Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = experimental anemometry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1854 KB  
Article
Flow Stabilization and Velocity Uniformity in a Göttingen-Type Closed-Circuit Subsonic Wind Tunnel with an Expanded Test Section
by Justas Šereika, Paulius Vilkinis, Agnė Bertašienė and Edgaras Misiulis
Appl. Sci. 2025, 15(20), 11021; https://doi.org/10.3390/app152011021 - 14 Oct 2025
Viewed by 210
Abstract
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal [...] Read more.
Flow stabilization and velocity uniformity in a Göttingen-type closed-circuit subsonic aerodynamic wind tunnel with an expanded test section are investigated in this study. Both experimental and numerical approaches were employed. The experiments were performed by using Laser Doppler Anemometry, Pitot tubes, and thermal anemometry. For numerical simulations, Reynolds-averaged Navier–Stokes simulations with a standard k-ε turbulence model were employed to evaluate flow characteristics in the velocity range of 0.05–20 m/s. The study shows that a properly contoured contraction nozzle suppresses inlet turbulence and ensures stable Reynolds-independent core flow. The contraction nozzle significantly accelerates and redistributes the flow, allowing rapid hydrodynamic stabilization and ensuring velocity measurements with high repeatability. These characteristics are inherent in a benchmark facility. Additionally, the study shows that the outlet-to-inlet diameter has the most prominent role in longitudinal velocity distribution in the test section. An optimal ratio of 1.10 was identified, stabilizing the pressure distribution and providing the most uniform longitudinal velocity profile. These findings offer geometry-dependent design guidelines for achieving high-quality measurements in Göttingen-type wind tunnels with expanded test sections and support accurate velocity measurement instrument calibration and aerodynamic testing. Full article
Show Figures

Figure 1

15 pages, 4840 KB  
Article
Wake Turbulence Induced by Local Blade Oscillation in a Linear Cascade
by Vitalii Yanovych, Volodymyr Tsymbalyuk, Daniel Duda and Václav Uruba
Appl. Sci. 2025, 15(17), 9263; https://doi.org/10.3390/app15179263 - 22 Aug 2025
Viewed by 521
Abstract
This paper investigates the oscillatory effect of a single blade on the turbulence wake downstream of a low-pressure turbine cascade. Experimental investigations were conducted at a chord-based Reynolds number of 2.3×105 with an excitation frequency of 73 Hz. The experimental [...] Read more.
This paper investigates the oscillatory effect of a single blade on the turbulence wake downstream of a low-pressure turbine cascade. Experimental investigations were conducted at a chord-based Reynolds number of 2.3×105 with an excitation frequency of 73 Hz. The experimental campaign encompassed two incidence angles (−3° and +6°) and three blade motion conditions: stationary, bending, and torsional vibrations. Turbulence characteristics were analyzed using hot-wire anemometry. The results indicate that the bending mode notably alters the wake topology, causing a 5% decline in streamwise velocity deficit compared to other modes. Additionally, the bending motion promotes the formation of large-scale coherent vortices within the wake, increasing the integral length scale by 7.5 times. In contrast, Kolmogorov’s microscale stays mostly unaffected by blade oscillations. However, increasing the incidence angle causes the smallest eddies in the inter-blade region to grow three times larger. Moreover, the data indicate that at −3°, bending-mode results in an approximate 13% reduction in the turbulence energy dissipation rate compared to the stationary configuration. Furthermore, the study emphasizes the spectral features of turbulent flow and provides a detailed assessment of the Taylor microscale under different experimental conditions. Full article
Show Figures

Figure 1

21 pages, 11950 KB  
Article
Hot-Wire Investigation of Turbulent Flow over Vibrating Low-Pressure Turbine Blade Cascade
by Vitalii Yanovych, Hryhorii Kaletnik, Volodymyr Tsymbalyuk, Daniel Duda and Václav Uruba
Processes 2025, 13(4), 926; https://doi.org/10.3390/pr13040926 - 21 Mar 2025
Cited by 2 | Viewed by 829
Abstract
This paper presents experimental results on unsteady turbulent flow in a low-pressure turbine blade cascade, specifically exploring the effects of blade vibrations on wake topology and turbulence structure. The study focused on comparing the flow patterns of a stationary blade to those observed [...] Read more.
This paper presents experimental results on unsteady turbulent flow in a low-pressure turbine blade cascade, specifically exploring the effects of blade vibrations on wake topology and turbulence structure. The study focused on comparing the flow patterns of a stationary blade to those observed during its bending and torsion vibrations. Hot-wire anemometry was used for the experimental analysis. The flow velocity was characterized by a chord-based Reynolds number of approximately Rec2.3×105, with the excitation frequency set at f=72.8Hz. The findings reveal a strong effect of the bending mode on the wake topology, resulting in a 5% reduction in the streamwise velocity deficit compared to the stationary and torsional modes. Additionally, the bending mode encourages the active formation of large vortices in the wake region, which leads to a fivefold increase in the integral length scale. In contrast, the Kolmogorov microscale remains consistent across all scenarios, exhibiting a minimum in the wake region and a maximum in the inter-blade space. The paper also discusses the impact of blade oscillations on the energy dissipation rate. Various calculation methods yield consistent results, indicating that the lowest dissipation rate occurs during the bending mode. Furthermore, the paper emphasizes the spectral analysis of turbulent flow and provides a comprehensive assessment of the Taylor microscale under different experimental censorious. Full article
(This article belongs to the Special Issue Multi-Phase Flow and Heat and Mass Transfer Engineering)
Show Figures

Figure 1

14 pages, 5565 KB  
Article
Experimental and Numerical Research on Swirl Flow in Straight Conical Diffuser
by Dejan Ilić, Jelena Svorcan, Đorđe Čantrak and Novica Janković
Processes 2025, 13(1), 182; https://doi.org/10.3390/pr13010182 - 10 Jan 2025
Cited by 1 | Viewed by 1048
Abstract
The main objective of the current study is a detailed (both numerical and experimental) investigation of the highly unsteady and complex swirl flow in a straight conical diffuser (with a total divergence angle of 8.6°) generated by an axial fan impeller. Pressure, and [...] Read more.
The main objective of the current study is a detailed (both numerical and experimental) investigation of the highly unsteady and complex swirl flow in a straight conical diffuser (with a total divergence angle of 8.6°) generated by an axial fan impeller. Pressure, and axial and tangential velocity profiles along several cross-sections were measured by original classical probes in two different flow regimes at the inlet: the modified solid body type of moderate swirl and the solid body type of strong swirl and reverse flow; they were additionally confirmed/validated by laser Doppler anemometry measurements. Computational studies of spatial, unsteady, viscous, compressible flows were performed in ANSYS Fluent by large eddy simulation. The fan was neglected, and its effect was replaced by the pressure and velocity profiles assigned along the inlet and outlet boundaries. The two sets of data obtained were compared, and several conclusions were drawn. In general, the relative errors of the pressure profiles (2–5%) were lower than the observed discrepancies in the axial velocity profiles (5–40% for the first and 15–50% for the second flow regime, respectively). The employed reduced numerical model can be considered acceptable since it provides insights into the complexity of the investigated swirl flow. Full article
(This article belongs to the Special Issue Turbulence Models for Turbomachinery)
Show Figures

Figure 1

16 pages, 5108 KB  
Article
Experimental Evaluation of Gas-Dynamic Conditions of Heat Exchange of Stationary Air Flows in Vertical Conical Diffuser
by Leonid Plotnikov, Mikhail Ershov, Alexander Nikitin, Vladimir Tuponogov and Alexander Ryzhkov
Appl. Sci. 2024, 14(21), 10080; https://doi.org/10.3390/app142110080 - 4 Nov 2024
Viewed by 1246
Abstract
Conical diffusers are widely used in technical devices (gasifiers, turbines, combustion chambers) and technological processes (ejectors, mixers, renewable energy). The perfection of flow gas dynamics in a conical diffuser affects the intensity of heat and mass transfer processes, the quality of mixing/separation of [...] Read more.
Conical diffusers are widely used in technical devices (gasifiers, turbines, combustion chambers) and technological processes (ejectors, mixers, renewable energy). The perfection of flow gas dynamics in a conical diffuser affects the intensity of heat and mass transfer processes, the quality of mixing/separation of working media and the flow characteristics of technical devices. These parameters largely determine the efficiency and productivity of the final product. This article presents an analysis of experimental data on the gas-dynamic characteristics of stationary air flows in a vertical, conical, flat diffuser under different initial boundary conditions. An experimental setup was created, measuring instruments were selected, and an automated data collection system was developed. Basic data on the gas dynamics of air flows were obtained using the thermal anemometry method. Experimental data on instantaneous values of air flow velocity in a diffuser for initial velocities from 0.4 m/s to 2.22 m/s are presented. These data were the basis for calculating and obtaining velocity fields and turbulence intensity fields of the air flow in a vertical diffuser. It is shown that the value of the initial flow velocity at the diffuser inlet has a significant effect on the gas-dynamic characteristics. In addition, a spectral analysis of the change in air flow velocity both by height and along the diffuser axis was performed. The obtained data may be useful for refining engineering calculations, verifying mathematical models, searching for technical solutions and deepening knowledge about the features of gas dynamics of air flows in vertical diffusers. Full article
(This article belongs to the Special Issue Advances in Active and Passive Techniques for Fluid Flow Manipulation)
Show Figures

Figure 1

13 pages, 1183 KB  
Article
The Influence of Gas-Dynamic Non-Stationarity of Air Flow on the Heat Transfer Coefficient in Round and Triangular Straight Pipes with Different Turbulence Intensities
by Leonid Plotnikov and Leonid Osipov
Appl. Sci. 2024, 14(17), 7758; https://doi.org/10.3390/app14177758 - 2 Sep 2024
Cited by 1 | Viewed by 1171
Abstract
Unsteady gas-dynamic phenomena in pipelines of complex configuration are widespread in heat exchange and power equipment. Therefore, studying the heat transfer level of pulsating air flows in round and triangular pipes with different turbulence intensities is a relevant and significant task for the [...] Read more.
Unsteady gas-dynamic phenomena in pipelines of complex configuration are widespread in heat exchange and power equipment. Therefore, studying the heat transfer level of pulsating air flows in round and triangular pipes with different turbulence intensities is a relevant and significant task for the development of science and technology. The studies were conducted on a laboratory stand based on the thermal anemometry method and an automated system for collecting and processing experimental data. Rectilinear round and triangular pipes with identical cross-sectional areas were used in the work. Flow pulsations from 3 to 15.8 Hz were generated by means of a rotating flap. The turbulence intensity (TI) of the pulsating flows varied from 0.03 to 0.15 by installing stationary flat turbulators. The working medium was air with a temperature of 22 ± 1 °C moving at a speed from 5 to 75 m/s. It was established that the presence of gas-dynamic unsteadiness leads to an increase in the TI by 47–72% in a round pipe and by 36–86% in a triangular pipe. The presence of gas-dynamic unsteadiness causes a heat transfer intensification in a round pipe by 26–35.5% and by 24–36% in a triangular pipe. It was shown that a significant increase in the TI of pulsating flows leads to an increase in the heat transfer coefficient by 11–16% in a round pipe and a decrease in the heat transfer coefficient by 7–24% in a triangular pipe. The obtained results can be used in the design of heat exchangers and gas exchange systems in power machines, as well as in the creation of devices and apparatuses of pulse action. Full article
(This article belongs to the Special Issue Fluid Flow and Heat Transfer: Latest Advances and Prospects)
Show Figures

Figure 1

27 pages, 5143 KB  
Article
Computational Fluid Dynamics Prediction of External Thermal Loads on Film-Cooled Gas Turbine Vanes: A Validation of Reynolds-Averaged Navier–Stokes Transition Models and Scale-Resolving Simulations for the VKI LS-94 Test Case
by Simone Sandrin, Lorenzo Mazzei, Riccardo Da Soghe and Fabrizio Fontaneto
Fluids 2024, 9(4), 91; https://doi.org/10.3390/fluids9040091 - 15 Apr 2024
Cited by 5 | Viewed by 2648
Abstract
Given the increasing role of computational fluid dynamics (CFD) simulations in the aerothermal design of gas turbine vanes and blades, their rigorous validation is becoming more and more important. This article exploits an experimental database obtained by the von Karman Institute (VKI) for [...] Read more.
Given the increasing role of computational fluid dynamics (CFD) simulations in the aerothermal design of gas turbine vanes and blades, their rigorous validation is becoming more and more important. This article exploits an experimental database obtained by the von Karman Institute (VKI) for Fluid Dynamics for the LS-94 test case. This represents a film-cooled transonic turbine vane, investigated in a five-vane linear cascade configuration under engine-like conditions in terms of the Reynolds number and Mach number. The experimental characterization included inlet freestream turbulence measured with hot-wire anemometry, aerodynamic performance assessed with a three-hole pressure probe in the downstream section, and vane convective heat transfer coefficient distribution determined with thin-film thermometers. The test matrix included cases without any film-cooling injection, pressure-side injection, and suction-side injection. The CFD simulations were carried out in Ansys Fluent, considering the impact of mesh sizing and steady-state Reynolds-Averaged Navier-Stokes (RANS) transition modelling, as well as more accurate transient scale-resolving simulations. This work provides insight into the advantages and drawbacks of such approaches for gas turbine hot-gas path designers. Full article
(This article belongs to the Special Issue Computational Fluid Dynamics in Fluid Machinery)
Show Figures

Figure 1

14 pages, 3435 KB  
Article
Profile Loss Prediction for Organic Rankine Cycle Turbines: An Experimental Case Study
by Leander Hake, Stephan Sundermeier and Stefan aus der Wiesche
Int. J. Turbomach. Propuls. Power 2023, 8(4), 51; https://doi.org/10.3390/ijtpp8040051 - 1 Dec 2023
Cited by 2 | Viewed by 2349
Abstract
The results of profile loss measurements, including trailing edge flow details, are presented for the flow of an organic vapor through a linear turbine cascade. The so-called VKI-I blade profile from the open literature was chosen for the cascade, and the working fluid [...] Read more.
The results of profile loss measurements, including trailing edge flow details, are presented for the flow of an organic vapor through a linear turbine cascade. The so-called VKI-I blade profile from the open literature was chosen for the cascade, and the working fluid was NOVEC 649. Pitot probes and hot-wire anemometry were employed to measure the flow field up and downstream of the cascade. Details of the unsteady flow caused by the trailing edge of the blades and the turbulent spectrum were investigated using hot-wire anemometry. The new organic vapor flow results were compared with the literature data obtained for air and with the prediction of conventional literature loss models. It was found that, under certain thermodynamic conditions, specific traditional loss models can reasonably predict organic Rankine cycle (ORC) turbines’ profile loss. Still, significant deviations between the loss models and the experimental data can also occur. Full article
Show Figures

Figure 1

15 pages, 7676 KB  
Article
Experimental Analysis and Spatial Component Impact of the Inert Cross Flow in Open-Architecture Laser Powder Bed Fusion
by Magnus Bolt Kjer, Zhihao Pan, Venkata Karthik Nadimpalli and David Bue Pedersen
J. Manuf. Mater. Process. 2023, 7(4), 143; https://doi.org/10.3390/jmmp7040143 - 7 Aug 2023
Cited by 7 | Viewed by 2509
Abstract
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a [...] Read more.
Laser-based powder bed fusion is an additive manufacturing process in which a high-power laser melts a thin layer of metal powder layer by layer to yield a three-dimensional object. An inert gas must remove process byproducts formed during laser processing to ensure a stable and consistent process. The process byproducts include a plasma plume and spatter particles. An NC sensor gantry is installed inside a bespoke open-architecture laser-based powder bed fusion system to experimentally characterize the gas velocity throughout the processing area. The flow maps are compared to manufactured samples, where the relative density and melt pools are analyzed, seeking a potential correlation between local gas flow conditions and the components. The results show a correlation between low gas flow velocities and increased porosity, leading to lower part quality. Local flow conditions across the build plate also directly impact components, highlighting the importance of optimizing the gas flow subsystem. The experimental flow analysis method enables optimization of the gas flow inlet geometry, and the data may be used to calibrate the computational modeling of the process. Full article
(This article belongs to the Special Issue High-Performance Metal Additive Manufacturing)
Show Figures

Figure 1

20 pages, 13230 KB  
Article
Experimental Detection of Organised Motion in Complex Flows with Modified Spectral Proper Orthogonal Decomposition
by Nick Schneider, Simon Köhler and Jens von Wolfersdorf
Fluids 2023, 8(6), 184; https://doi.org/10.3390/fluids8060184 - 17 Jun 2023
Cited by 1 | Viewed by 1901
Abstract
Spectral proper orthogonal decomposition (SPOD) has seen renewed interest in recent years due to its unique ability to decouple organised motion at different timescales from large datasets with limited available information. This paper investigated the unsteady components of the flow field within a [...] Read more.
Spectral proper orthogonal decomposition (SPOD) has seen renewed interest in recent years due to its unique ability to decouple organised motion at different timescales from large datasets with limited available information. This paper investigated the unsteady components of the flow field within a simplified turbine centre frame (TCF) model by applying SPOD to experimental, time-resolved flow speed data captured by particle image velocimetry (PIV). It was observed that conventional methods failed to capture the two significant active bands in the power spectrum predicted by preliminary hot wire anemometry measurements. Therefore, a modification to the SPOD procedure, which employs subsampling of the time sequence recorded in the experiment to artificially lower the PIV data acquisition frequency, was developed and successfully deployed to analyse the TCF flow field. The two dynamically active bands were identified in the power spectra, resulting in a closer match to the preceding analyses. Within these bands, SPOD’s ability to capture spatial coherence was leveraged to detect several plausible coherent, fluctuating structures in two perpendicular planes. A partial three-dimensional reconstruction of the flow phenomena suggested that both bands were associated with a distinct mode of organised motion, each contributing a significant percentage of the system’s total fluctuating energy. Full article
(This article belongs to the Topic Fluid Mechanics)
Show Figures

Figure 1

16 pages, 5110 KB  
Article
Preparation and Analysis of Experimental Findings on the Thermal and Mechanical Characteristics of Pulsating Gas Flows in the Intake System of a Piston Engine for Modelling and Machine Learning
by Leonid Plotnikov
Mathematics 2023, 11(8), 1967; https://doi.org/10.3390/math11081967 - 21 Apr 2023
Cited by 5 | Viewed by 2080
Abstract
Today, reciprocating internal combustion engines are used in many branches of the economy (power engineering, machine engineering, transportation, and others). In order for piston engines to meet stringent environmental and economic regulations, it is necessary to develop complex and accurate control systems for [...] Read more.
Today, reciprocating internal combustion engines are used in many branches of the economy (power engineering, machine engineering, transportation, and others). In order for piston engines to meet stringent environmental and economic regulations, it is necessary to develop complex and accurate control systems for the physical processes in engine elements based on digital twins, machine learning, and artificial intelligence algorithms. This article is aimed at preparing and analysing experimental data on the gas dynamics and heat transfer of pulsating air flows in a piston engine’s intake system for modelling and machine learning. The key studies were carried out on a full-scale model of a single-cylinder piston engine under dynamic conditions. Some experimental findings on the gas-dynamic and heat-exchange characteristics of the flows were obtained with the thermal anemometry method and a corresponding measuring system. The effects of the inlet channel diameter on the air flow, the intensity of turbulence, and the heat transfer coefficient of pulsating air flows in a piston engine’s inlet system are shown. A mathematical description of the dependences of the turbulence intensity, heat transfer coefficient, and Nusselt number on operation factors (crankshaft speed, air flow velocity, Reynolds number) and the inlet channel’s geometric dimensions are proposed. Based on the mathematical modelling of the thermodynamic cycle, the operational and environmental performance of a piston engine with intake systems containing channels with different diameters were assessed. The presented data could be useful for refining engineering calculations and mathematical models, as well as for developing digital twins and engine control systems. Full article
Show Figures

Figure 1

40 pages, 10585 KB  
Review
Experimental Investigation Techniques for Non-Ideal Compressible Fluid Dynamics
by Stefan aus der Wiesche
Int. J. Turbomach. Propuls. Power 2023, 8(2), 11; https://doi.org/10.3390/ijtpp8020011 - 3 Apr 2023
Cited by 16 | Viewed by 5141
Abstract
The rising number of applications of the organic Rankine cycle (ORC) or supercritical CO2 (sCO2) power systems have shaped a new branch of fluid mechanics called non-ideal compressible fluid dynamics (NICFD). This field of fluid mechanics is concerned with flows [...] Read more.
The rising number of applications of the organic Rankine cycle (ORC) or supercritical CO2 (sCO2) power systems have shaped a new branch of fluid mechanics called non-ideal compressible fluid dynamics (NICFD). This field of fluid mechanics is concerned with flows of vapors or gases, which are characterized by substantial deviations from the perfect gas model. In extreme cases, even non-classical gas dynamic phenomena could occur. Although these non-ideal compressible flows are the subject of sophisticated numerical simulation studies today, there is also a growing need for experimental data for validating purposes. In the last couple of years, new experimental test rigs designed for investigating non-ideal compressible fluid dynamics have been developed and commissioned. Classical practical measurement techniques are currently being re-developed and applied to non-ideal compressible flows. Despite its substantial relevance, information about these measurement techniques and their differences from conventional methods in the open literature is scarce. The present review article is an attempt to reduce that gap. After briefly discussing the thermodynamics and fluid dynamics of non-ideal compressible flows, the currently available test rigs and their utilized measurement techniques are reviewed. This review discusses schlieren optical investigations, pneumatic and laser-optical methods, and hot-wire anemometry for non-ideal compressible flows. Full article
(This article belongs to the Special Issue Advances in Critical Aspects of Turbomachinery Components and Systems)
Show Figures

Figure 1

17 pages, 6782 KB  
Article
Experimental Investigation on Velocity Fluctuation in a Vaned Diffuser Centrifugal Pump Measured by Laser Doppler Anemometry
by Ning Zhang, Delin Li, Junxian Jiang, Bo Gao, Dan Ni, Anthony Akurugo Alubokin and Wenbin Zhang
Energies 2023, 16(7), 3223; https://doi.org/10.3390/en16073223 - 3 Apr 2023
Cited by 3 | Viewed by 1973
Abstract
Turbulent flow, mainly originating from the rotor-stator interaction (RSI), is closely associated with the normal and safe operation of the centrifugal pump. In the current research, to clarify turbulent flow in the centrifugal pump with a vaned diffuser, the non-intrusive LDA (Laser Doppler [...] Read more.
Turbulent flow, mainly originating from the rotor-stator interaction (RSI), is closely associated with the normal and safe operation of the centrifugal pump. In the current research, to clarify turbulent flow in the centrifugal pump with a vaned diffuser, the non-intrusive LDA (Laser Doppler Anemometry) system is applied to measure velocity pulsation signals at different regions when the pump operates at various flow rates. Time and frequency domain analysis methods are combined to investigate the velocity signals, and the velocity distribution around the volute tongue region is reconstructed from twenty measuring points. Results show that the velocity spectrum is characterized by the discrete components at the blade passing frequency and its higher harmonics, and it is caused by the RSI between the impeller and the diffuser. For the points in the volute spiral and diffusion sections, due to the significantly reduced RSI effect, the velocity spectrum shows an evident difference from comparison with the points between the impeller and diffuser, and the blade passing frequency is not always the dominant frequency. The comparison of velocity amplitudes and RMS* (root mean square of velocity) values at different points proves that the measuring position and flow rate affect velocity pulsations. As observed from velocity distribution reconstructed by LDA signals, high velocity regions are developed downstream of the diffuser channel for all the measured flow rates. Full article
Show Figures

Figure 1

13 pages, 3382 KB  
Article
Experimental Observations on Flow Characteristics around a Low-Aspect-Ratio Wall-Mounted Circular and Square Cylinder
by Seyed M. Hajimirzaie
Fluids 2023, 8(1), 32; https://doi.org/10.3390/fluids8010032 - 15 Jan 2023
Cited by 8 | Viewed by 2768
Abstract
The mean wake structures of a cube (square cylinder) and circular cylinder of height-to-width aspect ratio 1.0, at a Reynolds number of 1.78 × 104 based on the obstacle width, were investigated experimentally. The boundary-layer thickness was 0.14 of the obstacle height. [...] Read more.
The mean wake structures of a cube (square cylinder) and circular cylinder of height-to-width aspect ratio 1.0, at a Reynolds number of 1.78 × 104 based on the obstacle width, were investigated experimentally. The boundary-layer thickness was 0.14 of the obstacle height. The study was performed using thermal anemometry and two-dimensional digital particle image velocimetry (DPIV). Streamwise structures observed in the mean wake for both cylinders included well-known tip- and horseshoe (HS)-,vortex pairs as well as additional structures akin to the base vortices. In addition to tip-, base-, and HS-vortices, in the near wake of the cube, two more counter-rotating pairs of streamwise structures, including upper and inboard vortices, were observed. The existence of base vortices formed in the near wake for both obstacles is a unique observation and has not been previously reported for such low-aspect-ratio obstacles in thin boundary-layers. A model of arch-vortex evolution was proposed, in which arch structures were deformed by the external shear-flow to explain the observed base-vortices in the cylinder wake. A weak dominant-frequency of St = f0D/U∞ = 0.114 was observed across the height for the cube, while no discernible spectral peaks were apparent in the wake of the cylinder. Cross-spectral analysis revealed the shedding to be symmetric (in-phase) arch-type for the cylinder and predominantly anti-symmetric (out-of-phase) Karman-type for the cube. The study makes fundamental contributions to the understanding of the flow-field surrounding low-aspect-ratio cylinders. Full article
(This article belongs to the Special Issue Challenges and Directions in Fluid Structure Interaction)
Show Figures

Figure 1

18 pages, 9618 KB  
Article
Searching for a Numerical Model for Prediction of Pressure-Swirl Atomizer Internal Flow
by Milan Maly, Jaroslav Slama, Ondrej Cejpek and Jan Jedelsky
Appl. Sci. 2022, 12(13), 6357; https://doi.org/10.3390/app12136357 - 22 Jun 2022
Cited by 5 | Viewed by 3648
Abstract
Numerical prediction of discharge parameters allows design of a pressure-swirl atomizer in a fast and cheap manner, yet it must provide reliable results for a wide range of geometries and operating regimes. Many authors have used different numerical setups for similar cases and [...] Read more.
Numerical prediction of discharge parameters allows design of a pressure-swirl atomizer in a fast and cheap manner, yet it must provide reliable results for a wide range of geometries and operating regimes. Many authors have used different numerical setups for similar cases and often concluded opposite suggestions on numerical setup. This paper compares 2D (two-dimensional) axisymmetric, 3D (three-dimensional) periodic and full 3D numerical models used for estimation of the internal flow characteristics of a pressure-swirl atomizer. The computed results are compared with experimental data in terms of spray cone angle, discharge coefficient (CD), internal air-core dimensions, and velocity profiles. The three-component velocity was experimentally measured using a Laser Doppler Anemometry in a scaled transparent model of the atomizer. The internal air-core was visualized by a high-speed camera with backlit illumination. Tested conditions covered a wide range of the Reynolds numbers within the inlet ports, Re = 1000, 2000, 4000. The flow was treated as both steady and transient flow. The numerical solver used laminar and several turbulence models, represented by k-ε and k-ω models, Reynolds Stress model (RSM) and Large Eddy Simulation (LES). The laminar solver was capable of closely predicting the CD, air-core dimensions and velocity profiles compared with the experimental results in both 2D and 3D simulations. The LES performed similarly to the laminar solver for low Re and was slightly superior for Re = 4000. The two-equation models were sensitive to proper solving of the near wall flow and were not accurate for low Re. Surprisingly, the RSM produced the worst results. Full article
(This article belongs to the Collection Progress in Liquid Atomization and Spray Systems)
Show Figures

Figure 1

Back to TopTop