even at low concentrations, these elements can disrupt microbial diversity, promote inflammation, and impair metabolic homeostasis. Saliva has recently emerged as a promising, non-invasive biofluid for monitoring nutritional status and early metabolic alterations induced by diet and environmental exposures. Salivary biomarkers, including metabolites, trace elements, and microbial signatures, offer potential for assessing the combined effects of diet, microbiota, and toxicant exposure. This review synthesizes current evidence on how diet influences the oral microbiota and modulates susceptibility to heavy metal toxicity. It also examines the potential of salivary biomarkers as integrative indicators of nutritional status and metabolic health, highlights methodological challenges limiting their validation, and outlines future research directions for developing saliva-based tools in personalized nutrition and precision health. Full article
(This article belongs to the Special Issue Probiotics and Prebiotics for Oral Health Improvement)
Show Figures

Figure 1

17 pages, 462 KB  
Article
Combined Salinity and Nano-TiO2 Stress in Posidonia oceanica and Caulerpa prolifera: Ecophysiological Responses and Recovery
by Irene Biagiotti, Serena Anselmi, Francesca Provenza, Eleonora Grazioli and Monia Renzi
J. Mar. Sci. Eng. 2026, 14(3), 250; https://doi.org/10.3390/jmse14030250 (registering DOI) - 25 Jan 2026
Abstract
This study investigated the combined effects of climate change-related salinity extremes and nanoparticle pollution on the seagrass Posidonia oceanica and the macroalga Caulerpa prolifera. Both species were exposed, individually and in co-occurrence, to different salinity regimes (34; 38 and 42 g kg [...] Read more.
This study investigated the combined effects of climate change-related salinity extremes and nanoparticle pollution on the seagrass Posidonia oceanica and the macroalga Caulerpa prolifera. Both species were exposed, individually and in co-occurrence, to different salinity regimes (34; 38 and 42 g kg−1) and to the emerging contaminant nano-TiO2 (0.7 mg L−1, environmentally relevant concentration, and 5.0 mg L−1, high-stress exposure). Biochemical and physiological responses were assessed at baseline (T0) and after 3, 6, and 12 days of exposure, followed by a 12-day recovery phase to evaluate post-stress resilience. This multifactorial design enabled the evaluation of interactive and cumulative effects of salinity shifts associated with climate change and nanoparticle contamination. Results showed that P. oceanica was particularly sensitive to nano-TiO2 at a concentration of42 g kg−1. Reduced photosynthetic performance was associated with enhanced oxidative stress and limited recovery capacity, suggesting potential long-term impacts on meadow persistence and ecosystem functioning. In contrast, C. prolifera exhibited higher tolerance and recovery efficiency, potentially gaining a competitive advantage under climate-induced environmental variability and increasing the risk of seagrass decline and community shifts in coastal ecosystems. These biochemical markers of early stress do not necessarily reflect direct population effects, particularly in long-lived foundation species such as Posidonia oceanica. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

16 pages, 836 KB  
Article
Subsequent Physical Activity–Related Musculoskeletal Injuries in University Students: The Role of Body Composition, Training Weekly Load, and Physical Activity Intensity
by Edyta Kopacka and Jarosław Domaradzki
J. Clin. Med. 2026, 15(3), 961; https://doi.org/10.3390/jcm15030961 (registering DOI) - 25 Jan 2026
Abstract
Background/Objectives: Subsequent musculoskeletal injuries are frequent among physically active young adults, yet the roles of body composition, training weekly load (TWL), and physical activity intensity in subsequent injury occurrence remain unclear. This study examined the associations of body composition indices and training-related [...] Read more.
Background/Objectives: Subsequent musculoskeletal injuries are frequent among physically active young adults, yet the roles of body composition, training weekly load (TWL), and physical activity intensity in subsequent injury occurrence remain unclear. This study examined the associations of body composition indices and training-related variables with subsequent injuries in university students and explored whether combining key markers from body composition and training exposure improves discrimination compared with single markers. Methods: The analysis included 418 students from two cohorts merged after confirming negligible between-cohort differences. Participants completed questionnaires on injury history and physical activity and underwent standardized anthropometric and body composition assessments. Intrinsic factors included fat mass index (FMI) and skeletal muscle mass index (SMI), while extrinsic factors comprised training weekly load (TWL), total physical activity (TPA), and vigorous activity percentage (VPA%). Subsequent injury (yes/no) served as the primary outcome. Injuries were assessed retrospectively over the preceding 12 months; subsequent injury was defined as ≥1 injury occurring after a previous (index) injury within this recall period. Analyses used univariate and multivariable logistic regression and exploratory Receiver Operating Characteristic (ROC) analyses for individual markers and combined models. Results: SMI was associated with subsequent injury (OR = 1.09, 95% CI: 1.03–1.15). TWL showed a weak, non-significant association (OR = 1.03, p = 0.307). Models combining SMI and TWL, including their interaction, did not meaningfully improve discrimination compared with SMI alone. ROC analyses indicated limited discriminatory ability across models (AUCs < 0.65), suggesting poor accuracy for identifying individuals with subsequent injury based on these markers. Conclusions: The examined body composition, training weekly load (TWL), and physical activity measures alone or combined showed limited discriminatory utility for subsequent injury status in this cross-sectional sample. These findings support the multifactorial nature of injury susceptibility and indicate that simple anthropometric or TWL-based measures are not suitable as standalone screening tools for subsequent injury in active university populations. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure 1

27 pages, 13307 KB  
Article
Synergistic Reinforcement and Multimodal Self-Sensing Properties of Hybrid Fiber-Reinforced Glass Sand ECC at Elevated Temperatures
by Lijun Ma, Meng Sun, Mingxuan Sun, Yunlong Zhang and Mo Liu
Polymers 2026, 18(3), 322; https://doi.org/10.3390/polym18030322 (registering DOI) - 25 Jan 2026
Abstract
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a [...] Read more.
To address the susceptibility of traditional concrete to explosive spalling and the lack of in situ damage-monitoring methods at high temperatures, in this study, a novel self-sensing, high-temperature-resistant Engineered Cementitious Composite (ECC) was developed. The matrix contains eco-friendly glass sand reinforced with a hybrid system of polypropylene fibers (PPFs) and carbon fibers (CFs). The evolution of mechanical properties and the multimodal self-sensing characteristics of the ECC were systematically investigated following thermal treatment from 20 °C to 800 °C. The results indicate that the hybrid system exhibits a significant synergistic effect: through PFFs’ pore-forming mechanism, internal vapor pressure is effectively released to mitigate spalling, while CFs provide residual strength compensation. Mechanically, the compressive strength increased by 51.32% (0.9% CF + 1.0% PPF) at 400 °C compared to ambient temperature, attributed to high-temperature-activated secondary hydration. Regarding self-sensing, the composite containing 1.1% CF and 1.5% PPF displayed superior thermosensitivity during heating (resistivity reduction of 49.1%), indicating potential for early fire warnings. Notably, pressure sensitivity was enhanced after high-temperature exposure, with the 0.7% CF + 0.5% PPF group achieving a Fractional Change in Resistivity of 31.1% at 600 °C. Conversely, flexural sensitivity presented a “thermally induced attenuation effect” primarily attributed to high-temperature-induced interfacial weakening. This study confirms that the “pore-formation” mechanism, combined with the reconstruction of the conductive network, governs the material’s macroscopic properties, providing a theoretical basis for green, intelligent, and fire-safe infrastructure. Full article
Show Figures

Figure 1

21 pages, 5733 KB  
Article
Compressive Stress–Strain Relationship of Recycled Coarse Aggregate Concrete After Sulfate Corrosion and High Temperature
by Ziliang Cai, Jin Wu, Xing Zhao, Xiaoxia Lu, Lifang Zhang, Yiyuan Wang and Haoxiang Luan
Materials 2026, 19(3), 477; https://doi.org/10.3390/ma19030477 (registering DOI) - 24 Jan 2026
Abstract
Structures or chemical engineering facilities can be subjected to the combined effects of sulfate corrosion and high temperature in the event of fire. This paper presents experimental results on compressive stress–strain relationships of recycled coarse aggregate concrete (RAC) and normal aggregate concrete (NAC) [...] Read more.
Structures or chemical engineering facilities can be subjected to the combined effects of sulfate corrosion and high temperature in the event of fire. This paper presents experimental results on compressive stress–strain relationships of recycled coarse aggregate concrete (RAC) and normal aggregate concrete (NAC) after dry–wet cycles of sulfate corrosion and high-temperature exposure. First, RAC and NAC specimens were subjected to 0, 20, 40, 60, 80, 100, and 120 dry–wet cycles of sulfate corrosion, respectively. Then, RAC and NAC specimens were subjected to 0 °C, 200 °C, 400 °C, 600 °C, and 800 °C temperature exposures, respectively. At last, RAC and NAC specimens were loaded by uniaxial compressive test. The test results show that the shapes of the stress–strain curves of RAC and NAC specimens after the 200 °C exposure and dry–wet cycles of sulfate corrosion were basically the same as those at room temperature. When the temperature was in the range of 200–400 °C, the elastic modulus and peak stress of RAC decreased with the number of dry–wet cycles of sulfate corrosion, while the corresponding peak strain gradually increased. When the temperature was lower than 400 °C, the number of dry–wet cycles of sulfate corrosion had a greater impact on the peak strain of RAC, while the temperature had a greater impact on the peak strain of RAC when the temperature exceeded 400 °C. After the temperature exceeded 400 °C, the elastic part in the ascending section of the stress–strain curve of RAC gradually shortened, and the peak point of the curve also shifted significantly to the lower right. The increase in peak strain of the RAC was larger than that of NAC. Based on the test results, a compressive stress–strain relationship model of RAC after sulfate corrosion and high temperature is established. Full article
(This article belongs to the Section Corrosion)
Show Figures

Figure 1

23 pages, 1800 KB  
Article
Adaptive Data-Driven Framework for Unsupervised Learning of Air Pollution in Urban Micro-Environments
by Abdelrahman Eid, Shehdeh Jodeh, Raghad Eid, Ghadir Hanbali, Abdelkhaleq Chakir and Estelle Roth
Atmosphere 2026, 17(2), 125; https://doi.org/10.3390/atmos17020125 (registering DOI) - 24 Jan 2026
Abstract
(1) Background: Urban traffic micro-environments show strong spatial and temporal variability. Short and intensive campaigns remain a practical approach for understanding exposure patterns in complex environments, but they need clear and interpretable summaries that are not limited to simple site or time segmentation. [...] Read more.
(1) Background: Urban traffic micro-environments show strong spatial and temporal variability. Short and intensive campaigns remain a practical approach for understanding exposure patterns in complex environments, but they need clear and interpretable summaries that are not limited to simple site or time segmentation. (2) Methods: We carried out a multi-site campaign across five traffic-affected micro-environments, where measurements covered several pollutants, gases, and meteorological variables. A machine learning framework was introduced to learn interpretable operational regimes as recurring multivariate states using clustering with stability checks, and then we evaluated their added explanatory value and cross-site transfer using a strict site hold-out design to avoid information leakage. (3) Results: Five regimes were identified, representing combinations of emission intensity and ventilation strength. Incorporating regime information increased the explanatory power of simple NO2 models and allowed the imputation of missing H2S day using regime-aware random forest with an R2 near 0.97. Regime labels remained identifiable using reduced sensor sets, while cross-site forecasting transferred well for NO2 but was limited for PM, indicating stronger local effects for particles. (4) Conclusions: Operational-regime learning can transform short multivariate campaigns into practical and interpretable summaries of urban air pollution, while supporting data recovery and cautious model transfer. Full article
(This article belongs to the Section Air Quality)
Show Figures

Figure 1

17 pages, 627 KB  
Article
Remediation Potential of Ulva lactuca for Europium: Removal Efficiency, Metal Partitioning and Stress Biomarkers
by Saereh Mohammadpour, Thainara Viana, Rosa Freitas, Eduarda Pereira and Bruno Henriques
J. Xenobiot. 2026, 16(1), 20; https://doi.org/10.3390/jox16010020 (registering DOI) - 24 Jan 2026
Abstract
As demand for rare earth elements (REEs) rises and environmental concerns about the extraction of primary resources grow, biological methods for removing these elements have gained significant attention as eco-friendly alternatives. This study assessed the ability of the green macroalga Ulva lactuca to [...] Read more.
As demand for rare earth elements (REEs) rises and environmental concerns about the extraction of primary resources grow, biological methods for removing these elements have gained significant attention as eco-friendly alternatives. This study assessed the ability of the green macroalga Ulva lactuca to remove europium (Eu) from aqueous solutions, evaluated the cellular partition of this element and investigated the toxicological effects of Eu exposure on its biochemical performance. U. lactuca was exposed to variable concentrations of Eu (ranging from 0.5 to 50 mg/L), and the amount of Eu in both the solution and algal biomass was analyzed after 72 h. The results showed that U. lactuca successfully removed 85 to 95% of Eu at low exposure concentrations (0.5–5.0 mg/L), with removal efficiencies of 75% and 47% at 10 and 50 mg/L, respectively. Europium accumulated in algal biomass in a concentration-dependent manner, reaching up to 22 mg/g dry weight (DW) at 50 mg/L. The distribution of Eu between extracellular and intracellular fractions of U. lactuca demonstrated that at higher concentrations (5.0–50 mg/L), 93–97% of Eu remained bound to the extracellular fraction, whereas intracellular uptake accounted for approximately 20% at the lowest concentration (0.5 mg/L). Biochemical analyses showed significant modulation of antioxidant defenses. Superoxide dismutase activity increased at 10 and 50 mg/L, while catalase and glutathione peroxidase activities were enhanced at lower concentrations (0.5–1.0 mg/L) and inhibited at higher exposures. Lipid peroxidation levels remained similar to controls at most concentrations, with no evidence of severe membrane damage except at the highest Eu level. Overall, the results demonstrate that U. lactuca is an efficient and resilient biological system for Eu removal, combining high sorption capacity with controlled biochemical responses. These findings highlight its potential application in environmentally sustainable remediation strategies for REE-contaminated waters, while also providing insights into Eu toxicity and cellular partitioning mechanisms in marine macroalgae. Full article
Show Figures

Graphical abstract

10 pages, 1503 KB  
Article
Perinatal Antibiotic Timing Impairs Maternal IgG Transfer via FcRn and Shapes the Neonatal Gut Microbiome in Mice
by Yanan Ding, Ali Liu, Bingbing Ma, Huiqun Zhang, Chunmei Zhang, Junmin Li, Jincheng Han and Chuanxin Shi
Microorganisms 2026, 14(2), 276; https://doi.org/10.3390/microorganisms14020276 (registering DOI) - 24 Jan 2026
Abstract
Perinatal antibiotic exposure poses a significant risk to maternal-offspring immune programming and infant gut microbiota development. This study investigated the time-specific effects of maternal cefoperazone sodium (CPZ) administration on IgG transfer and offspring gut microbiota in a murine model. Pregnant C57BL/6J mice were [...] Read more.
Perinatal antibiotic exposure poses a significant risk to maternal-offspring immune programming and infant gut microbiota development. This study investigated the time-specific effects of maternal cefoperazone sodium (CPZ) administration on IgG transfer and offspring gut microbiota in a murine model. Pregnant C57BL/6J mice were assigned to control (CON), gestational (G-CPZ), lactational (L-CPZ), and combined gestational/lactational (GL-CPZ) treatment groups. Results showed that all CPZ treatments significantly reduced IgG and its subtype levels in maternal serum, colostrum, and offspring serum (p < 0.05). Concurrently, mRNA expression of the neonatal Fc receptor (FcRn), critical for IgG transport, was downregulated in both maternal breast and offspring intestinal tissues (p < 0.05). Furthermore, 16S rRNA sequencing revealed that CPZ exposure altered offspring gut microbiota diversity and composition. Alpha diversity was reduced, particularly in the G-CPZ group, while beta diversity showed significant separation in L-CPZ and GL-CPZ groups (p < 0.05). Taxonomic shifts included decreased Bacteroidetes and Lactobacillus, and in the GL-CPZ group, a marked increase in Firmicutes and potential pathobionts like Enterococcus and Hungatella (p < 0.05). These findings demonstrate that perinatal antibiotic exposure, depending on its timing, impairs maternal-offspring IgG transfer via the FcRn pathway and induces distinct, persistent alterations in the offspring’s gut microbiota, which may have implications for neonatal immunity and long-term health. Full article
(This article belongs to the Section Gut Microbiota)
Show Figures

Figure 1

12 pages, 2080 KB  
Article
In Vivo Toxicity of Silver Nanoparticles in the Marine Rotifer Brachionus plicatilis: Integrating Metabolic Activity and Generation of Reactive Oxygen Species
by Thiago Obiedo Garcia, Analía Ale, Lucas Garcia Da Costa, Matheus de Castro Vieira, Victoria Dos Santos Monteiro, Martín Frederico Desimone and José María Monserrat
Coatings 2026, 16(2), 152; https://doi.org/10.3390/coatings16020152 (registering DOI) - 24 Jan 2026
Abstract
Silver nanoparticles (AgNPs) have been widely employed across various industrial, medical, and consumer applications due to their unique biocidal properties, raising concerns about their potential impact on biota such as planktonic microinvertebrates, which, in turn, necessitates the rapid development of in vivo nanotoxicological [...] Read more.
Silver nanoparticles (AgNPs) have been widely employed across various industrial, medical, and consumer applications due to their unique biocidal properties, raising concerns about their potential impact on biota such as planktonic microinvertebrates, which, in turn, necessitates the rapid development of in vivo nanotoxicological bioassays. Here, we combined physicochemical particle characterization with organismal responses to assess the in vivo nanotoxicity of chemically synthesized AgNPs in the marine rotifer Brachionus plicatilis (Ploimida, Brachionidae). Particles were fully characterized by dynamic light scattering (hydrodynamic diameter and polydispersity), zeta potential, transmission electron microscopy, and UV–Vis spectroscopy in both stock and exposure media. Rotifers were exposed to low AgNP concentrations: 0 (control), 2, and 20 µg/L. After a 24 h exposure, in vivo metabolic activity was quantified via resazurin reduction. Reactive oxygen species (ROS) were measured using the fluorescent probe H2DCF-DA (excitation 485 nm, emission 530 nm), quantified by fluorimeter and fluorescence microscopy. Results showed that AgNP exposure decreased ROS levels at both tested concentrations, a finding that can be linked to reduced aerobic metabolic activity in the rotifers. These findings demonstrate that B. plicatilis provides a rapid and sensitive in vivo toxicity assessment that integrates metabolic and ROS endpoints for nano-ecotoxicity evaluations. Full article
Show Figures

Figure 1

22 pages, 586 KB  
Article
Onco-Hem Connectome—Network-Based Phenotyping of Polypharmacy and Drug–Drug Interactions in Onco-Hematological Inpatients
by Sabina-Oana Vasii, Daiana Colibășanu, Florina-Diana Goldiș, Sebastian-Mihai Ardelean, Mihai Udrescu, Dan Iliescu, Daniel-Claudiu Malița, Ioana Ioniță and Lucreția Udrescu
Pharmaceutics 2026, 18(2), 146; https://doi.org/10.3390/pharmaceutics18020146 - 23 Jan 2026
Viewed by 25
Abstract
We introduce the Onco-Hem Connectome (OHC), a patient similarity network (PSN) designed to organize real-world hemato-oncology inpatients by exploratory phenotypes with potential clinical utility. Background: Polypharmacy and drug–drug interactions (DDIs) are pervasive in hemato-oncology and vary with comorbidity and treatment intensity. Methods: We [...] Read more.
We introduce the Onco-Hem Connectome (OHC), a patient similarity network (PSN) designed to organize real-world hemato-oncology inpatients by exploratory phenotypes with potential clinical utility. Background: Polypharmacy and drug–drug interactions (DDIs) are pervasive in hemato-oncology and vary with comorbidity and treatment intensity. Methods: We retrospectively analyzed a 2023 single-center cohort of 298 patients (1158 hospital episodes). Standardized feature vectors combined demographics, comorbidity (Charlson, Elixhauser), comorbidity polypharmacy score (CPS), aggregate DDI severity score (ADSS), diagnoses, and drug exposures. Cosine similarity defined edges (threshold ≥ 0.6) to build an undirected PSN; communities were detected with modularity-based clustering and profiled by drugs, diagnosis codes, and canonical chemotherapy regimens. Results: The OHC comprised 295 nodes and 4179 edges (density 0.096, modularity Q = 0.433), yielding five communities. Communities differed in comorbidity burden (Kruskal–Wallis ε2: Charlson 0.428, Elixhauser 0.650, age 0.125, all FDR-adjusted p < 0.001) but not in utilization (LOS, episodes) after FDR (ε2 ≈ 0.006–0.010). Drug enrichment (e.g., enoxaparin Δ = +0.13 in Community 2; vinblastine Δ = +0.09 in Community 3) and principal diagnoses (e.g., C90.0 23%, C91.1 15%, C83.3 15% in Community 1) supported distinct clinical phenotypes. Robustness analyses showed block-equalized features preserved communities (ARI 0.946; NMI 0.941). Community drug signatures and regimen signals aligned with diagnosis patterns, reflecting the integration of resource-use variables in the feature design. Conclusions: The Onco-Hem Connectome yields interpretable, phenotype-level insights that can inform supportive care bundles, DDI-aware prescribing, and stewardship, and it provides a foundation for phenotype-specific risk models (e.g., prolonged stay, infection, high-DDI episodes) in hemato-oncology. Full article
(This article belongs to the Special Issue Drug–Drug Interactions—New Perspectives)
Show Figures

Figure 1

39 pages, 578 KB  
Article
Generational and Economic Differences in the Effectiveness of Product Placement: A Predictive Approach Using CART Analysis
by David Vrtana and Lucia Duricova
Adm. Sci. 2026, 16(2), 61; https://doi.org/10.3390/admsci16020061 (registering DOI) - 23 Jan 2026
Viewed by 28
Abstract
Product placement has become an integral part of contemporary marketing communication, aiming to influence consumer attitudes and purchasing behaviour through subtle brand exposure in audiovisual media. Despite its growing prevalence, the effectiveness of product placement in shaping purchase intentions remains influenced by various [...] Read more.
Product placement has become an integral part of contemporary marketing communication, aiming to influence consumer attitudes and purchasing behaviour through subtle brand exposure in audiovisual media. Despite its growing prevalence, the effectiveness of product placement in shaping purchase intentions remains influenced by various demographic and behavioural factors. This study examines how demographic and economic factors jointly shape consumer responses to product placement and identifies the key determinants of consumers’ likelihood of purchasing products featured in audiovisual media. Data for the study were collected through a questionnaire survey and analysed using a combination of non-parametric subgroup tests, contingency-based association analysis, and machine-learning classification methods to assess both marginal group differences and multivariate interaction patterns. In addition to inferential testing, predictive models were developed using CART and alternative modelling techniques to verify the robustness of the identified predictors across analytical frameworks. The results reveal statistically significant generational and economic heterogeneity in awareness of product placement and purchase probability, highlighting the dominant role of age in shaping purchasing behaviour. The findings contribute to a deeper understanding of behavioural segmentation in audiovisual marketing and provide insights for optimising marketing communication strategies within audiovisual content. Full article
Show Figures

Figure 1

15 pages, 3507 KB  
Article
Online Monitoring of Aerodynamic Characteristics of Fruit Tree Leaves Based on Strain-Gage Sensors
by Yanlei Liu, Zhichong Wang, Xu Dong, Chenchen Gu, Fan Feng, Yue Zhong, Jian Song and Changyuan Zhai
Agronomy 2026, 16(3), 279; https://doi.org/10.3390/agronomy16030279 - 23 Jan 2026
Viewed by 52
Abstract
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the [...] Read more.
Orchard wind-assisted spraying technology relies on auxiliary airflow to disturb the canopy and improve droplet deposition uniformity. However, there are few effective means of quantitatively assessing the dynamic response of fruit tree leaves to airflow or the changes in airflow patterns within the canopy in real time. To address this, this study proposed an online monitoring method for the aerodynamic characteristics of fruit tree leaves using strain gauge sensors. The flexible strain gauge was affixed to the midribs of leaves from peach, pear and apple trees. Leaf deformations were captured with high-speed video recording (100 fps) alongside electrical signals in controlled wind fields. Bartlett low-pass filtering and Fourier transform were used to extract frequency-domain features spanning between 0 and 50 Hz. The AdaBoost decision tree model was used to evaluate classification performance across frequency bands. The results demonstrated high accuracy in identifying wind exposure (98%) for pear leaf and classifying the three leaf types (κ = 0.98) within the 4–6 Hz band. A comparison with the frame analysis of high-speed video recordings revealed a time error of 2 s in model predictions. This study confirms that strain gauge sensors combined with machine learning could efficiently monitor fruit tree leaf responses to external airflow in real time. It provides novel insights for optimizing wind-assisted spray parameters, reconstructing internal canopy wind field distributions and achieving precise pesticide application. Full article
(This article belongs to the Special Issue Advances in Precision Pesticide Spraying Technology and Equipment)
Show Figures

Figure 1

13 pages, 5817 KB  
Case Report
Forensic Diagnostics of Cigarette Burns in a Case of Domestic Abuse: Clinical Evidence and Ex-Vivo Tests Using Porcine Skin
by Matteo Antonio Sacco, Lucia Tarda, Saverio Gualtieri, Maria Cristina Verrina and Isabella Aquila
Forensic Sci. 2026, 6(1), 7; https://doi.org/10.3390/forensicsci6010007 (registering DOI) - 23 Jan 2026
Viewed by 24
Abstract
Background: Cigarette burns represent a well-established forensic indicator of inflicted injury, frequently encountered in cases of domestic violence. Clinical significance: Their morphological consistency and anatomical distribution offer valuable elements for differentiating between intentional and accidental trauma. Case Presentation: In this study, we report [...] Read more.
Background: Cigarette burns represent a well-established forensic indicator of inflicted injury, frequently encountered in cases of domestic violence. Clinical significance: Their morphological consistency and anatomical distribution offer valuable elements for differentiating between intentional and accidental trauma. Case Presentation: In this study, we report the case of a 40-year-old woman who presented with multiple cutaneous lesions attributed to repeated assaults by her intimate partner. The forensic medical examination revealed five discrete scars characterized by sharply demarcated borders, circular to oval shapes, and dimensions ranging from 0.7 to 1.5 cm. These lesions were anatomically located in regions not typically accessible for self-infliction. To reinforce the diagnostic interpretation and assess reproducibility, a controlled experimental protocol was conducted using porcine skin matrices. Cigarette burns were recreated under variable conditions of contact pressure and exposure duration. The lesions produced on the biological substrate exhibited morphological features consistent with those observed in the patient, suggesting compatibility with cigarette-induced thermal injury. Conclusions: These findings provide circumstantial support for the forensic interpretation but must be considered within the limitations of the experimental model. This integrated approach underscores the relevance of combining clinical forensic documentation with experimental validation to support medico-legal conclusions in cases of suspected interpersonal violence. Full article
Show Figures

Figure 1

28 pages, 3376 KB  
Article
Perfluorocarbon Nanoemulsions for Simultaneous Delivery of Oxygen and Antioxidants During Machine Perfusion Supported Organ Preservation
by Smith Patel, Paromita Paul Pinky, Amit Chandra Das, Joshua S. Copus, Chip Aardema, Caitlin Crelli, Anneliese Troidle, Eric Lambert, Rebecca McCallin, Vidya Surti, Carrie DiMarzio, Varun Kopparthy and Jelena M. Janjic
Pharmaceutics 2026, 18(2), 143; https://doi.org/10.3390/pharmaceutics18020143 - 23 Jan 2026
Viewed by 100
Abstract
Background: Solid organ transplantation (SOT) is a life-saving treatment for patients with end-stage diseases and/or organ failure. However, access to healthy organs is often limited by challenges in organ preservation. Furthermore, upon transplantation, ischemia–reperfusion injury (IRI) can lead to increased organ rejection or [...] Read more.
Background: Solid organ transplantation (SOT) is a life-saving treatment for patients with end-stage diseases and/or organ failure. However, access to healthy organs is often limited by challenges in organ preservation. Furthermore, upon transplantation, ischemia–reperfusion injury (IRI) can lead to increased organ rejection or graft failures. The work presented aims to address both challenges using an innovative nanomedicine platform for simultaneous drug and oxygen delivery. In recent studies, resveratrol (RSV), a natural antioxidant, anti-inflammatory, and reactive oxygen species (ROS) scavenging agent, has been reported to protect against IRI by inhibiting ferroptosis. Here, we report the design, development, and scalable manufacturing of the first-in-class dual-function perfluorocarbon-nanoemulsion (PFC-NE) perfusate for simultaneous oxygen and antioxidant delivery, equipped with a near-infrared fluorescence (NIRF) reporter, longitudinal, non-invasive NIRF imaging of perfusate flow through organs/tissues during machine perfusion. Methods: A Quality-by-Design (QbD)-guided optimization was used to formulate a triphasic PFC-NE with 30% w/v perfluorooctyl bromide (PFOB). Drug-free perfluorocarbon nanoemulsions (DF-NEs) and RSV-loaded nanoemulsions (RSV-NEs) were produced at 250–1000 mL scales using M110S, LM20, and M110P microfluidizers. Colloidal attributes, fluorescence stability, drug loading, and RSV release were evaluated using DLS, NIRF imaging, and HPLC, respectively. PFC-NE oxygen loading and release kinetics were evaluated during perfusion through the BMI OrganBank® machine with the MEDOS HILITE® oxygenator and by controlled flow of oxygen. The in vitro antioxidant activity of RSV-NE was measured using the oxygen radical scavenging antioxidant capacity (ORAC) assay. The cytotoxicity and ferroptosis inhibition of RSV-NE were evaluated in RAW 264.7 macrophages. Results: PFC-NE batches maintained a consistent droplet size (90–110 nm) and low polydispersity index (<0.3) across all scales, with high reproducibility and >80% PFOB loading. Both DF-NE and RSV-NE maintained colloidal and fluorescence stability under centrifugation, serum exposure at body temperature, filtration, 3-month storage, and oxygenation. Furthermore, RSV-NE showed high drug loading and sustained release (63.37 ± 2.48% at day 5) compared with the rapid release observed in free RSV solution. In perfusion studies, the oxygenation capacity of PFC-NE consistently exceeded that of University of Wisconsin (UW) solution and demonstrated stable, linear gas responsiveness across flow rates and FiO2 (fraction of inspired oxygen) inputs. RSV-NE displayed strong antioxidant activity and concentration-dependent inhibition of free radicals. RSV-NE maintained higher cell viability and prevented RAS-selective lethal compound 3 (RSL3)-induced ferroptosis in murine macrophages (macrophage cell line RAW 264.7), compared to the free RSV solution. Morphological and functional protection against RSL3-induced ferroptosis was confirmed microscopically. Conclusions: This study establishes a robust and scalable PFC-NE platform integrating antioxidant and oxygen delivery, along with NIRF-based non-invasive live monitoring of organ perfusion during machine-supported preservation. These combined features position PFC-NE as a promising next-generation acellular perfusate for preventing IRI and improving graft viability during ex vivo machine perfusion. Full article
(This article belongs to the Special Issue Methods of Potentially Improving Drug Permeation and Bioavailability)
Show Figures

Graphical abstract

Back to TopTop