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Abstract: In the paper, an overview is presented of the results on the convergence rate bounds in limit
theorems concerning geometric random sums and their generalizations to mixed Poisson random
sums, including the case where the mixing law is itself a mixed exponential distribution. The main
focus is on the upper bounds for the Zolotarev ζ-metric as the distance between the pre-limit and
limit laws. New results are presented that extend existing estimates of the rate of convergence of
geometric random sums (in the well-known Rényi theorem) to a considerably more general class of
random indices whose distributions are mixed Poisson, including generalized negative binomial (e.g.,
Weibull-mixed Poisson), Pareto-type (Lomax)-mixed Poisson, exponential power-mixed Poisson,
Mittag-Leffler-mixed Poisson, and one-sided Linnik-mixed Poisson distributions. A transfer theorem
is proven that makes it possible to obtain upper bounds for the rate of convergence in the law of large
numbers for mixed Poisson random sums with mixed exponential mixing distribution from those for
geometric random sums (that is, from the convergence rate estimates in the Rényi theorem). Simple
explicit bounds are obtained for ζ-metrics of the first and second orders. An estimate is obtained for
the stability of representation of the Mittag-Leffler distribution as a geometric convolution (that is, as
the distribution of a geometric random sum).

Keywords: Rényi theorem; law of large numbers; convergence rate; Zolotarev zeta-metric; geometric
random sum; mixed Poisson random sum; convergence rate bound; mixed exponential distribution;
geometric stability
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1. Geometric Sums: The Rényi Theorem

Assume that all the random variables and processes noted below are defined on
one and the same probability space (Ω,A,P). Let X1, X2, . . . be independent identically
distributed random variables. Let Np be a random variable with the geometric distribution

P(Np = n) = p(1− p)n−1, n = 1, 2, . . . , p ∈ (0, 1). (1)

Assume that Np is independent of X1, X2, . . . Consider the random variables

N∗p = Np − 1, Sp = ∑Np
j=1 Xj, S∗p = ∑

N∗p
j=1 Xj

(
∑0

j=1 ≡ 0
)

.

The random variables Sp and S∗p are called geometric (random) sums.
Denote a = EX1. Then

ESp =
a
p

, ES∗p =
(1− p)a

p
.
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The distribution function of a random variable X will be denoted as FX(x).
Everywhere in what follows, let E denote the random variable with the standard

exponential distribution:

FE(x) =

{
1− e−x, x > 0,
0, x < 0.

The uniform distance between the distributions of random variables X and Y will be
denoted as ρ(X, Y),

ρ(X, Y) = sup
x
|FX(x)− FY(x)|.

In what follows, the symbol L(X) will stand for the distribution of a random variable X.
The symbol ◦ will denote the product of independent random variables.
The statement of the problem considered in this paper goes back to the mid-1950s,

when A. Rényi noticed that any renewal point process iteratively subjected to the operation
of elementary rarefaction followed by an appropriate contraction of time tends to the
Poisson process [1,2].The operation of elementary rarefaction assumes that each point
of the point process, independently of other points, is either removed with probability
1 − p or remains as it is with probability p (0 < p < 1). The limit Poisson process is
characterized by the concept that the distribution of time intervals between successive
points is exponential. Moreover, it is easy to see that, at each iteration of rarefaction, the
time interval between successive points in the rarefied process is representable as the
sum of a geometrically distributed random number of independent random variables in
which the number of summands is independent of the summands. These objects are called
geometric sums. Geometric sums proved to be important mathematical models in many
fields, e.g., risk theory and insurance, reliability theory, etc. It suffices to note the famous
Pollaczek–Khinchin formula for the ruin probability in a classical risk process and some
recent publications [3,4] dealing with important applications of geometric random sums
and their generalizations to modeling counting processes.

The publication of [5] in 1984 strongly stimulated interest in analytic and asymptotic
properties of geometric sums. In that paper, the notions of geometric infinite divisibility
and geometric stability were introduced.

The geometric stability of a random variable X means that if X1, X2, . . . are independent
identically distributed random variables with the same distribution as that of X, and Np
is the random variable with geometric distribution (1) independent of X1, X2, . . ., then for
each p ∈ (0, 1) there exists a constant ap > 0 such that

L
(
ap
(
X1 + . . . + XNp

))
= L(X). (2)

In [5] it was shown that geometrically stable distributions and only they can be limiting for
geometric random sums. (For the case of nonnegative summands, this statement was earlier
proven by I. N. Kovalenko [6] who, in terms of Laplace transforms, introduced the class
of distribution that, as turned out later, actually coincides with the class of geometrically
stable distributions on R+.)

A significant contribution to the theory of geometric summation was made by V. V. Kalash-
nikov. The results were summarized in his wonderful and widely cited book [7]. That book
was followed by many other important publications, for example, [8–11].

Formally, the Rényi theorem states that, as p→ 0 (or, which is the same, the expectation
of the sum infinitely increases), the distribution of a geometric sum being normalized by its
expectation converges to the exponential law:

lim
p↓0

ρ
( pSp

a
, E
)
= lim

p↓0
ρ
( pS∗p

a(1− p)
, E
)
= 0
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2. Convergence Rate Bounds in the Classical Rényi Theorem

The first result on convergence rate in the Rényi theorem was obtained by A. D. Solovyev [12].
He considered the case of nonnegative summands X1, X2, . . . and proved that for 2 < r 6 3

ρ
( pS∗p

a(1− p)
, E
)
6

24p
r− 2

·
[
EXr

1
ar

]1/(r−1)

.

The result of Solovyev was extended by V. V. Kalashnikov and S. Yu. Vsekhsvyatskii
to the case 1 < r 6 2 in [13], where they showed that

ρ
( pSp

a
, E
)
6 Cpr−1 ·

EXr
1

ar ,

with C > 0 being a finite absolute constant; also see [14].
In [15], it was proven that if EX2

1 < ∞, then

ρ

( pS∗p
a(1− p)

, E
)
6 p max

{
1,

1
2(1− p)

}
·
EX2

1
a2 .

In [7], cited above, the bounds for the rate of convergence in the Rényi theorem were
formulated in terms of the Zolotarev ζ-metric. To make the importance of the ζ-metric
more clear, recall that, by the definition of weak convergence, random variables Yn are said
to converge to a random variable Y weakly, if

δn( f ) = E
(

f (Yn)− f (Y)
)
→ 0

as n → ∞ for any f ∈ F , where the set F contains all continuous bounded functions.
However, for the construction of convergence rate bounds, it is not convenient to use the
quantities δn, because the set F is too wide. V. M. Zolotarev noticed that for this purpose
it is more appropriate to consider the convergence only on some special sub-classes of F .
He suggested narrowing the set F to the class of differentiable bounded functions with
Lipschitz derivatives. This suggestion resulted in the definition of the ‘ideal’ ζ-metric.

The formal definition of the ζ-metric is as follows. Let s > 0. The number s can be
uniquely represented as s = m + ε where m is an integer and 0 < ε 6 1. Let Fs be the set of
all real-valued bounded functions f on R that are m times differentiable and

| f (m)(x)− f (m)(y)| 6 |x− y|ε. (3)

In 1976, V. M. Zolotarev [16] introduced the ζ-metric ζs(X, Y) ≡ ζs(FX , FY) in the space of
probability distributions by the equality

ζs(X, Y) = sup
{∣∣E( f (X)− f (Y)

)∣∣ : f ∈ Fs
}

; (4)

also see [17,18]. In particular, it can be proved that

ζ1(X, Y) =
∫
R
|FX(x)− FY(x)|dx, (5)

e.g., see the derivation of Equation (1.4.23) in [18].
The following properties of the ζ-metrics will be used below. First of all, any probabil-

ity metric satisfies the triangle inequality and therefore,

ζs(X, Y) 6 ζs(X, Z) + ζs(Z, Y) (6)

for any random variables X, Y, and Z. Some other properties of ζ-metrics will be presented
in the form of lemmas.
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Lemma 1. Let c > 0. Then
ζs(cX, cY) = csζs(X, Y).

Lemma 2. Let X, Y, Z be random variables such that both X and Y are independent of Z. Then

ζs(X + Z, Y + Z) = ζs(X, Y).

For the proofs of these statements, see that of Theorem 1.4.2 in [18]. The property
of ζ-metrics stated by Lemma 1 is called homogeneity of order s of the metric ζs, whereas
its property stated in Lemma 2 is called regularity. The proof of regularity of the metric
ζs given in [18] can be easily extended to sums of an arbitrary number of independent
random variables. Namely, for any n ∈ N let X1, X2, . . . , Xn and Y1, Y2, . . . Yn be two sets of
independent random variables. Then

ζs

(
∑n

j=1 Xj, ∑n
j=1 Yj

)
6 ∑n

j=1 ζs(Xj, Yj). (7)

In what follows, we will sometimes use the following semi-additivity property of the
ζ-metric.

Lemma 3. Let X and Y be random variables with the distribution functions FX(x) and FY(x),
respectively. Let FX(x; z) and FY(x; z) be conditional distribution functions of X and Y given
Z = z, respectively, so that

E
[

f (X)|Z = z
]
=
∫
R

f (x)dxFX(x; z), E
[

f (Y)|Z = z
]
=
∫
R

f (x)dxFY(x; z).

Then
ζs(FX , FY) 6

∫
R

ζs
(

FX( · ; z), FY( · ; z)
)
dFZ(z).

For the proof, see Proposition 2.1.2 in [7] or Lemma 3 in [19].
The tractability of ζ-metrics in terms of the weak convergence and their attractive

properties of ζ-metrics inspired Zolotarev to call these metrics ideal.
Return to the discussion of the convergence rate estimates in the Rényi theorem.
The results presented in [7,14] concern geometric sums of not necessarily nonnegative

summands and are as follows. Let 1 < s 6 2. Then

ζs

( pSp

a
, E
)
6 ps−1ζs(X1, E), (8)

ζ1

( pSp

a
, E
)
6 pζ1(X1, E) + 2(1− p)ps−1ζs(X1, E). (9)

These results actually present estimates of the geometric stability of the exponential distribution.
It should be noted that the definition of the ζ-metric used in [7] was more general

than that used by Zolotarev, so that the boundedness of functions of the class Fs was
not assumed.

I. G. Shevtsova and M. A. Tselishchev [20] proved a general result for independent
and not necessarily identically distributed random summands X1, X2, . . . but with identical
nonzero expectations (say, equal to a) and finite second moments that implies the bounds

ζ1

( pSp

a
, E
)
6 p

(
EX2

1
a2 − 2P(X1 6 0)

)
and

ζ1

( pS∗p
a(1− p)

, E
)
6

pEX2
1

(1− p)a2 . (10)
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In [19], it was proved that if a ≡ EX1 6= 0 and EX2
1 < ∞, then for 1 6 s 6 2

ζs

( pS∗p
(1− p)a

, E
)
6

Γ(1 + ε)

Γ(1 + s)

[
p

1− p
·
EX2

1
a2

]s/2

. (11)

In particular,

ζ2

( pS∗p
(1− p)a

, E
)
6

p
2(1− p)

·
EX2

1
a2 . (12)

Inequalities (10) and (12) establish best known moment bounds for the convergence
rate in the classical Rényi theorem in terms of the ζ-metrics of the first and second orders.

3. Generalizations of the Rényi Theorem

The normalization of a sum of random variables by its expectation in the classical
Rényi theorem is traditional for the laws of large numbers. Therefore, it is possible to
regard the Rényi theorem as the law of large numbers for geometric sums. In its general
form, the law of large numbers for random sums in which the summands are independent
and identically distributed random variables was proven in [21]. It was demonstrated in
that paper that the distribution of a non-randomly normalized random sum converges to
some distribution if and only if the distribution of the the number of summands under the
same normalization converges to the same distribution (up to a scale parameter).

Inequalities (11) and (12) were obtained as particular cases of a more general result
concerning mixed Poisson random sums since, as is known, the geometric distribution of
the random variable N∗p can be represented as a mixed Poisson law:

P(N∗p = k) =
1
k!

∫ ∞

0
λke−λµe−µλdλ, k = 0, 1, . . . , (13)

with µ = (1− p)−1 p. Representation (13) points at a natural direction of development of
the studies related to the Rényi theorem leading to a more general class of possible limit
laws and, correspondingly, to a more general set of possible distributions of the number
of summands.

A direct way to construct generalizations of the geometric distribution is to replace
mixing exponential distribution in (13) by a more general distribution from some class

M = {L(Eθ) : supp(L(Eθ)) = R+, θ ∈ Θ ⊆ R}

containing the exponential distribution L(E).
Let N(t) be the standard Poisson process (that is, the Poisson process with unit

intensity) independent of the random variable Eθ for each θ ∈ Θ. Let, for each θ ∈ Θ, the
random variable Nθ be defined as

Nθ = N(Eθ).

The random variable Nθ so defined has a mixed Poisson distribution:

P(Nθ = k) =
1
k!

∫ ∞

0
e−λλkdFEθ

(λ), k = 0, 1, 2, . . . ,

where FEθ
(x) is the distribution function of Eθ . Mixed Poisson distributions constitute a

very wide class.
In [19], it was proven that if EX2

1 is finite and Λ is some nonnegative random variable,
then for 1 6 s 6 2 we have

ζs

( 1
aθ ∑N(Eθ)

j=1 Xj, Λ
)
6

EEs/2
θ

θs · Γ(1 + α)

Γ(1 + s)
·
(

1 +
σ2

a2

)s/2
+ ζs

(Eθ

θ
, Λ
)

. (14)
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If, in addition, Eθ
d
= θΛ, then

ζs

( 1
aθ ∑N(θΛ)

j=1 Xj, Λ
)
6

EΛs/2

θs/2
Γ(1 + α)

Γ(1 + s)

(
1 +

σ2

a2

)s/2
. (15)

In particular,

ζ2

( 1
aθ ∑N(θΛ)

j=1 Xj, Λ
)
6

EΛ
2θ

(
1 +

σ2

a2

)
. (16)

Of course, the first idea is to replace the exponential mixing distribution in (13) by
the gamma distribution. Let Gr,µ be a random variable with the gamma distribution with
parameters r and µ corresponding to the probability density function

g(x; r, µ) =
µr

Γ(r)
xr−1e−µx, x > 0. (17)

Let Eθ = Gr,µ/θ
d
= θGr,µ where r > 0, µ > 0, θ > 0. Then Nθ = N(θGr,µ) has the negative

binomial distribution with parameters r and p = µ/(θ + µ):

P(Nθ = k) =
µrθk

k!Γ(r)

∫ ∞

0
e−λ(θ+µ)λk+r−1dλ =

=
Γ(k + r)
k!Γ(r)

( µ

θ + µ

)r(
1− µ

θ + µ

)k
, k = 0, 1, 2, . . .

We have EEθ = EGr,µ/θ = θE(Gr,µ) = θr/µ so that for each θ > 0

Eθ

EEθ
=

θGr,µ

EGr,µ/θ
=

µ

r
Gr,µ

d
= Gr,r,

that is, the limit distribution in the the law of large numbers for negative binomial random
sums (or “generalized Rényi theorem”) is gamma with shape and scale parameters equal
to r, and for 1 6 s 6 2 the following bound holds:

ζs

( µ

aθr ∑N(θGr,µ)

j=1 Xj, Gr,r

)
6

Γ(1 + ε)

Γ(1 + s)

( µ

θr
·
EX2

1
a2

)s/2
. (18)

In particular,

ζ2

( µ

aθr ∑N(θGr,µ)

j=1 Xj, Gr,r

)
6

µ

2θr
·
EX2

1
a2 . (19)

If r = 1, then L(Gr,r) = L(E).
To make the parametrization of the distribution of N(θGr,µ) more traditional by using

the parameters r and p = µ/(θ + µ), let us denote this random variable in an alternative
way: N(θGr,µ) = NBr,p. In these terms, (18) and (19) can be rewritten as

ζs

( p
ar(1− p) ∑NBr,p

j=1 Xj, Gr,r

)
6

Γ(1 + ε)

Γ(1 + s)

[
p

(1− p)r
·
EX2

1
a2

]s/2

(20)

and

ζ2

( p
ar(1− p) ∑NBr,p

j=1 Xj, Gr,r

)
6

p
2r(1− p)

·
EX2

1
a2 . (21)

With r = 1, bounds (20) and (21) turn into (11) and (12), respectively.
For the case s = 1 in this problem, a bound more accurate in p (but less accurate in r)

was independently obtained in [22]:

ζ1

( p
ar(1− p) ∑NBr,p

j=1 Xj, Gr,r

)
6
drep

r(1− p)
·
EX2

1
a2 ,
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where dre is the least integer no less than r. In [19], more examples can be found, say,
the upper bounds for the ζs-distance between the distribution of a generalized negative
binomial random sum and the generalized gamma distribution, with 1 6 s 6 2. (For the
case s = 1 in that problem, a more accurate bound was independently obtained in [22].)

4. Convergence Rate Bounds for Mixed Geometric Sums

Another reasonable way to generalize geometric distribution is to take as M the
class of mixed exponential distributions. This class is very wide and actually contains all
distributions with distribution functions F(x) such that 1− F(x) is the Laplace transform
of some other probability distribution on the nonnegative half-line. For example, this
class contains Weibull distributions with shape parameter 6 1, Pareto-type distributions,
exponential power distributions with shape parameter 6 1, gamma distributions with
shape parameter 6 1, Mittag-Leffler distributions, one-sided Linnik distributions, etc.

Let Q be a nonnegative random variable. Let Eθ = θE ◦Q. In this case, 1− FE◦Q(x) is
the Laplace transform of the random variable Q−1. It is easy to see that a mixed Poisson
random sum with the mixing distribution L(θE ◦ Q) is a mixed geometric random sum.
Indeed, because N(t), Q, and E are assumed independent, by the Fubini theorem for
k ∈ N

⋃{0} we have

P
(

N(Q ◦ E) = k
)
=
∫ ∞

0

yk

k!

[ ∫ ∞

0
e−λ(y+1)λkdλ

]
dFQ(y) =

=
∫ ∞

0

1
(y + 1)

(
1− 1

y + 1

)k
dFQ(y), k = 0, 1, 2, . . . (22)

Here, the integrands are geometric probabilities with the parameter p = 1/(y + 1).
Moreover, the following convergence rate bound holds:

ζs

( 1
aθ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6

EQs/2

θs/2

Γ(1 + ε)Γ( s
2 + 1)

Γ(1 + s)

(
1 +

σ2

a2

)s/2
. (23)

In particular,

ζ2

( 1
aθ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6

EQ
2θ

(
1 +

σ2

a2

)
. (24)

These inequalities are particular cases of (15) and (16).
In addition to the examples presented in [19], consider some more particular cases

of (16).
Example 1. The case where E ◦Q has the (generalized) gamma-distribution. We say

that a random variable Gr,γ,µ has the generalized gamma distribution (GG distribution) if
its density has the form

g(x; r, γ, µ) =
|γ|µr

Γ(r)
xγr−1e−µxγ

, x > 0, (25)

with γ ∈ R, µ > 0, r > 0.
The class of GG distributions was proposed in 1925 by the Italian economist L.

Amoroso [23] and is often associated with the work of E. W. Stacy [24], who introduced
this family as the class of probability distributions containing both gamma and Weibull
distributions. This family embraces practically all of the most popular absolutely continu-
ous distributions on R+. The GG distributions serve as reliable models in reliability testing,
life-time analysis, image processing, economics, social network analysis, etc. Apparently,
the GG distributions are popular because most of them are adequate asymptotic approxi-
mations appearing in limit theorems of probability theory in rather simple limit settings.
An analog of the law of large numbers for random sums in which the GG distributions are
limit laws was proven in [25]. In [26], the maximum entropy principle was used to justify
the applicability of GG distributions; also see [27,28].
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In this case, the random variable N(θQ ◦ E) has the generalized negative binomial
distribution [29]. For the convergence bounds for negative binomial sums, see (20), (21)
and [20], and for the convergence bounds for generalized binomial sums see [19,22].

As a particular case of the GG distribution, consider the Weibull-distributed E ◦Q. In
this case in (25), γ > 0 and r = 1. For convenience, without loss of generality, also assume
that µ = 1. In other words, we consider the case L(E ◦ Q) = L(G1,γ,1). In [30], it was
demonstrated that if γ ∈ (0, 1], then

L(G1,γ,1) = L(E ◦ Z−1
γ ),

where Zγ is a nonnegative random variable with the strictly stable distribution given by its
characteristic function

gγ(t) = exp
{
− |t|γ exp{− 1

2 iπγ sign t}
}

, t ∈ R. (26)

This means that in the case under consideration L(Q) = L(Z−1
γ ). As this is so, in [31] it

was proven that

EZ−β
γ =

Γ
( β

γ

)
γΓ(β)

( 1
2 6 β < ∞).

Therefore, in the case of the Weibull limit distribution with γ ∈ (0, 1], bound (24) takes the
form

ζ2

( 1
aθ ∑N(θG1,γ,1)

j=1 Xj, G1,γ,1

)
6

Γ
(
1 + 1

γ

)
2θ

·
EX2

1
a2 .

Example 2. Let Vr be a random variable with the Pareto type II distribution defined
by the probability density

f (x; r) =
r

(x + 1)r+1 , x > 0, (27)

where r > 1. This distribution is also called the Lomax distribution [32]. This distribution
is used in business, economics, actuarial science, Internet traffic modeling, queueing theory,
and other fields. Consider the case where L(E ◦ Q) = L(Vr). It is easy to see that in this
case the random variable Q has the inverse gamma distribution, that is, Q = Q̃−1, where Q̃
has the gamma-distribution with the probability density g(x; r, 1) (see (17)), so that

P(Vr < x) = P(E < xQ̃) =
1

Γ(r)

∫ x

0

( ∫ ∞

0
ye−zyyr−1e−ydy

)
dz = r

∫ x

0

dz
(z + 1)r+1 .

Hence, if r > 1, then

EQ = EQ̃−1 =
1

Γ(r)

∫ ∞

0
yr−2e−ydy =

Γ(r− 1)
Γ(r)

=
1

r− 1
,

so that bound (24) takes the form

ζ2

( 1
aθ ∑N(θVr)

j=1 Xj, Vr

)
6

1
2(r− 1)θ

·
EX2

1
a2 .

Example 3. Let γ ∈ (0, 1]. By Wγ, we denote a random variable with the exponential
power distribution defined by the density

w(x; γ) =
e−xγ

Γ
(
1 + 1

γ

) , x > 0.
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Consider the case where L(E ◦Q) = L(Wγ). In [31], it was proven that if γ ∈ (0, 1], then
L(Wγ) = L(E ◦U−1

γ ), where the random variable Uγ has the probability density

u(x; γ) =
1

Γ
(
1 + 1

γ )
·

gγ,1(x)
x

, x > 0.

Here, gγ,1(x) is the probability density of the strictly stable distribution defined by the
characteristic function (26). Moreover, in [31], it was demonstrated that

EU−β
γ =

Γ( β+1
γ )

Γ( 1
γ )Γ(β + 1)

for β > −1. Therefore, in the case under consideration EQ = Γ( 2
γ )/Γ( 1

γ ) and bound (24)
takes the form

ζ2

( 1
aθ ∑N(θWγ)

j=1 Xj, Wγ

)
6

Γ( 2
γ )

2θΓ( 1
γ )
·
EX2

1
a2 .

As one more example, consider convergence rate bounds for mixed Poisson random
sums with the one-sided Linnik mixing distribution.

Example 4. In 1953, Yu. V. Linnik [33] introduced the class of symmetric distributions
corresponding to the characteristic functions

fα(t) =
1

1 + |t|α , t ∈ R, (28)

where α ∈ (0, 2]. If α = 2, then the Linnik distribution turns into the Laplace distribution
whose probability density has the form

`(x) = 1
2 e−|x|, x ∈ R. (29)

A random variable with Laplace density (29) and its distribution function will be denoted
as Λ and FΛ(x), respectively.

An overview of the analytic properties of the Linnik distribution can be found in [30],
with the main focus on the various mixture representations of this distribution. Apparently,
the Linnik distributions are most often recalled as examples of geometric stable distributions
supported by the whole R. Moreover, the Linnik distributions exhaust the class of all
symmetric geometrically strictly stable distributions (e.g., see [34]).

In what follows, the notation Lα will stand for a random variable with the Linnik
distribution with parameter α. The distribution function and density of Lα will be denoted
as FLα(x) and f (x; α), respectively. It is easy to see that (28) and (29) imply FL2(x) ≡ FΛ(x),
x ∈ R.

In [30], the distribution of the random variable |Lα| with α ∈ (0, 2] was called the
one-sided Linnik distribution.

It is easy to see that

F̂Lα(x) ≡ P(|Lα| < x) = 2FLα(x)− 1, x > 0.

In [35], it was proven that the Linnik distribution density admits the following integral
representation:

f (x; α) =
sin(πα

2 )

π

∫ ∞

0

yαe−y|x|dy
1 + y2α + 2yα cos(πα

2 )
, x ∈ R.
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Hence, the density f̂ (x; α) of the one-sided Linnik law has the form

f̂ (x; α) =
2 sin(πα

2 )

π

∫ ∞

0

yαe−yxdy
1 + y2α + 2yα cos(πα

2 )
, x > 0.

That is, f̂ (x; α) is the Laplace transform of the random variable Q̂, whose probability density
q̂(y; α) has the form

q̂(y; α) =
2 sin(πα

2 )yα

π[1 + y2α + 2yα cos(πα
2 )]

, x > 0. (30)

Hence,
L(|Lα|) = L(E ◦ Q̂). (31)

In [30]), it was shown that if δ ∈ (0, 1), then the probability density gδ(x) of the ratio
Z′δ ◦ Z−1

δ has the form

gδ(x) =
sin(πδ)xδ−1

π[1 + x2δ + 2xδ cos(πδ)]
, x > 0. (32)

Comparing representation (30) with (32), we come to the conclusion that

L(Q̂) = L
(√

Z′α/2 ◦ Z−1
α/2

)
, (33)

where Z′α/2 and Zα/2 are independent nonnegative random variables with one and the
same strictly stable distribution given by its characteristic function (26) with characteristic
exponent γ = α/2 and, furthermore,

L(Q̂) = L(Q̂−1). (34)

Moreover, in [31], it was demonstrated that for γ ∈ (0, 1),

EZβ
γ =

Γ(1− β
γ )

Γ(1− β)
(0 6 β < γ) and EZ−β

γ =
Γ( β

γ )

γΓ(β)
( 1

2 6 β < ∞). (35)

Now consider a mixed Poisson random sum with the one-sided Linnik mixing distri-
bution. From (31), (33), (23), and (35) with γ = α

2 , we obtain the following statement.

Proposition 1. If EX1 = 1, EX2
1 < ∞, 1 6 α 6 2, then

ζ2

( 1
aθ ∑N(θ|Lα |)

j=1 Xj, |Lα|
)
6

Γ(1− 1
α )Γ(

1
α )

πα
·
EX2

1
θ

. (36)

Note that if α = 2, then L(|L2|) = L(|Λ|) = L(E) and (36) turns into (12).

5. Transfer Theorem for the Rate of Convergence to Mixed Exponential Distributions

In the case where M is the class of mixed exponential distributions, it is possible to
prove the following general ‘transfer theorem’ for the convergence rate bounds in terms of
the ζ-metrics that extends Theorem 1 from [22] to a considerably wider class of distributions.

Theorem 1. Assume that EX1 = 1 and for some s > 0 and p ∈ (0, 1), some upper bound

ζs

( pS∗p
1− p

, E
)
6 ∆s(p) (37)
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for the convergence rate in the Rényi theorem is known. Let Q be a nonnegative random variable
and let θ > 0 be an ‘infinitely large’ parameter. Then

ζs

(1
θ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6
∫ ∞

0
ys∆s

( 1
1+θy

)
dFQ(y). (38)

Proof. In the same way that was used to prove (22), it is easy to verify that for θ > 0
and y > 0, the random variable N(yθE) has the geometric distribution with parameter
p = 1/(yθ + 1). Therefore, by the semi-additivity of the ζ-metric (see Lemma 3) with the
account of (37), remembering the notation p = 1/(yθ + 1), we have

ζs

(1
θ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6
∫ ∞

0
ζs

( yp
1− p ∑

N∗p
j=1 Xj, yE

)
dFQ(y) =

=
∫ ∞

0
ysζs

( p
1− p ∑

N∗p
j=1 Xj, E

)
dFQ(y) 6

∫ ∞

0
ys∆s(p)dFQ(y) =

=
∫ ∞

0
ys∆s

( 1
1 + yθ

)
dFQ(y).

That completes the proof.

In the case s = 2, if we take the right-hand side of (12) as ∆2(p), then with the account
of (41), Theorem 1 will yield

ζ2

(1
θ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6

EQ · EX2
1

2θ
. (39)

This means that the bounds for ζ2 obtained in Examples 1–4 above can be also deduced
from Theorem 1. These bounds depend on the distribution of the mixing random variable
Q. For the case of s = 1 Theorem 1 yields the following rather unexpected result.

Corollary 1. Assume that EX1 = 1. For any random variable Q we have

ζ1

(1
θ ∑N(θE◦Q)

j=1 Xj, E ◦Q
)
6

EX2
1

θ
. (40)

Note that, here, the right-hand side does not depend on L(Q).

Proof. In order to prove (40), note that if EX2
1 = ∞, then (40) holds trivially, otherwise

the right-hand side of (10) should be taken as ∆1(p) with the account of the fact that,
for p = 1/(yθ + 1), the coefficient p/(1− p) on the right-hand side of (10) in this case
turns into

p
1− p

=
[
(1 + yθ)

(
1− 1

1 + yθ

)]−1
=

1
yθ

. (41)

In [22], a particular case was considered and bound (40) was obtained for generalized
negative binomial random sums.

6. Convergence Rate Bounds for Mixed Poisson Random Sums with the Mittag-Leffler
Mixing Distribution

Another important case of the set M is the set of Mittag-Leffler distributions. This
case is very interesting, as it is an illustration that, for the law of large numbers for mixed
Poisson random sums (that is, for the generalized Rényi theorem) to hold, it is not necessary
that the expectation of the mixed Poisson random sum exists.
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Assume that, in (13), the mixing exponential distribution is replaced by the Mittag-
Leffler distribution given by its Laplace transform

ψδ(s) =
1

1 + λsδ
, s > 0, (42)

where λ > 0, 0 < δ 6 1. For convenience, without loss of generality, in what follows we
will consider the case of the standard scale assuming that λ = 1. As an aside, the class
of Laplace transforms (42) coincides with the class introduced by I. N. Kovalenko [6] and,
hence, from what has already been said, the Mittag-Leffler distributions exhaust the class
of geometrically stable distributions on R+. A random variable with the Laplace transform
(42) with λ = 1 will be denoted as Mδ.

With δ = 1, the Mittag-Leffler distribution turns into the standard exponential distri-
bution, that is, L(M1) = L(E). However, if 0 < δ < 1, then the Mittag-Leffler distribution
density has a heavy power-type tail: f M

δ (x) = O(xδ+1) as x → ∞, see, e.g., [36], so that the
moments of the random variable Mδ of orders no less than δ are infinite.

But, as was shown in [21], the convergence of the distribution of a mixed Poisson
random sum to the Mittag-Leffler distribution can also take place in the cases where the
moments of the summands (expectations, variances, etc.) are finite. To make this sure,
consider the following convergence rate bounds.

It is known that the Mittag-Leffler distribution admits the representation

L(Mδ) = L(E ◦ Z′δ ◦ Z−1
δ ), (43)

that is, it is mixed exponential. Here, Zδ and Z′δ are nonnegative random variables with
one and the same strictly stable distribution given by its characteristic function (26) (see,
e.g., [30]).

Now let Eθ = θMδ for θ > 0 and some fixed δ ∈ (0, 1]. In this case, with the account of
(32), relation (38) takes the form

ζs

(1
θ ∑N(θMδ)

j=1 Xj, Mδ

)
6

sin(πδ)

π

∫ ∞

0

∆s
( 1

1+θy
)
ys+δ−1dy

1 + y2δ + 2yδ cos(πδ)
. (44)

For the case s = 1, relation (44) with ∆s
( 1

1+θy
)

given by the right-hand of (10) (being
consistent with Corollary 1) gives the following bound.

Proposition 2. Let Mδ be a random variable with the Mittag-Leffler distribution, 0 < δ 6 1. If
EX1 = 1 and EX2

1 < ∞, then

ζ1

(1
θ ∑N(θMδ)

j=1 Xj, Mδ

)
6

EX2
1

θ
.

For other values of s by the approach proposed in [19], it is possible to obtain an
explicit (but possibly less accurate) estimate. If 0 < δ < 1, then EMβ

δ = ∞ for each β > δ
and hence, EMδ = ∞, implying that, in this case,

E∑N(θMδ)

j=1 Xj = ∞.

From (43), it follows that, in this case, Q = Z′δ ◦ Z−1
δ so that, for admissible β > 0

EQβ = EZβ
δ · EZ−β

δ .

Therefore, from (19) and (43), we obtain the following bound.
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Proposition 3. If EX1 = 1 and EX2
1 < ∞, then for 1

2 < δ 6 1 and 1 6 s < 2δ, we have

ζs

(1
θ ∑N(θMδ)

j=1 Xj, Mδ

)
6
(
EX2

1
θ

)s/2

·
Γ( s

2 + 1)Γ(1− s
2δ )Γ(

s
2δ )Γ(1 + ε)

δΓ(1− s
2 )Γ(

s
2 )Γ(1 + s)

.

7. Quantification of the Geometric Stability of the Mittag-Leffler and
Linnik Distributions

This section concerns another property of some geometric sums. Namely, here we will
consider the property of geometric stability of some probability distributions.

Recall that the geometric stability of the distribution of a random variable X means
that if X1, X2, . . . are independent identically distributed random variables with the same
distribution as that of X, and Np is the random variable with geometric distribution (1)
independent of X1, X2, . . ., then for each p ∈ (0, 1) there exists a constant ap > 0 such that
relation (2) holds. In what follows, we will concentrate our attention on the property of
strict geometric stability, which means that in (2), the constants ap > 0 have the special
form, namely, ap = Cp1/γ for some C > 0 and γ ∈ (0, 2]. For the sake of convenience and
without loss of generality, assume that C = 1. As (2) holds for any p ∈ (0, 1), we can let
p → 0, so that (2) can be also regarded as a ‘limit theorem’ for geometric sums in which,
unlike Rényi-theorem-type laws of large numbers, the limit law, as p→ 0, is completely
determined by the distribution of an individual summand.

In many papers, the Mittag-Leffler and Linnik distributions (for the corresponding
definitions see Section 6 and Example 4) are noted as examples of geometrically strictly
stable distributions. As this is so, ap = p1/δ for the Mittag-Leffler distribution with
parameter δ ∈ (0, 1] and ap = p1/α for the Linnik distribution with parameter α ∈ (0, 2].

First, consider the Mittag-Leffler distribution. Let δ ∈ (0, 1] and M(1)
δ , M(2)

δ , . . . be
independent random variables with one and the same Mittag-Leffler distribution coinciding
with that of Mδ. Then, in accordance with (2), for any p ∈ (0, 1)

L(Mδ) = L
(

p1/δ
(

M(1)
δ + . . . + M

(Np)
δ

))
, (45)

where the random variable Np has geometric distribution (1) and is independent of

M(1)
δ , M(2)

δ , . . . The aim of the following statement is to illustrate this circumstance and
generalize Kalashnikov’s bound (8) to all geometrically stable distributions on R+. In other
words, the aim is to obtain an estimate for the stability of representation of the Mittag-Leffler
distribution as a geometric convolution.

Theorem 2. Let Mδ be a random variable with the Mittag-Leffler distribution, 0 < δ 6 1, s > δ,
0 < p < 1. Then

ζs

(
p1/δ ∑Np

j=1 Xj, Mδ

)
6 ps/δ−1ζs(X1, Mδ). (46)

Proof. By virtue of (48) for any p ∈ (0, 1), we have

L(Mδ) = L
(

p1/δ ∑Np
j=1 M(j)

δ

)
,

where M(1)
δ , M(2)

δ , . . . are independent random variables with one and the same Mittag-
Leffler distribution coinciding with that of Mδ. Therefore, by Lemmas 3 and 1 with the
account of (7), we have

ζs

(
p1/δ ∑Np

j=1 Xj, Mδ

)
= ζs

(
p1/δ ∑Np

j=1 Xj, p1/δ ∑Np
j=1 M(j)

δ

)
6

6 ∑∞
n=1 p(1− p)n−1ζs

(
p1/δ ∑n

j=1 Xj, p1/δ ∑n
j=1 M(j)

δ

)
6
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6 ps/δ ∑∞
n=1 p(1− p)n−1 ∑n

j=1 ζs
(
Xj, M(j)

δ

)
= ps/δ−1ζs(X1, Mδ).

Therefore, the appropriately scaled distribution of a geometric random sum may
be close to the Mittag-Leffler distribution for two reasons: first, the parameter p may be
small enough, and/or second, the distribution of a separate summand (say, X1) may be
close enough to the Mittag-Leffler distribution. In the first case, Theorem 1 serves as an
illustration of the transfer theorem for random sums (e.g., see [27]). In this case, L(X1)
may be not close to L(Mδ). The only requirement is that ζs(X1, Mδ) is finite. The finiteness
of ζs(X1, Mδ) means that the tail of the distribution of X1 is equivalent to that of Mδ as
x → ∞. However, this means that L(X1) belongs to the domain of attraction of a ‘usual’
strictly stable distribution with the characteristic exponent δ. As is known, in this case the
moments of the random variable X1 of orders no less than δ do not exist [37]. As this is so,
with small p the number of summands in the geometric sum is large and, in accordance
with the transfer theorem for random sums, the limit distribution of an appropriately
normalized geometric sum has the form of a scale mixture of the strictly stable distribution
with characteristic exponent δ, whereas the mixing distribution is the limit law for the
standardized number of summands, i.e., is exponential. However, in the situation under
discussion, this mixture is exactly the Mittag-Leffler distribution; for details see, e.g., [30]
and the references therein. In the second case, the parameter p may not be small, and the
closeness of the distribution of a geometric sum to the Mittag-Leffler distribution can be
provided by the smallness of the distance between L(X1) and L(Mδ).

As it has already been said, estimate (46) makes sense, if ζs(X1, Mδ) < ∞. To clarify
the meaning of this condition, consider the case s = 1. In this case, the metric ζ1 turns into
the mean metric (5), also sometimes referred to as the Kantorovich or Wasserstein distance.
Assume that FX1(x) = FMδ

(x) + h(x), where h(x) is the corresponding ‘discrepancy’. In
this case, the condition of finiteness of ζ1(X1, Mδ) means that the discrepancy h(x) must
be integrable: ∫

R
|h(x)|dx < ∞, (47)

so that Theorem 2 implies the following statement.

Corollary 2. Let 0 < δ < 1. Assume that FX1(x) = FMδ
(x) + h(x) and (47) holds. Then

ζ1

(
p1/δ ∑Np

j=1 Xj, Mδ

)
6 p1/δ−1

∫
R
|h(x)|dx.

If δ = 1, then the Mittag-Leffler distribution turns into the exponential distribution so
that bounds (8) and (9) can be used.

Now turn to the Linnik distribution. Let α ∈ (0, 2] and L(1)
α , L(2)

α , . . . be independent
random variables with one and the same Linnik distribution coinciding with that of Lα.
Then, in accordance with (2), for any p ∈ (0, 1)

L(Lα) = L
(

p1/α
(

L(1)
α + . . . + L

(Np)
α

))
, (48)

where the random variable Np has geometric distribution (1) and is independent of

L(1)
α , L(2)

α , . . . Therefore, just as in the case of the Mittag-Leffler distribution, the appropri-
ately scaled distribution of a geometric random sum may be close to the Linnik distribution
for two reasons: first, the parameter p may be small enough, and/or second, the distribution
of a separate summand (say, X1) may be close enough to the Linnik distribution.

Theorem 3. Let 0 < α 6 2, s > α, 0 < p < 1. Then

ζs

(
p1/α ∑Np

j=1 Xj, Lα

)
6 ps/α−1ζs(X1, Lα). (49)
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Proof. This theorem can be proved by exactly the same reasoning that was used to prove
Theorem 2.

Denote g(x) = FX1(x)− FLα(x), x ∈ R. Theorem 3 implies the following analog of
Corollary 2 for the Linnik distribution.

Corollary 3. Let 0 < α < 1. Assume that the discrepancy g(x) is integrable:∫
R
|g(x)|dx < ∞,

Then
ζ1

(
p1/α ∑Np

j=1 Xj, Lα

)
6 p1/α−1

∫
R
|g(x)|dx.

It should be noted that the conditions s > δ in Theorem 2 and s > α in Theorem 3
as well as the conditions on s in Corollaries 1 and 2 were assumed only to provide the
convergence of the right-hand sides of (46) and (49) to zero as p→ 0. However, in general,
in these inequalities other values of s > 0 are also admissible, since, as it has already been
said, with arbitrary fixed p the smallness of the right-hand sides can be provided by the
smallness of the ζ-metrics between the distribution of an individual summand and the
corresponding geometrically stable law.

8. Conclusions

In the paper, an overview was presented of the results on the convergence rate bounds
in limit theorems concerning geometric random sums and their generalizations to mixed
Poisson random sums, including the case where the mixing law is itself a mixed exponential
distribution. The Zolotarev ζ-metric was considered as the distance between the limit and
pre-limit laws. The well-known convergence rate estimates for geometric random sums in
the classical Rényi theorem were extended to a considerably wider class of random indices
with mixed Poisson distributions and, correspondingly, to a considerably wider class of
limit distributions. It was demonstrated that, in the case where the limit distribution (and
the corresponding mixing distribution of the mixed Poisson distribution of the number of
summands) is itself mixed exponential, the upper bound for the ζ-metric of the first order
(or, which is the same, for the Kantorovich or 1-Wasserstein or mean metric) depends only
on the second moment of a separate summand and does not depend on any characteristic
of the mixing distribution. This result substantially generalizes the corresponding estimate
obtained by I. Shevtsova and M. Tselishchev [22] for generalized gamma limit distributions.
In addition, an estimate was obtained for the stability of representation of the Mittag-Leffler
and Linnik distributions as geometric convolutions (that is, as the distributions of geometric
random sums). These results extend the corresponding estimate of the geometric stability of
the exponential distribution obtained by V. V. Kalashnikov [7] for ζs-metric with 1 6 s < 2
to all geometrically strictly stable distributions on R+ and all symmetric geometrically
strictly stable distributions on R. Moreover, these estimates make sense for ζs-metrics with
arbitrary s > 0.
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