Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = exhaust gas treatment systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3162 KiB  
Article
Study on Separation of Desulfurization Wastewater in Ship Exhaust Gas Cleaning System with Rotating Dynamic Filtration
by Shiyong Wang, Juan Wu, Yanlin Wu and Wenbo Dong
Membranes 2025, 15(7), 214; https://doi.org/10.3390/membranes15070214 - 18 Jul 2025
Viewed by 393
Abstract
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental [...] Read more.
Current treatment methods for desulfurization wastewater in the ship exhaust gas cleaning (EGC) system face several problems, including process complexity, unstable performance, large spatial requirements, and high energy consumption. This study investigates rotating dynamic filtration (RDF) as an efficient treatment approach through experimental testing, theoretical analysis, and pilot-scale validation. Flux increases with temperature and pressure but decreases with feed concentration, remaining unaffected by circulation flow. For a small membrane (152 mm), flux consistently increases with rotational speed across all pressures. For a large membrane (374 mm), flux increases with rotational speed at 300 kPa but firstly increases and then decreases at 100 kPa. Filtrate turbidity in all experiments complies with regulatory standards. Due to the unique hydrodynamic characteristics of RDF, back pressure reduces the effective transmembrane pressure, whereas shear force mitigates concentration polarization and cake layer formation. Separation performance is governed by the balance between these two forces. The specific energy consumption of RDF is only 10–30% that of cross-flow filtration (CFF). Under optimized pilot-scale conditions, the wastewater was concentrated 30-fold, with filtrate turbidity consistently below 2 NTU, outperforming CFF. Moreover, continuous operation proves more suitable for marine environments. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

20 pages, 4798 KiB  
Article
Solutions for Energy and Raw Material Recovery from Sewage Sludge Within the Concept of Circular Economy
by Elena Pop, Lucian Mihăescu, Carmen Anca Safta, Horațiu Lucian Pop, Gabriel Paul Negreanu and Ionel Pîșă
Sustainability 2025, 17(7), 3181; https://doi.org/10.3390/su17073181 - 3 Apr 2025
Viewed by 777
Abstract
Wastewater treatment plants traditionally dispose of sludge using the method of landfilling and incineration, with both being carbon-intensive and environmentally harmful. Converting sludge into energy or reusable materials avoids landfills or incineration, helping reduce the volume of waste and associated pollution. Sludge treatment [...] Read more.
Wastewater treatment plants traditionally dispose of sludge using the method of landfilling and incineration, with both being carbon-intensive and environmentally harmful. Converting sludge into energy or reusable materials avoids landfills or incineration, helping reduce the volume of waste and associated pollution. Sludge treatment with energy recovery can offset fossil fuel use, further reducing the carbon footprint of sewage treatment processes. This research explores ways to recover energy from sewage sludge, a byproduct of wastewater treatment that is often considered waste. Transforming sludge into valuable resources aligns with the principles of the circular economy, where waste streams are repurposed, minimizing environmental impact and enhancing resource efficiency. In this paper, a method is presented to reduce the volume of wastewater sludge by drying it in a hot flue gas stream at 700 °C. The energy of the exhaust gas is recovered in an organic Rankine cycle system, which powers the wastewater treatment facilities themselves, making them more self-sustaining. Full article
Show Figures

Figure 1

18 pages, 4581 KiB  
Article
A Design-Oriented Model for Transmission Loss Optimization in Marine DOCs
by Jan Kašpar, Francesco Mauro, Marco Biot, Giovanni Rognoni and Giada Kyaw Oo D’Amore
J. Mar. Sci. Eng. 2024, 12(12), 2358; https://doi.org/10.3390/jmse12122358 - 22 Dec 2024
Viewed by 871
Abstract
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs [...] Read more.
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs allows to save space and comply with international regulations. Moreover, in the available literature, there is a lack of guidelines about the design of integrated EGCSs. This study aims to develop an ad hoc optimization methodology that uses combined Computational Fluid Dynamics (CFD)–Finite Element Method (FEM) simulations, surrogate models, and Genetic Algorithms to optimize the acoustic properties of EGCSs while considering the limits imposed by the efficiency of chemical reactions for the abatement of NOx and SOx. The developed methodology is applied to a Diesel Oxidation Catalyst (DOC), and the obtained results lead to a system that integrates the silencing effect into the DOC. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

17 pages, 5082 KiB  
Article
Data-Driven-Based Full Recovery Technology and System for Transformer Insulating Oil
by Feng Chen, Li Wang, Zhiyao Zheng, Bin Pan, Yujia Hu and Kexin Zhang
Energies 2024, 17(24), 6345; https://doi.org/10.3390/en17246345 - 17 Dec 2024
Cited by 1 | Viewed by 1069
Abstract
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization [...] Read more.
This study aims to develop an efficient recovery solution for waste transformer insulating oil, addressing the challenge of incomplete separation of residual oil in existing recovery technologies. A multi-module integrated system is constructed, comprising a waste oil extraction module, a residual oil vaporization module, an exhaust gas treatment module, and an online monitoring module. By combining steps such as oil extraction, residual oil absorption, hot air circulation heating, and negative-pressure low-frequency induction heating, the complete recovery of waste oil is achieved. The recovery process incorporates oil–gas saturation monitoring and an oil–gas precipitation assessment algorithm based on neural networks to enable intelligent control, ensuring thorough recovery of residual oil from transformers. The proposed system and methods demonstrate excellent recovery efficiency and environmental protection effects during the pre-treatment of waste transformer oil. Experiments conducted on 50 discarded transformers showed an average recovery efficiency exceeding 99%, with 49 transformers exhibiting no damage to core components after the recovery process. From a theoretical perspective, this research introduces monitoring and control methods for transformer insulating oil recovery, providing significant support for the green processing and reutilization of discarded transformer insulating oil. From an application value perspective, the recovery process helps reduce environmental pollution and facilitates the disassembly of transformers. This enables better analysis of transformer operating characteristics, thereby enhancing the reliability and safety of power systems. Full article
Show Figures

Figure 1

28 pages, 12696 KiB  
Article
The Thermo-Oxidative Degradation of Polyurethane Open-Cell Soft Foam Investigated Through Gas Chromatography and Mass Spectrometry of Volatile Organic Compounds
by Christian Stefan Sandten, Martin Kreyenschmidt, Rolf Albach and Ursula E. A. Fittschen
Polymers 2024, 16(23), 3342; https://doi.org/10.3390/polym16233342 - 28 Nov 2024
Cited by 3 | Viewed by 2045
Abstract
Polyurethane (PUR) soft foams release malodorous and potentially toxic compounds when exposed to oxidative conditions. Current chamber test methods cannot distinguish between pre-existing volatiles and those formed during oxidation, nor can they assess the formation rates of oxidation products. We subjected PUR soft [...] Read more.
Polyurethane (PUR) soft foams release malodorous and potentially toxic compounds when exposed to oxidative conditions. Current chamber test methods cannot distinguish between pre-existing volatiles and those formed during oxidation, nor can they assess the formation rates of oxidation products. We subjected PUR soft foam to oxidative treatment in a continuous air flow at 120 °C. Emissions were convectively transferred from the foam to an exhaust port and analyzed using a thermodesorption–gas chromatography–mass spectrometry (TD-GC-MS) system, with external calibration employed for the quantification of selected analytes. The study identified hydroperoxide formation and degradation as key mechanisms in the breakdown of the polyether soft segments. This process predominantly produces volatiles, such as carboxylic acids, formates, acetates, alpha-hydroxy-ketones, (unsaturated) aldehydes, substituted dioxolanes and dioxanes, glycols, and allyl ethers. Volatiles associated with the degradation of the hard segments include aniline, benzoxazole, 2-methylbenzoxazole, and benzaldehyde. This experimental setup enables reproducible qualitative and quantitative analysis of volatiles formed during the oxidative degradation of PUR soft foams, providing new insights into the segment-dependent chemical pathways of the polymer’s molecular breakdown. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Graphical abstract

10 pages, 4044 KiB  
Article
Development and Performance Evaluation Experiment of a Device for Simultaneous Reduction of SOx and PM
by Kyeong-Ju Kong and Sung-Chul Hwang
Energies 2024, 17(13), 3337; https://doi.org/10.3390/en17133337 - 8 Jul 2024
Viewed by 1493
Abstract
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually [...] Read more.
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually poses challenges due to spatial constraints on ships. Consequently, a Total Gas Cleaning System (TGCS) capable of simultaneously reducing sulfur oxides and particulate matter has been developed. The TGCS combines a cyclone dust collector and a wet scrubber system. The cyclone dust collector is designed to maintain a certain distance from the bottom of the wet scrubber, allowing exhaust gases entering from the bottom to rise as sulfur oxides are adsorbed. Additionally, the exhaust gases descending through the space between the cyclone dust collector and the wet scrubber collide with the scrubbing solution before entering the bottom of the wet scrubber, facilitating the absorption of SOx. In this study, the efficiency of the developed TGCS was evaluated, and the reduction effects based on design parameters were investigated. Furthermore, the impact of this device on ship engines was analyzed to assess its practical applicability. Experimental results showed that increasing the volume flow rate of the cleaning solution enhanced the PM reduction effect. Particularly, when the height of the Pall ring was 1000 mm and the volume flow rate was 35 L/min, the sulfur oxide reduction effect met the standards for Sulfur Emission Control Areas (SECA). Based on these findings, suggestions for effectively controlling atmospheric pollutants from ships were made, with the expectation of contributing to the development of systems combining various after-treatment devices. Full article
Show Figures

Figure 1

32 pages, 10642 KiB  
Review
A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches
by Gang Wu, Guoda Feng, Yuelin Li, Tao Ling, Xuejun Peng, Zhilai Su and Xiaohuan Zhao
Energies 2024, 17(3), 584; https://doi.org/10.3390/en17030584 - 25 Jan 2024
Cited by 9 | Viewed by 3767
Abstract
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the [...] Read more.
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the efficiency of these devices. This paper aims to identify the challenges of this topic and seek novel methods to control the temperature. Insulation methods and catalysts decrease the energy required for thermal management, which improves the efficiency of thermal management. Thermal insulation decreases the heat loss of the exhaust gas, which can reduce the after-treatment light-off time. The DOC light-off time was reduced by 75% under adiabatic conditions. A 400 W microwave can heat the DPF to the soot oxidation temperature of 873 K at a regeneration time of 150 s. An SCR burner can decrease NOx emissions by 93.5%. Electrically heated catalysts can decrease CO, HC, and NOx emissions by 80%, 80%, and 66%, respectively. Phase-change materials can control the SCR temperature with a two-thirds reduction in NOx emissions. Pt-Pd application in the catalyst can decrease the CO light-off temperature to 113 °C. Approaches of catalysts can enhance the efficiency of the after-treatment systems and reduce the energy consumption of thermal management. Full article
(This article belongs to the Special Issue Advanced Thermal Management Technologies and Heat Transfer)
Show Figures

Figure 1

22 pages, 2799 KiB  
Article
Measuring Carbon Emissions from Green and Low-Carbon Full-Life-Cycle Feeding in Large-Scale Pig Production Systems: A Case Study from Shaanxi Province, China
by Qingsong Zhang, Haoling Liao, Honghong Yang, Mengmeng Liu, Suobin Jia and Hua Li
Agriculture 2023, 13(12), 2281; https://doi.org/10.3390/agriculture13122281 - 15 Dec 2023
Cited by 1 | Viewed by 2509
Abstract
In the pursuit of establishing a more environmentally sustainable and low-carbon hog farming system, the accurate quantification of emissions of greenhouse gas emanating from these systems, especially within the context of China, becomes imperative. Here, drawing insights from a life cycle approach, exhaustive [...] Read more.
In the pursuit of establishing a more environmentally sustainable and low-carbon hog farming system, the accurate quantification of emissions of greenhouse gas emanating from these systems, especially within the context of China, becomes imperative. Here, drawing insights from a life cycle approach, exhaustive field surveys, and context-specific analyses, we establish an emission measurement index system tailored to hog farming enterprises in China’s Shaanxi Province. Using this methodology, we probed the emission profiles and characteristics of three emblematic hog farming enterprises in the region. Our key findings are as follows: (1) The carbon dioxide emissions per kilogram of pork, factoring in feed cultivation, processing, and transportation, for Pucheng Xinliu Science and Technology, Baoji Zhengneng Farming, and Baoji Zhenghui Farming were quantified as 0.80298 kg, 1.52438 kg, and 0.81366 kg, respectively. (2) Presently, the methane emission coefficient due to enteric fermentation in large-scale hog farms in Shaanxi surpasses the default value set by the Intergovernmental Panel on Climate Change (IPCC). There appears to be a consistent underestimation of enteric methane emissions from live pigs in the province, as gauged against the IPCC metrics. Notably, the emission factor for fattening pigs averaged 2.61823 kgCH4/head/year, while that for breeding pigs stood at 2.96752 kgCH4/head/year. (3) When examining methane and nitrous oxide outputs from manure across various production stages, we observed that emissions from lactating pigs significantly outweigh those from other stages. Interestingly, nitrous oxide emissions from breeding pigs during fattening, finishing, and gestation remained nearly the same, regardless of the manure treatment method. (4) Under the management protocols followed by Pucheng and Baoji, the total carbon emissions from an individual fattening pig amounted to 328.5283 kg and 539.2060 kg, respectively, whereas for breeding pigs, these values were 539.2060 kg and 551.6733 kg, respectively. Further calculations showed that the average carbon footprint CF of large-scale pig farms in China was 3.6281 kgCO2/kg pork. In conclusion, optimizing feed cultivation and transportation logistics, promoting integrated breeding and rearing practices, refining feed formulation, and advancing manure management practices can collaboratively attenuate greenhouse gas emissions. Such synergistic approaches hold promise for steering the hog industry towards a greener, low-carbon, and sustainable trajectory. Full article
(This article belongs to the Section Agricultural Economics, Policies and Rural Management)
Show Figures

Figure 1

25 pages, 10829 KiB  
Article
Selection of a Particulate Filter for a Gasoline-Powered Vehicle Engine in Static and Dynamic Conditions
by Jacek Pielecha and Jerzy Merkisz
Energies 2023, 16(23), 7777; https://doi.org/10.3390/en16237777 - 26 Nov 2023
Cited by 2 | Viewed by 1312
Abstract
Current challenges in terms of exhaust emission limits are related to the reduction of the particle numbers in spark ignition direct injection engines. The article concerns the analysis of the thermodynamic parameters of engine operation, allowing the selection of the particulate filter configuration [...] Read more.
Current challenges in terms of exhaust emission limits are related to the reduction of the particle numbers in spark ignition direct injection engines. The article concerns the analysis of the thermodynamic parameters of engine operation, allowing the selection of the particulate filter configuration and its technical parameters. The designed system consisting of an internal combustion engine and an exhaust system with an exhaust gas treatment system should be sufficient to meet ecological requirements in the form of reducing particulate matter emissions. The analysis of particulate matter emissions for the system without a filter and with a filter installed in the engine exhaust system was carried out for the mass, number and dimensional distribution of particulate matter. The result was an assessment of filtration efficiency for the entire spectrum of particulate diameters in the identified engine operating ranges. As a result, it was found that the particulate filter used in the engine exhaust system effectively reduces the particle number due to the greater filtration efficiency of large particles. The summary of the work related to the analysis of the ecological parameters of a spark ignition engine with direct fuel injection was a simulation of road tests of a vehicle with the proposed modified vehicle exhaust system equipped with a particulate filter. For this configuration, the analysis of particulate number emissions in the parameterized engine operating areas showed that it is possible to meet the particulate number emission limits, and the obtained road emission results are fully acceptable in terms of the obtained absolute values. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Figure 1

32 pages, 6135 KiB  
Article
Hammerstein–Wiener Model Identification for Oil-in-Water Separation Dynamics in a De-Oiling Hydrocyclone System
by Stefan Jespersen, Zhenyu Yang, Dennis Severin Hansen, Mahsa Kashani and Biao Huang
Energies 2023, 16(20), 7095; https://doi.org/10.3390/en16207095 - 14 Oct 2023
Cited by 3 | Viewed by 1774
Abstract
To reduce the environmental impact of offshore oil and gas, the hydrocarbon discharge regulations tend to become more stringent. One way to reduce the oil discharge is to improve the control systems by introducing new oil-in-water (OiW) sensing technologies and advanced control. De-oiling [...] Read more.
To reduce the environmental impact of offshore oil and gas, the hydrocarbon discharge regulations tend to become more stringent. One way to reduce the oil discharge is to improve the control systems by introducing new oil-in-water (OiW) sensing technologies and advanced control. De-oiling hydrocyclones are commonly used in offshore facilities for produced water treatment (PWT), but obtaining valid control-oriented models of hydrocyclones has proven challenging. Existing control-oriented models are often based on droplet trajectory analysis. While it has been demonstrated that these models can fit steady-state separation efficiency data, the dynamics of these models have either not been validated experimentally or only describe part of the dynamics. In addition to the inlet OiW concentration, they require the droplet size distribution to be measured, which complicates model validation as well as implementation. This work presents an approach to obtain validated nonlinear models of the discharge concentration, separation efficiency, and discharge rate, which do not require the droplet size distribution to be measured. An exhaustive search approach is used to identify control-oriented polynomial-type Hammerstein–Wiener (HW) models of de-oiling hydrocyclones based on concentration measurements from online OiW monitors. To demonstrate the effectiveness of this modeling approach, a PI controller is designed using the Skogestad internal model control (SIMC) tuning rules to control the discharge OiW concentration directly. The identification experiment emulates an offshore PWT system with installed OiW monitors, which is realistic with the legislative incentive to include online OiW discharge measurements. The proposed approach could enable the application of OiW-based control on existing offshore PWT facilities, resulting in improved de-oiling performance and reduced oil discharge. Full article
(This article belongs to the Special Issue Subsurface Energy and Environmental Protection)
Show Figures

Graphical abstract

18 pages, 2478 KiB  
Review
Methane Emission Reduction Technologies for Natural Gas Engines: A Review
by Andrew Huonder and Daniel Olsen
Energies 2023, 16(20), 7054; https://doi.org/10.3390/en16207054 - 12 Oct 2023
Cited by 9 | Viewed by 5735
Abstract
This review summarizes technologies to reduce methane emissions from natural gas engines with a focus on exhaust treatment. As regulations on methane emissions from natural gas facilities become more restrictive, methane emission reduction technologies become increasingly important. Methane is the second most prevalent [...] Read more.
This review summarizes technologies to reduce methane emissions from natural gas engines with a focus on exhaust treatment. As regulations on methane emissions from natural gas facilities become more restrictive, methane emission reduction technologies become increasingly important. Methane is the second most prevalent human-generated greenhouse gas. In 2020, 197,000 metric tons of methane were released as a result of methane slip. In-cylinder methods such as optimized valve timing and crevice volume reduction are effective in reducing methane slip. Exhaust treatment methods such as catalytic oxidizers and regenerative thermal oxidizers can achieve near 100% methane reduction under certain conditions. Implementation of hydrogen blending and exhaust gas recirculation systems results in a decrease in methane emissions of between 20 and 30%. Future research should focus on testing full-scale catalytic oxidation systems on lean-burn natural gas engines. Research should also focus on implementing regenerative thermal oxidizers on natural gas engines, as well as combining hydrogen blending with these techniques. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

16 pages, 9071 KiB  
Article
Study on Rates of NH3 Adsorption and Desorption in SCR on Various Engine Operation Conditions
by Hyun Jo, Ahyun Ko, Jinyoung Jang and Ocktaeck Lim
Sustainability 2023, 15(19), 14468; https://doi.org/10.3390/su151914468 - 4 Oct 2023
Cited by 1 | Viewed by 1795
Abstract
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas [...] Read more.
Aging diesel engines on the road require the development of an after-treatment system to meet current emission regulations, and a reduction in NOx (Nitrogen Oxide) is significant. The SCR (Selective Catalytic Reduction) system is the after-treatment system for removing NOx from exhaust gas in diesel engines using NH3 (Ammonia) gas. However, the mixing and conversion process between NH3 and NOx in SCR has not been entirely clarified. That process produces NH3 slip in the catalyst surface; the NH3 slip will make the after-treatment performance worse. This study informs how the UWS (Urea Water Solution) injection controlling method can minimize the NH3 slip in the after-treatment system. For this, the NH3 adsorption and desorption rates are important factors for determining the quantity of UWS injection in the system. The NH3 adsorption rate and desorption rate in the SCR are not significantly affected by engine speed, i.e., the exhaust gas flow rate. However, as the exhaust gas temperature increased, the adsorption rate and desorption rate of NH3 in the SCR increased. Through this, the exhaust gas temperature dramatically affects the NH3 adsorption rate and desorption rate in the SCR. Therefore, if the urea water is injected based on this knowledge that the NH3 adsorption amount in the SCR decreases as the exhaust gas flow rate increases, NH3 slip can be suppressed and a high NOx reduction rate can be achieved. Therefore, if the SCR adsorption and desorption mechanisms are analyzed according to the exhaust temperature and the exhaust flow rate in this paper, it can be used as a reference for selecting an appropriate SCR when retrofitting an old diesel engine car. Full article
(This article belongs to the Collection Air Pollution Control and Sustainable Development)
Show Figures

Figure 1

22 pages, 10800 KiB  
Article
Numerical Analysis of Dual Fuel Combustion in a Medium Speed Marine Engine Supplied with Methane/Hydrogen Blends
by Maria Cristina Cameretti, Roberta De Robbio and Marco Palomba
Energies 2023, 16(18), 6651; https://doi.org/10.3390/en16186651 - 16 Sep 2023
Cited by 10 | Viewed by 2760
Abstract
Compression ignition engines will still be predominant in the naval sector: their high efficiency, high torque, and heavy weight perfectly suit the demands and architecture of ships. Nevertheless, recent emission legislations impose limitations to the pollutant emissions levels in this sector as well. [...] Read more.
Compression ignition engines will still be predominant in the naval sector: their high efficiency, high torque, and heavy weight perfectly suit the demands and architecture of ships. Nevertheless, recent emission legislations impose limitations to the pollutant emissions levels in this sector as well. In addition to post-treatment systems, it is necessary to reduce some pollutant species, and, therefore, the study of combustion strategies and new fuels can represent valid paths for limiting environmental harmful emissions such as CO2. The use of methane in dual fuel mode has already been implemented on existent vessels, but the progressive decarbonization will lead to the utilization of carbon-neutral or carbon-free fuels such as, in the last case, hydrogen. Thanks to its high reactivity nature, it can be helpful in the reduction of exhaust CH4. On the contrary, together with the high temperatures achieved by its oxidation, hydrogen could cause uncontrolled ignition of the premixed charge and high emissions of NOx. As a matter of fact, a source of ignition is still necessary to have better control on the whole combustion development. To this end, an optimal and specific injection strategy can help to overcome all the before-mentioned issues. In this study, three-dimensional numerical simulations have been performed with the ANSYS Forte® software (version 19.2) in an 8.8 L dual fuel engine cylinder supplied with methane, hydrogen, or hydrogen–methane blends with reference to experimental tests from the literature. A new kinetic mechanism has been used for the description of diesel fuel surrogate oxidation with a set of reactions specifically addressed for the low temperatures together with the GRIMECH 3.0 for CH4 and H2. This kinetics scheme allowed for the adequate reproduction of the ignition timing for the various mixtures used. Preliminary calculations with a one-dimensional commercial code were performed to retrieve the initial conditions of CFD calculations in the cylinder. The used approach demonstrated to be quite a reliable tool to predict the performance of a marine engine working under dual fuel mode with hydrogen-based blends at medium load. As a result, the system modelling shows that using hydrogen as fuel in the engine can achieve the same performance as diesel/natural gas, but when hydrogen totally replaces methane, CO2 is decreased up to 54% at the expense of the increase of about 76% of NOx emissions. Full article
Show Figures

Figure 1

24 pages, 522 KiB  
Review
Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review
by Laura Robles-Lorite, Rubén Dorado-Vicente, Eloísa Torres-Jiménez, Gorazd Bombek and Luka Lešnik
Energies 2023, 16(18), 6425; https://doi.org/10.3390/en16186425 - 5 Sep 2023
Cited by 13 | Viewed by 7634
Abstract
Despite the current boost in the use of electric vehicles to reduce the automotive sector’s footprint, combustion vehicles are and will be present in our cities in both the immediate and long term. In this sense, catalytic converters, which are exhaust gas post-treatment [...] Read more.
Despite the current boost in the use of electric vehicles to reduce the automotive sector’s footprint, combustion vehicles are and will be present in our cities in both the immediate and long term. In this sense, catalytic converters, which are exhaust gas post-treatment systems for vehicle emission control, are critical for complying with increasingly stringent environmental regulations. This work proposes a systematic review to identify the most relevant knowledge regarding the parameters (materials, geometries, and engine conditions), conditions (cold start, oxygen storage, and deactivation), and mathematical models to consider in the design of catalytic converters. The Scopus database contains 283 records related to this review’s objective. After applying the inclusion and exclusion criteria, 65 reports were retrieved for evaluation. A table was created to present the results and prepare this manuscript. The evaluation revealed that the following topics were active: the study of non-noble catalyst materials, as well as new substrate materials and geometries, for designing more compact and cost-effective catalytic converters; the development of strategies to improve conversion during cold starts; and the development of accurate and fast estimation models. Full article
(This article belongs to the Section F3: Power Electronics)
Show Figures

Figure 1

21 pages, 7298 KiB  
Article
Design of an Optimum Compact EGR Cooler in a Heavy-Duty Diesel Engine towards Meeting Euro 7 Emission Regulations
by Emrah Gumus and Murat Otkur
Sustainability 2023, 15(16), 12361; https://doi.org/10.3390/su151612361 - 14 Aug 2023
Cited by 3 | Viewed by 2223
Abstract
Exhaust gas recirculation (EGR) has been an efficient emission treatment strategy employed in internal combustion engines (ICEs) to cope with NOx emission limits since the introduction of Euro 4 regulations for heavy-duty commercial vehicles. A portion of the exhaust gas is fed [...] Read more.
Exhaust gas recirculation (EGR) has been an efficient emission treatment strategy employed in internal combustion engines (ICEs) to cope with NOx emission limits since the introduction of Euro 4 regulations for heavy-duty commercial vehicles. A portion of the exhaust gas is fed back into the intake port, replacing O2 in the fresh air with inert CO2 from the exhaust gas, resulting in a reduction in the combustion temperature and, hence, a reduction in NOx emissions. Considering the high exhaust temperature, this process increases the charge mixture temperature and degrades the volumetric efficiency of the engine. EGR coolers have been introduced as vital parts of EGR exhaust treatment systems with the aim of reducing the intake port temperature to increase volumetric efficiency and further reduce combustion temperatures. EGR coolers are heat exchangers (HXs) that generally employ engine coolant to reduce the EGR temperature with effectiveness values around 0.7~0.85 and downgrade with engine usage owing to soot deposition. Increasing the effectiveness of the EGR cooler has a positive effect on engine volumetric efficiency and reduces NOx, particulate matter (PM), and fuel consumption. The current study involved the design of a microchannel HX for a 500 PS heavy-duty Euro 6 diesel engine EGR cooler. The mechanical and thermal-hydraulic design calculations of the proposed HX were performed using Mathematica software. The optimum HX dimensions for the required boundary conditions were determined, and the performance of the EGR cooler was analyzed for the current and proposed options. Furthermore, Diesel-RK software was used to model the engine performance with NOx, PM, CO2 emissions, and fuel consumption predictions. The results show that the newly proposed microchannel HX design improves NOx, PM, and specific fuel consumption by 6.75%, 11.30%, and 0.65%, respectively. Full article
Show Figures

Figure 1

Back to TopTop