Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (18)

Search Parameters:
Keywords = exponentiated Weibull class of distributions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 907 KiB  
Article
A New Exponentiated Power Distribution for Modeling Censored Data with Applications to Clinical and Reliability Studies
by Kenechukwu F. Aforka, H. E. Semary, Sidney I. Onyeagu, Harrison O. Etaga, Okechukwu J. Obulezi and A. S. Al-Moisheer
Symmetry 2025, 17(7), 1153; https://doi.org/10.3390/sym17071153 - 18 Jul 2025
Viewed by 851
Abstract
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and [...] Read more.
This paper presents the exponentiated power shanker (EPS) distribution, a fresh three-parameter extension of the standard Shanker distribution with the ability to extend a wider class of data behaviors, from right-skewed and heavy-tailed phenomena. The structural properties of the distribution, namely complete and incomplete moments, entropy, and the moment generating function, are derived and examined in a formal manner. Maximum likelihood estimation (MLE) techniques are used for estimation of parameters, as well as a Monte Carlo simulation study to account for estimator performance across varying sample sizes and parameter values. The EPS model is also generalized to a regression paradigm to include covariate data, whose estimation is also conducted via MLE. Practical utility and flexibility of the EPS distribution are demonstrated through two real examples: one for the duration of repairs and another for HIV/AIDS mortality in Germany. Comparisons with some of the existing distributions, i.e., power Zeghdoudi, power Ishita, power Prakaamy, and logistic-Weibull, are made through some of the goodness-of-fit statistics such as log-likelihood, AIC, BIC, and the Kolmogorov–Smirnov statistic. Graphical plots, including PP plots, QQ plots, TTT plots, and empirical CDFs, further confirm the high modeling capacity of the EPS distribution. Results confirm the high goodness-of-fit and flexibility of the EPS model, making it a very good tool for reliability and biomedical modeling. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

18 pages, 420 KiB  
Article
Odd Generalized Exponential Kumaraswamy–Weibull Distribution
by Sandra S. Ferreira and Dário Ferreira
Mathematics 2025, 13(7), 1136; https://doi.org/10.3390/math13071136 - 30 Mar 2025
Cited by 1 | Viewed by 326
Abstract
A novel odd generalized exponential Kumaraswamy–Weibull distribution is defined. This distribution is distinguished by its capacity to capture a wider class of hazard functions than the standard Weibull models, such as non-monotonic and bathtub-shaped hazards. This is an advancement in distribution theory because [...] Read more.
A novel odd generalized exponential Kumaraswamy–Weibull distribution is defined. This distribution is distinguished by its capacity to capture a wider class of hazard functions than the standard Weibull models, such as non-monotonic and bathtub-shaped hazards. This is an advancement in distribution theory because it provides a new simplified form of the distribution with a much more complicated behavior, which results in better statistical inference and detail in survival analysis and other related fields. Considerations on the identifiability of the proposed distribution are addressed, emphasizing the distinct contributions of its parameters and their roles in model behavior characterization. One real dataset from a survival experiment is considered, highlighting the practical implications of our distribution in the context of reliability. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

25 pages, 445 KiB  
Article
Reliability Class Testing and Hypothesis Specification: NBRULC−t Characterizations with Applications for Medical and Engineering Data Modeling
by Hana Alqifari, Mohamed S. Eliwa, Walid B. H. Etman, Mahmoud El-Morshedy, Laila A. Al-Essa and Rashad M. EL-Sagheer
Axioms 2023, 12(5), 414; https://doi.org/10.3390/axioms12050414 - 24 Apr 2023
Cited by 5 | Viewed by 2079
Abstract
Due to the complexity of the data being generated day in and day out in many practical domains, as a result of the development of scales for rating the success or failure of reliability, a new domain of reliability called the classes of [...] Read more.
Due to the complexity of the data being generated day in and day out in many practical domains, as a result of the development of scales for rating the success or failure of reliability, a new domain of reliability called the classes of life and determinant probability distributions has been presented. This article introduces novel statistical probability models for the reliability class of life test under different reliability processes in the age range t. Several probabilistic properties and features were derived and rigorously screened to test the new reliability class. According to the U-statistic, a novel hypothesis test was created to evaluate the exponentiality property. The comparative efficiency of the test according to Pitman’s asymptotic efficiency was examined and compared with other reliability classes. To prove the superiority of the new reliability class, some probability models were utilized, including the Weibull, Makeham, gamma, and linear failure rate models. Moreover, critical point simulations of the null Monte Carlo distribution and some applications of the censored and uncensored data were implemented to validate the class test listed by the reliability analysis. Full article
(This article belongs to the Special Issue Mathematical and Statistical Methods and Their Applications)
Show Figures

Figure 1

16 pages, 346 KiB  
Article
Bounds for the Rate of Convergence in the Generalized Rényi Theorem
by Victor Korolev
Mathematics 2022, 10(22), 4252; https://doi.org/10.3390/math10224252 - 14 Nov 2022
Cited by 5 | Viewed by 1854
Abstract
In the paper, an overview is presented of the results on the convergence rate bounds in limit theorems concerning geometric random sums and their generalizations to mixed Poisson random sums, including the case where the mixing law is itself a mixed exponential distribution. [...] Read more.
In the paper, an overview is presented of the results on the convergence rate bounds in limit theorems concerning geometric random sums and their generalizations to mixed Poisson random sums, including the case where the mixing law is itself a mixed exponential distribution. The main focus is on the upper bounds for the Zolotarev ζ-metric as the distance between the pre-limit and limit laws. New results are presented that extend existing estimates of the rate of convergence of geometric random sums (in the well-known Rényi theorem) to a considerably more general class of random indices whose distributions are mixed Poisson, including generalized negative binomial (e.g., Weibull-mixed Poisson), Pareto-type (Lomax)-mixed Poisson, exponential power-mixed Poisson, Mittag-Leffler-mixed Poisson, and one-sided Linnik-mixed Poisson distributions. A transfer theorem is proven that makes it possible to obtain upper bounds for the rate of convergence in the law of large numbers for mixed Poisson random sums with mixed exponential mixing distribution from those for geometric random sums (that is, from the convergence rate estimates in the Rényi theorem). Simple explicit bounds are obtained for ζ-metrics of the first and second orders. An estimate is obtained for the stability of representation of the Mittag-Leffler distribution as a geometric convolution (that is, as the distribution of a geometric random sum). Full article
24 pages, 12043 KiB  
Article
A New Modified Exponent Power Alpha Family of Distributions with Applications in Reliability Engineering
by Zubir Shah, Dost Muhammad Khan, Zardad Khan, Muhammad Shafiq and Jin-Ghoo Choi
Processes 2022, 10(11), 2250; https://doi.org/10.3390/pr10112250 - 1 Nov 2022
Cited by 13 | Viewed by 2154
Abstract
Probability distributions perform a very significant role in the field of applied sciences, particularly in the field of reliability engineering. Engineering data sets are either negatively or positively skewed and/or symmetrical. Therefore, a flexible distribution is required that can handle such data sets. [...] Read more.
Probability distributions perform a very significant role in the field of applied sciences, particularly in the field of reliability engineering. Engineering data sets are either negatively or positively skewed and/or symmetrical. Therefore, a flexible distribution is required that can handle such data sets. In this paper, we propose a new family of lifetime distributions to model the aforementioned data sets. This proposed family is known as a “New Modified Exponent Power Alpha Family of distributions” or in short NMEPA. The proposed family is obtained by applying the well-known T-X approach together with the exponential distribution. A three-parameter-specific sub-model of the proposed method termed a “new Modified Exponent Power Alpha Weibull distribution” (NMEPA-Wei for short), is discussed in detail. The various mathematical properties including hazard rate function, ordinary moments, moment generating function, and order statistics are also discussed. In addition, we adopted the method of maximum likelihood estimation (MLE) for estimating the unknown model parameters. A brief Monte Carlo simulation study is conducted to evaluate the performance of the MLE based on bias and mean square errors. A comprehensive study is also provided to assess the proposed family of distributions by analyzing two real-life data sets from reliability engineering. The analytical goodness of fit measures of the proposed distribution are compared with well-known distributions including (i) APT-Wei (alpha power transformed Weibull), (ii) Ex-Wei (exponentiated-Weibull), (iii) classical two-parameter Weibull, (iv) Mod-Wei (modified Weibull), and (v) Kumar-Wei (Kumaraswamy–Weibull) distributions. The proposed class of distributions is expected to produce many more new distributions for fitting monotonic and non-monotonic data in the field of reliability analysis and survival analysis. Full article
(This article belongs to the Special Issue Reliability and Engineering Applications)
Show Figures

Figure 1

34 pages, 5402 KiB  
Article
Amoud Class for Hazard-Based and Odds-Based Regression Models: Application to Oncology Studies
by Abdisalam Hassan Muse, Samuel Mwalili, Oscar Ngesa, Christophe Chesneau, Huda M. Alshanbari and Abdal-Aziz H. El-Bagoury
Axioms 2022, 11(11), 606; https://doi.org/10.3390/axioms11110606 - 1 Nov 2022
Cited by 8 | Viewed by 4763
Abstract
The purpose of this study is to propose a novel, general, tractable, fully parametric class for hazard-based and odds-based models of survival regression for the analysis of censored lifetime data, named as the “Amoud class (AM)” of models. This generality was attained using [...] Read more.
The purpose of this study is to propose a novel, general, tractable, fully parametric class for hazard-based and odds-based models of survival regression for the analysis of censored lifetime data, named as the “Amoud class (AM)” of models. This generality was attained using a structure resembling the general class of hazard-based regression models, with the addition that the baseline odds function is multiplied by a link function. The class is broad enough to cover a number of widely used models, including the proportional hazard model, the general hazard model, the proportional odds model, the general odds model, the accelerated hazards model, the accelerated odds model, and the accelerated failure time model, as well as combinations of these. The proposed class incorporates the analysis of crossing survival curves. Based on a versatile parametric distribution (generalized log-logistic) for the baseline hazard, we introduced a technique for applying these various hazard-based and odds-based regression models. This distribution allows us to cover the most common hazard rate shapes in practice (decreasing, constant, increasing, unimodal, and reversible unimodal), and various common survival distributions (Weibull, Burr-XII, log-logistic, exponential) are its special cases. The proposed model has good inferential features, and it performs well when different information criteria and likelihood ratio tests are used to select hazard-based and odds-based regression models. The proposed model’s utility is demonstrated by an application to a right-censored lifetime dataset with crossing survival curves. Full article
(This article belongs to the Special Issue Computational Statistics & Data Analysis)
Show Figures

Figure 1

22 pages, 3889 KiB  
Article
Arctan-Based Family of Distributions: Properties, Survival Regression, Bayesian Analysis and Applications
by Omid Kharazmi, Morad Alizadeh, Javier E. Contreras-Reyes and Hossein Haghbin
Axioms 2022, 11(8), 399; https://doi.org/10.3390/axioms11080399 - 12 Aug 2022
Cited by 8 | Viewed by 2745
Abstract
In this paper, a new class of the continuous distributions is established via compounding the arctangent function with a generalized log-logistic class of distributions. Some structural properties of the suggested model such as distribution function, hazard function, quantile function, asymptotics and a useful [...] Read more.
In this paper, a new class of the continuous distributions is established via compounding the arctangent function with a generalized log-logistic class of distributions. Some structural properties of the suggested model such as distribution function, hazard function, quantile function, asymptotics and a useful expansion for the new class are given in a general setting. Two special cases of this new class are considered by employing Weibull and normal distributions as the parent distribution. Further, we derive a survival regression model based on a sub-model with Weibull parent distribution and then estimate the parameters of the proposed regression model making use of Bayesian and frequentist approaches. We consider seven loss functions, namely the squared error, modified squared error, weighted squared error, K-loss, linear exponential, general entropy, and precautionary loss functions for Bayesian discussion. Bayesian numerical results include a Bayes estimator, associated posterior risk, credible and highest posterior density intervals are provided. In order to explore the consistency property of the maximum likelihood estimators, a simulation study is presented via Monte Carlo procedure. The parameters of two sub-models are estimated with maximum likelihood and the usefulness of these sub-models and a proposed survival regression model is examined by means of three real datasets. Full article
Show Figures

Figure 1

26 pages, 1847 KiB  
Article
Statistical Inference on a Finite Mixture of Exponentiated Kumaraswamy-G Distributions with Progressive Type II Censoring Using Bladder Cancer Data
by Refah Alotaibi, Lamya A. Baharith, Ehab M. Almetwally, Mervat Khalifa, Indranil Ghosh and Hoda Rezk
Mathematics 2022, 10(15), 2800; https://doi.org/10.3390/math10152800 - 7 Aug 2022
Cited by 2 | Viewed by 1764
Abstract
A new family of distributions called the mixture of the exponentiated Kumaraswamy-G (henceforth, in short, ExpKum-G) class is developed. We consider Weibull distribution as the baseline (G) distribution to propose and study this special sub-model, which we call the exponentiated Kumaraswamy Weibull distribution. [...] Read more.
A new family of distributions called the mixture of the exponentiated Kumaraswamy-G (henceforth, in short, ExpKum-G) class is developed. We consider Weibull distribution as the baseline (G) distribution to propose and study this special sub-model, which we call the exponentiated Kumaraswamy Weibull distribution. Several useful statistical properties of the proposed ExpKum-G distribution are derived. Under the classical paradigm, we consider the maximum likelihood estimation under progressive type II censoring to estimate the model parameters. Under the Bayesian paradigm, independent gamma priors are proposed to estimate the model parameters under progressive type II censored samples, assuming several loss functions. A simulation study is carried out to illustrate the efficiency of the proposed estimation strategies under both classical and Bayesian paradigms, based on progressively type II censoring models. For illustrative purposes, a real data set is considered that exhibits that the proposed model in the new class provides a better fit than other types of finite mixtures of exponentiated Kumaraswamy-type models. Full article
(This article belongs to the Special Issue New Advances in Distribution Theory and Its Applications)
Show Figures

Figure 1

28 pages, 2265 KiB  
Article
Modeling to Factor Productivity of the United Kingdom Food Chain: Using a New Lifetime-Generated Family of Distributions
by Salem A. Alyami, Ibrahim Elbatal, Naif Alotaibi, Ehab M. Almetwally and Mohammed Elgarhy
Sustainability 2022, 14(14), 8942; https://doi.org/10.3390/su14148942 - 21 Jul 2022
Cited by 41 | Viewed by 1786
Abstract
This article proposes a new lifetime-generated family of distributions called the sine-exponentiated Weibull-H (SEW-H) family, which is derived from two well-established families of distributions of entirely different nature: the sine-G (S-G) and the exponentiated Weibull-H (EW-H) families. Three new special models of this [...] Read more.
This article proposes a new lifetime-generated family of distributions called the sine-exponentiated Weibull-H (SEW-H) family, which is derived from two well-established families of distributions of entirely different nature: the sine-G (S-G) and the exponentiated Weibull-H (EW-H) families. Three new special models of this family include the sine-exponentiated Weibull exponential (SEWEx), the sine-exponentiated Weibull Rayleigh (SEWR) and sine-exponentiated Weibull Burr X (SEWBX) distributions. The useful expansions of the probability density function (pdf) and cumulative distribution function (cdf) are derived. Statistical properties are obtained, including quantiles (QU), moments (MO), incomplete MO (IMO), and order statistics (OS) are computed. Six numerous methods of estimation are produced to estimate the parameters: maximum likelihood (ML), least-square (LS), a maximum product of spacing (MPRSP), weighted LS (WLS), Cramér–von Mises (CRVM), and Anderson–Darling (AD). The performance of the estimation approaches is investigated using Monte Carlo simulations. The total factor productivity (TFP) of the United Kingdom food chain is an indication of the efficiency and competitiveness of the food sector in the United Kingdom. TFP growth suggests that the industry is becoming more efficient. If TFP of the food chain in the United Kingdom grows more rapidly than in other nations, it suggests that the sector is becoming more competitive. TFP, also known as multi-factor productivity in economic theory, estimates the fraction of output that cannot be explained by traditionally measured inputs of labor and capital employed in production. In this paper, we use five real datasets to show the relevance and flexibility of the suggested family. The first dataset represents the United Kingdom food chain from 2000 to 2019, whereas the second dataset represents the food and drink wholesaling in the United Kingdom from 2000 to 2019 as one factor of FTP; the third dataset contains the tensile strength of single carbon fibers (in GPa); the fourth dataset is often called the breaking stress of carbon fiber dataset; the fifth dataset represents the TFP growth of agricultural production for thirty-seven African countries from 2001–2010. The new suggested distribution is very flexible and it outperforms many known distributions. Full article
Show Figures

Figure 1

21 pages, 2820 KiB  
Article
Type II Half-Logistic Odd Fréchet Class of Distributions: Statistical Theory and Applications
by Salem A. Alyami, Moolath Girish Babu, Ibrahim Elbatal, Naif Alotaibi and Mohammed Elgarhy
Symmetry 2022, 14(6), 1222; https://doi.org/10.3390/sym14061222 - 13 Jun 2022
Cited by 26 | Viewed by 2314
Abstract
A new class of statistical distributions called the Type II half-Logistic odd Fréchet-G class is proposed. The new class is a continuation of the unusual Fréchet class. This class is analytically feasible and could be used to evaluate real-world data effectively. The new [...] Read more.
A new class of statistical distributions called the Type II half-Logistic odd Fréchet-G class is proposed. The new class is a continuation of the unusual Fréchet class. This class is analytically feasible and could be used to evaluate real-world data effectively. The new suggested class of distributions has many new symmetrical and asymmetrical sub-models. We propose new four sub-models from the new class of distributions which are called Type II half-Logistic odd Fréchet exponential distribution, Type II half-Logistic odd Fréchet Rayleigh distribution, Type II half-Logistic odd Fréchet Weibull distribution, and Type II half-Logistic odd Fréchet Lindley distribution. Some statistical features of Type II half-Logistic odd Fréchet-G class such as ordinary moments (ORMs), incomplete moments (INMs), moment generating function (MGEF), residual life (REL), and reversed residual life (RREL) functions, and Rényi entropy (RéE) are derived. Six methods of estimation such as maximum likelihood, least-square, a maximum product of spacing, weighted least square, Cramér-von Mises, and Anderson–Darling are produced to estimate the parameters. To test the six estimation methods’ performance, a simulation study is conducted. Four real-world data sets are utilized to highlight the importance and applicability of the proposed method. Full article
Show Figures

Figure 1

25 pages, 6977 KiB  
Article
Truncated Cauchy Power Weibull-G Class of Distributions: Bayesian and Non-Bayesian Inference Modelling for COVID-19 and Carbon Fiber Data
by Naif Alotaibi, Ibrahim Elbatal, Ehab M. Almetwally, Salem A. Alyami, A. S. Al-Moisheer and Mohammed Elgarhy
Mathematics 2022, 10(9), 1565; https://doi.org/10.3390/math10091565 - 6 May 2022
Cited by 44 | Viewed by 2182
Abstract
The Truncated Cauchy Power Weibull-G class is presented as a new family of distributions. Unique models for this family are presented in this paper. The statistical aspects of the family are explored, including the expansion of the density function, moments, incomplete moments (IMOs), [...] Read more.
The Truncated Cauchy Power Weibull-G class is presented as a new family of distributions. Unique models for this family are presented in this paper. The statistical aspects of the family are explored, including the expansion of the density function, moments, incomplete moments (IMOs), residual life and reversed residual life functions, and entropy. The maximum likelihood (ML) and Bayesian estimations are developed based on the Type-II censored sample. The properties of Bayes estimators of the parameters are studied under different loss functions (squared error loss function and LINEX loss function). To create Markov-chain Monte Carlo samples from the posterior density, the Metropolis–Hasting technique was used with posterior density. Using non-informative and informative priors, a full simulation technique was carried out. The maximum likelihood estimator was compared to the Bayesian estimators using Monte Carlo simulation. To compare the performances of the suggested estimators, a simulation study was carried out. Real-world data sets, such as strength measured in GPA for single carbon fibers and impregnated 1000-carbon fiber tows, maximum stress per cycle at 31,000 psi, and COVID-19 data were used to demonstrate the relevance and flexibility of the suggested method. The suggested models are then compared to comparable models such as the Marshall–Olkin alpha power exponential, the extended odd Weibull exponential, the Weibull–Rayleigh, the Weibull–Lomax, and the exponential Lomax distributions. Full article
(This article belongs to the Special Issue Advances in Statistical Decision Theory and Applications)
Show Figures

Figure 1

18 pages, 389 KiB  
Article
A New Family of Continuous Distributions: Properties and Estimation
by Mohamed Hussein, Howaida Elsayed and Gauss M. Cordeiro
Symmetry 2022, 14(2), 276; https://doi.org/10.3390/sym14020276 - 29 Jan 2022
Cited by 14 | Viewed by 3041
Abstract
We introduce a new flexible modified alpha power (MAP) family of distributions by adding two parameters to a baseline model. Some of its mathematical properties are addressed. We show empirically that the new family is a good competitor to the Beta-F and Kumaraswamy-F [...] Read more.
We introduce a new flexible modified alpha power (MAP) family of distributions by adding two parameters to a baseline model. Some of its mathematical properties are addressed. We show empirically that the new family is a good competitor to the Beta-F and Kumaraswamy-F classes, which have been widely applied in several areas. A new extension of the exponential distribution, called the modified alpha power exponential (MAPE) distribution, is defined by applying the MAP transformation to the exponential distribution. Some properties and maximum likelihood estimates are provided for this distribution. We analyze three real datasets to compare the flexibility of the MAPE distribution to the exponential, Weibull, Marshall–Olkin exponential and alpha power exponential distributions. Full article
Show Figures

Figure 1

22 pages, 470 KiB  
Article
On a Special Weighted Version of the Odd Weibull-Generated Class of Distributions
by Zichuan Mi, Saddam Hussain and Christophe Chesneau
Math. Comput. Appl. 2021, 26(3), 62; https://doi.org/10.3390/mca26030062 - 29 Aug 2021
Cited by 3 | Viewed by 2928
Abstract
In recent advances in distribution theory, the Weibull distribution has often been used to generate new classes of univariate continuous distributions. They find many applications in important disciplines such as medicine, biology, engineering, economics, informatics, and finance; their usefulness is synonymous with success. [...] Read more.
In recent advances in distribution theory, the Weibull distribution has often been used to generate new classes of univariate continuous distributions. They find many applications in important disciplines such as medicine, biology, engineering, economics, informatics, and finance; their usefulness is synonymous with success. In this study, a new Weibull-generated-type class is presented, called the weighted odd Weibull generated class. Its definition is based on a cumulative distribution function, which combines a specific weighted odd function with the cumulative distribution function of the Weibull distribution. This weighted function was chosen to make the new class a real alternative in the first-order stochastic sense to two of the most famous existing Weibull generated classes: the Weibull-G and Weibull-H classes. Its mathematical properties are provided, leading to the study of various probabilistic functions and measures of interest. In a consequent part of the study, the focus is on a special three-parameter survival distribution of the new class defined with the standard exponential distribution as a reference. The exploratory analysis reveals a high level of adaptability of the corresponding probability density and hazard rate functions; the curves of the probability density function can be decreasing, reversed N shaped, and unimodal with heterogeneous skewness and tail weight properties, and the curves of the hazard rate function demonstrate increasing, decreasing, almost constant, and bathtub shapes. These qualities are often required for diverse data fitting purposes. In light of the above, the corresponding data fitting methodology has been developed; we estimate the model parameters via the likelihood function maximization method, the efficiency of which is proven by a detailed simulation study. Then, the new model is applied to engineering and environmental data, surpassing several generalizations or extensions of the exponential model, including some derived from established Weibull-generated classes; the Weibull-G and Weibull-H classes are considered. Standard criteria give credit to the proposed model; for the considered data, it is considered the best. Full article
Show Figures

Figure 1

18 pages, 1383 KiB  
Article
Survival and Reliability Analysis with an Epsilon-Positive Family of Distributions with Applications
by Perla Celis, Rolando de la Cruz, Claudio Fuentes and Héctor W. Gómez
Symmetry 2021, 13(5), 908; https://doi.org/10.3390/sym13050908 - 20 May 2021
Cited by 2 | Viewed by 2397
Abstract
We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon–positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. [...] Read more.
We introduce a new class of distributions called the epsilon–positive family, which can be viewed as generalization of the distributions with positive support. The construction of the epsilon–positive family is motivated by the ideas behind the generation of skew distributions using symmetric kernels. This new class of distributions has as special cases the exponential, Weibull, log–normal, log–logistic and gamma distributions, and it provides an alternative for analyzing reliability and survival data. An interesting feature of the epsilon–positive family is that it can viewed as a finite scale mixture of positive distributions, facilitating the derivation and implementation of EM–type algorithms to obtain maximum likelihood estimates (MLE) with (un)censored data. We illustrate the flexibility of this family to analyze censored and uncensored data using two real examples. One of them was previously discussed in the literature; the second one consists of a new application to model recidivism data of a group of inmates released from the Chilean prisons during 2007. The results show that this new family of distributions has a better performance fitting the data than some common alternatives such as the exponential distribution. Full article
Show Figures

Figure 1

28 pages, 1105 KiB  
Article
A New Kumaraswamy Generalized Family of Distributions with Properties, Applications, and Bivariate Extension
by Muhammad H. Tahir, Muhammad Adnan Hussain, Gauss M. Cordeiro, M. El-Morshedy and M. S. Eliwa
Mathematics 2020, 8(11), 1989; https://doi.org/10.3390/math8111989 - 7 Nov 2020
Cited by 40 | Viewed by 4840
Abstract
For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of distributions through a new generator which could be an alternate to the Kumaraswamy-G family proposed earlier by Cordeiro and de Castro in 2011. This new generator can also be used [...] Read more.
For bounded unit interval, we propose a new Kumaraswamy generalized (G) family of distributions through a new generator which could be an alternate to the Kumaraswamy-G family proposed earlier by Cordeiro and de Castro in 2011. This new generator can also be used to develop alternate G-classes such as beta-G, McDonald-G, Topp-Leone-G, Marshall-Olkin-G, and Transmuted-G for bounded unit interval. Some mathematical properties of this new family are obtained and maximum likelihood method is used for the estimation of G-family parameters. We investigate the properties of one special model called the new Kumaraswamy-Weibull (NKwW) distribution. Parameters of NKwW model are estimated by using maximum likelihood method, and the performance of these estimators are assessed through simulation study. Two real life data sets are analyzed to illustrate the importance and flexibility of the proposed model. In fact, this model outperforms some generalized Weibull models such as the Kumaraswamy-Weibull, McDonald-Weibull, beta-Weibull, exponentiated-generalized Weibull, gamma-Weibull, odd log-logistic-Weibull, Marshall-Olkin-Weibull, transmuted-Weibull and exponentiated-Weibull distributions when applied to these data sets. The bivariate extension of the family is also proposed, and the estimation of parameters is dealt. The usefulness of the bivariate NKwW model is illustrated empirically by means of a real-life data set. Full article
(This article belongs to the Special Issue Statistics 2020)
Show Figures

Figure 1

Back to TopTop