Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (90)

Search Parameters:
Keywords = exhaust aftertreatment systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 1087 KiB  
Review
After-Treatment Technologies for Emissions of Low-Carbon Fuel Internal Combustion Engines: Current Status and Prospects
by Najunzhe Jin, Wuqiang Long, Chunyang Xie and Hua Tian
Energies 2025, 18(15), 4063; https://doi.org/10.3390/en18154063 - 31 Jul 2025
Viewed by 334
Abstract
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along [...] Read more.
In response to increasingly stringent emission regulations, low-carbon fuels have received significant attention as sustainable energy sources for internal combustion engines. This study investigates four representative low-carbon fuels, methane, methanol, hydrogen, and ammonia, by systematically summarizing their combustion characteristics and emission profiles, along with a review of existing after-treatment technologies tailored to each fuel type. For methane engines, unburned hydrocarbon (UHC) produced during low-temperature combustion exhibits poor oxidation reactivity, necessitating integration of oxidation strategies such as diesel oxidation catalyst (DOC), particulate oxidation catalyst (POC), ozone-assisted oxidation, and zoned catalyst coatings to improve purification efficiency. Methanol combustion under low-temperature conditions tends to produce formaldehyde and other UHCs. Due to the lack of dedicated after-treatment systems, pollutant control currently relies on general-purpose catalysts such as three-way catalyst (TWC), DOC, and POC. Although hydrogen combustion is carbon-free, its high combustion temperature often leads to elevated nitrogen oxide (NOx) emissions, requiring a combination of optimized hydrogen supply strategies and selective catalytic reduction (SCR)-based denitrification systems. Similarly, while ammonia offers carbon-free combustion and benefits from easier storage and transportation, its practical application is hindered by several challenges, including low ignitability, high toxicity, and notable NOx emissions compared to conventional fuels. Current exhaust treatment for ammonia-fueled engines primarily depends on SCR, selective catalytic reduction-coated diesel particulate filter (SDPF). Emerging NOx purification technologies, such as integrated NOx reduction via hydrogen or ammonia fuel utilization, still face challenges of stability and narrow effective temperatures. Full article
(This article belongs to the Special Issue Engine Combustion Characteristics, Performance, and Emission)
Show Figures

Figure 1

24 pages, 4002 KiB  
Article
CFD Simulation-Based Development of a Multi-Platform SCR Aftertreatment System for Heavy-Duty Compression Ignition Engines
by Łukasz Jan Kapusta, Bartosz Kaźmierski, Rohit Thokala, Łukasz Boruc, Jakub Bachanek, Rafał Rogóż, Łukasz Szabłowski, Krzysztof Badyda, Andrzej Teodorczyk and Sebastian Jarosiński
Energies 2025, 18(14), 3697; https://doi.org/10.3390/en18143697 - 13 Jul 2025
Viewed by 367
Abstract
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe [...] Read more.
Combustion processes in compression ignition engines lead to the inevitable generation of nitrogen oxides, which cannot be limited to the currently desired levels just by optimising the in-cylinder processes. Therefore, simulation-based engine development needs to include all engine-related aspects which contribute to tailpipe emissions. Among them, the SCR (selective catalytic reduction) aftertreatment-related processes, such as urea–water solution injection, urea decomposition, mixing, NOx catalytic reduction, and deposits’ formation, are the most challenging, and require as much attention as the processes taking place inside the cylinder. Over the last decade, the urea-SCR aftertreatment systems have evolved from underfloor designs to close-coupled (to the engine) architecture, characterised by the short mixing length. Therefore, they need to be tailor-made for each application. This study presents the CFD-based development of a multi-platform SCR system with a short mixing length for mobile non-road applications, compliant with Stage V NRE-v/c-5 emission standard. It combines multiphase dispersed flow, including wall wetting and urea decomposition kinetic reaction modelling to account for the critical aspects of the SCR system operation. The baseline system’s design was characterised by the severe deposit formation near the mixer’s outlet, which was attributed to the intensive cooling in the mounting area. Moreover, as the simulations suggested, the spray was not appropriately mixed with the surrounding gas in its primary zone. The proposed measures to reduce the wall film formation needed to account for the multi-platform application (ranging from 56 to 130 kW) and large-scale production capability. The performed simulations led to the system design, providing excellent UWS–exhaust gas mixing without a solid deposit formation. The developed system was designed to be manufactured and implemented in large-scale series production. Full article
Show Figures

Figure 1

23 pages, 9227 KiB  
Article
Achieving NOx Emissions with Zero-Impact on Air Quality from Diesel Light-Duty Commercial Vehicles
by Theodoros Kossioris, Robert Maurer, Stefan Sterlepper, Marco Günther and Stefan Pischinger
Energies 2025, 18(8), 1882; https://doi.org/10.3390/en18081882 - 8 Apr 2025
Viewed by 728
Abstract
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even [...] Read more.
Many cities are still struggling to comply with current air quality regulations. Road transport is usually a significant source of NOx emissions, especially in urban areas. Therefore, NOx from road vehicles needs to be further reduced below current standards to ultra-low or even zero-impact levels. In a novel, holistic powertrain design approach, this paper presents powertrain solutions to achieve zero-impact NOx emissions with an N1 class III diesel light commercial vehicle. The design is based on a compliance test matrix consisting of six real-world scenarios that are critical for emissions and air quality. As a design baseline, a vehicle concept meeting the emission requirements as set out in the European Commission’s 2022 Euro 7 regulation proposal is used. The baseline vehicle concept can achieve zero-impact NOx emissions in 67% of these scenarios. To achieve zero-impact NOx emissions in all scenarios, further advanced emission solutions are mandatory. In congested urban areas, the use of an exhaust gas aftertreatment system preheating device with at least 20 kW of power for 1 min is required. In high-traffic highway situations, an underfloor SCR unit with a minimum volume of 12 l or the restriction of the maximum vehicle speed at 130 km/h is required. Full article
(This article belongs to the Special Issue Emission Control Technology in Internal Combustion Engines)
Show Figures

Graphical abstract

17 pages, 6538 KiB  
Article
Research on the Measurement of Particulate Matter Concentration in Diesel Vehicle Exhaust Using the Light Scattering Method
by Jie Wang, Xinjian Liu, Chao Wang, Yiyang Qiu, Jie Zhou and Qi Dang
Sensors 2025, 25(6), 1898; https://doi.org/10.3390/s25061898 - 18 Mar 2025
Viewed by 670
Abstract
To address the current issues with diesel vehicle exhaust after-treatment system particulate sensors—such as low accuracy and inability to perform continuous measurements of particulate mass concentration—a new sensor based on the light scattering method is proposed. During the research, it was found that [...] Read more.
To address the current issues with diesel vehicle exhaust after-treatment system particulate sensors—such as low accuracy and inability to perform continuous measurements of particulate mass concentration—a new sensor based on the light scattering method is proposed. During the research, it was found that the light scattering method can be affected by soot particles in the exhaust, which contaminate the optical components and reduces measurement accuracy. To solve this issue, a structure with alumina ceramic embedded lenses and optical fibers was designed, effectively improving the sensor’s resistance to contamination. The detection device is based on the principle of light scattering, and a particulate concentration measurement system with a 90° scattering angle was built. Calibration experiments were conducted using the dust particles generated by the device. The experimental results show that this sensor can measure particulate concentrations accurately, in real time, and with good stability, achieving a calibration error of less than ±5%. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

28 pages, 2347 KiB  
Review
Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals
by Christos Papadopoulos, Marios Kourtelesis, Athanasios Dimaratos, Anastasia Maria Moschovi, Iakovos Yakoumis and Zissis Samaras
Processes 2025, 13(3), 649; https://doi.org/10.3390/pr13030649 - 25 Feb 2025
Viewed by 2163
Abstract
Strict gaseous emission standards are applied globally to regulate the maximum amounts of pollutant emissions that can be produced from all vehicles. The exhaust aftertreatment systems used by automotive manufacturers rely on the utilization of precious metals (Pt, Pd, Rh). However, much effort [...] Read more.
Strict gaseous emission standards are applied globally to regulate the maximum amounts of pollutant emissions that can be produced from all vehicles. The exhaust aftertreatment systems used by automotive manufacturers rely on the utilization of precious metals (Pt, Pd, Rh). However, much effort has been devoted on the reduction or the replacement of the amount of Platinum Group Metals (PGMs) in three-way catalysts (TWC), both from a cost-effectiveness as well as an environmental point of view. PROMETHEUS catalyst, which was recently homologated for Euro 6 applications, is a low-cost, Cu-based TWC, which consists of a significantly lower quantity of PGMs compared to conventional state-of-the-art catalysts and achieves similar or even better catalytic efficiencies. In this review paper, a complex reaction scheme is proposed for the first time for a catalytic converter utilizing Cu and PGMs, following an extensive literature investigation of the available models. The scheme also accounts for the surface reaction mechanisms of the main processes and the side reactions potentially taking place during the TWC operation in the presence of Cu and at least one of the following PGMs: Pt, Pd or Rh. At a next step, the proposed reaction scheme will be validated based on experimental data, using mathematical modelling of a PROMETHEUS catalytic converter incorporating Cu and PGM nanoparticles. Full article
(This article belongs to the Special Issue Advances in Supported Nanoparticle Catalysts (Volume II))
Show Figures

Graphical abstract

29 pages, 25677 KiB  
Article
Numerical Study of Nanoparticle Coagulation in Non-Road Diesel Engine Exhaust Based on the Principle of Split-Stream Rushing
by Yuchen Guo, Pei Wu, He Su, Jing Xue, Yongan Zhang and Peiyan Huang
Energies 2025, 18(1), 40; https://doi.org/10.3390/en18010040 - 26 Dec 2024
Viewed by 678
Abstract
Diesel engines employed in non-road machinery are significant contributors to nanoparticulate matters. This paper presents a novel device based on the principle of split-stream rushing to mitigate particulate matter emissions from these engines. By organizing and intensifying the airflow movement of the jet [...] Read more.
Diesel engines employed in non-road machinery are significant contributors to nanoparticulate matters. This paper presents a novel device based on the principle of split-stream rushing to mitigate particulate matter emissions from these engines. By organizing and intensifying the airflow movement of the jet in the rushing region, the probability of collisions between nanoparticles is enhanced. This accelerates the growth and coagulation of nanoparticles, reducing the number density of fine particulate matter. This, in turn, facilitates the capture or sedimentation of particulate matter in the diesel engine exhaust aftertreatment system. The coagulation kernel function tailored for diesel engine exhaust nanoparticles is developed. Then, the particle balance equation is solved to investigate the evolution and coagulation characteristics. Afterwards, three-dimensional numerical simulations are performed to study the flow field characteristics of the split-stream rushing device and the particle evolution within it. The results show that the device achieves a maximum coagulation efficiency of 59.73%, increasing the average particle diameter from 96 nm to 121 nm. The particle number density uniformity index exceeded 0.93 in most flow regions, highlighting the effectiveness of the device in ensuring consistent particle distribution. Full article
(This article belongs to the Section I1: Fuel)
Show Figures

Figure 1

18 pages, 4581 KiB  
Article
A Design-Oriented Model for Transmission Loss Optimization in Marine DOCs
by Jan Kašpar, Francesco Mauro, Marco Biot, Giovanni Rognoni and Giada Kyaw Oo D’Amore
J. Mar. Sci. Eng. 2024, 12(12), 2358; https://doi.org/10.3390/jmse12122358 - 22 Dec 2024
Viewed by 871
Abstract
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs [...] Read more.
The even more restrictive regulations imposed on chemical and acoustic emissions of ships necessitate the installation of after-treatment systems onboard. The spaces onboard are limited, and the Exhaust Gas Cleaning Systems (EGCSs) have big dimensions, so an appropriate integration and optimization of EGCSs allows to save space and comply with international regulations. Moreover, in the available literature, there is a lack of guidelines about the design of integrated EGCSs. This study aims to develop an ad hoc optimization methodology that uses combined Computational Fluid Dynamics (CFD)–Finite Element Method (FEM) simulations, surrogate models, and Genetic Algorithms to optimize the acoustic properties of EGCSs while considering the limits imposed by the efficiency of chemical reactions for the abatement of NOx and SOx. The developed methodology is applied to a Diesel Oxidation Catalyst (DOC), and the obtained results lead to a system that integrates the silencing effect into the DOC. Full article
(This article belongs to the Special Issue Novel Maritime Techniques and Technologies, and Their Safety)
Show Figures

Figure 1

14 pages, 1481 KiB  
Review
Recent Advances in SCR Systems of Heavy-Duty Diesel Vehicles—Low-Temperature NOx Reduction Technology and Combination of SCR with Remote OBD
by Zhengguo Chen, Qingyang Liu, Haoye Liu and Tianyou Wang
Atmosphere 2024, 15(8), 997; https://doi.org/10.3390/atmos15080997 - 20 Aug 2024
Cited by 11 | Viewed by 5269
Abstract
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in [...] Read more.
Heavy-duty diesel vehicles are a significant source of nitrogen oxides (NOx) in the atmosphere. The Selective Catalytic Reduction (SCR) system is a primary aftertreatment device for reducing NOx emissions from heavy-duty diesel vehicles. With increasingly stringent NOx emission regulations for heavy-duty vehicles in major countries, there is a growing focus on reducing NOx emissions under low exhaust temperature conditions, as well as monitoring the conversion efficiency of the SCR system over its entire lifecycle. By reviewing relevant literature mainly from the past five years, this paper reviews the development trends and related research results of SCR technology, focusing on two main aspects: low-temperature NOx reduction technology and the combination of SCR systems with remote On-Board Diagnostics (OBD). Regarding low-temperature NOx reduction technology, the results of the review indicate that the combination of multiple catalytic shows potential for achieving high conversion efficiency across a wide temperature range; advanced SCR system arrangement can accelerate the increase in exhaust temperature within the SCR system; solid ammonium and gaseous reductants can effectively address the issue of urea not being able to be injected under low-temperature exhaust conditions. As for the combination of SCR systems with remote OBD, remote OBD can accurately assess NOx emissions from heavy-duty vehicles, but it needs algorithms to correct data and match the emission testing process required by regulations. Remote OBD systems are crucial for detecting SCR tampering, but algorithms must be developed to balance accuracy with computational efficiency. This review provides updated information on the current research status and development directions in SCR technologies, offering valuable insights for future research into advanced SCR systems. Full article
(This article belongs to the Special Issue Recent Advances in Mobile Source Emissions (2nd Edition))
Show Figures

Figure 1

10 pages, 4044 KiB  
Article
Development and Performance Evaluation Experiment of a Device for Simultaneous Reduction of SOx and PM
by Kyeong-Ju Kong and Sung-Chul Hwang
Energies 2024, 17(13), 3337; https://doi.org/10.3390/en17133337 - 8 Jul 2024
Viewed by 1493
Abstract
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually [...] Read more.
Mitigating air pollutants such as SOx and PM emitted from ships is an important task for marine environmental protection and improving air quality. To address this, exhaust gas after-treatment devices have been introduced, but treating pollutants like SOx and PM individually poses challenges due to spatial constraints on ships. Consequently, a Total Gas Cleaning System (TGCS) capable of simultaneously reducing sulfur oxides and particulate matter has been developed. The TGCS combines a cyclone dust collector and a wet scrubber system. The cyclone dust collector is designed to maintain a certain distance from the bottom of the wet scrubber, allowing exhaust gases entering from the bottom to rise as sulfur oxides are adsorbed. Additionally, the exhaust gases descending through the space between the cyclone dust collector and the wet scrubber collide with the scrubbing solution before entering the bottom of the wet scrubber, facilitating the absorption of SOx. In this study, the efficiency of the developed TGCS was evaluated, and the reduction effects based on design parameters were investigated. Furthermore, the impact of this device on ship engines was analyzed to assess its practical applicability. Experimental results showed that increasing the volume flow rate of the cleaning solution enhanced the PM reduction effect. Particularly, when the height of the Pall ring was 1000 mm and the volume flow rate was 35 L/min, the sulfur oxide reduction effect met the standards for Sulfur Emission Control Areas (SECA). Based on these findings, suggestions for effectively controlling atmospheric pollutants from ships were made, with the expectation of contributing to the development of systems combining various after-treatment devices. Full article
Show Figures

Figure 1

21 pages, 5410 KiB  
Article
Analysis of Altitude and Ambient Temperature Effects on the Reactivity of Oxidation Catalysts in the Presence of H2
by José Ramón Serrano, Pedro Piqueras, Enrique José Sanchis and Carla Conde
Appl. Sci. 2024, 14(11), 4790; https://doi.org/10.3390/app14114790 - 31 May 2024
Viewed by 1186
Abstract
Worldwide emission standards are now required to cover engine operation under extreme ambient conditions, which affect the raw emissions and the efficiency of the exhaust aftertreatment systems. These regulations also target new combustion technologies for decarbonization, such as neat hydrogen (H2 [...] Read more.
Worldwide emission standards are now required to cover engine operation under extreme ambient conditions, which affect the raw emissions and the efficiency of the exhaust aftertreatment systems. These regulations also target new combustion technologies for decarbonization, such as neat hydrogen (H2) combustion or dual-fuel strategies, which involve a challenge to the analysis of exhaust aftertreatment system requirements and performance. This work addresses the impact of high altitude and low ambient temperature conditions on the reactivity of an oxidation catalyst in the presence of H2. A reaction mechanism is proposed to cover the main conversion paths of CO, HC, and H2, including the formation and consumption of high-energy surface reaction intermediates. The mechanism has been implemented into a faster-than-real-time reduced-order model for multi-layer washcoat honeycomb catalytic converters. The model was utilized to investigate the effect of H2 concentration on the reactivity of CO and HC within the catalyst under various operating and ambient conditions. By applying the model and examining the selectivity towards different reaction pathways in the presence of H2, insights into surface intermediates and reactivity across different cross-sections of the monolith were obtained. This analysis discusses the underlying causes of reactivity changes promoted by H2 and its relative importance as a function of driving boundary conditions. Full article
Show Figures

Figure 1

26 pages, 9370 KiB  
Article
The Impact of Vehicle Technology, Size Class, and Driving Style on the GHG and Pollutant Emissions of Passenger Cars
by Martin Opetnik, Stefan Hausberger, Claus Uwe Matzer, Silke Lipp, Lukas Landl, Konstantin Weller and Miriam Elser
Energies 2024, 17(9), 2052; https://doi.org/10.3390/en17092052 - 26 Apr 2024
Cited by 3 | Viewed by 1851
Abstract
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once [...] Read more.
Although technical improvements to engines and aftertreatment systems have the greatest impact on pollutant emissions, there is also potential for reducing emissions through driver behavior. This potential can be realized in the very short term, while better emission-control technologies only take effect once they have penetrated the market. In addition to a change in driving style, the vehicle owner’s choice of vehicle technology and size class will also have an impact on the future emissions of the vehicle fleet. The effects of different driving styles, the tire choice, the vehicle size class, and propulsion technologies on energy consumption and tailpipe and non-exhaust emissions are analyzed in this paper for different traffic situations and start temperatures for cars with petrol and diesel combustion engines and for battery electric vehicles. The analysis is completed with the corresponding upstream emissions from fuel and electricity production. The analysis is based on a vehicle simulation using the Passenger car and Heavy-duty Emission Model (PHEM), which is based on a large database of vehicles created using measurements of real driving conditions. For the assessment of the driving style, a novel method was developed in an H2020 project, which reproduces a measured trip with a virtual eco-driver. Carbon dioxide equivalent emissions (CO2eq) increase with increasing vehicle size, but can be reduced by around 20% for conventional vehicles and 17% for battery electric vehicles (BEVs) through an environmentally conscious driving style. On average, BEVs have around 50% lower CO2eq emissions than conventional vehicles, if the emissions from vehicle production are also taken into account. On an average journey of 35 km, the cold start of modern diesel vehicles accounts for around half of the total NOx emissions, while the proportion of cold starts for petrol vehicles is around 25%. Tire and brake wear together generate a similar amount of PN23 emissions as the exhaust gases from new cars. Full article
(This article belongs to the Collection Energy Efficiency and Environmental Issues)
Show Figures

Figure 1

33 pages, 9069 KiB  
Article
Integrated 1D Simulation of Aftertreatment System and Chemistry-Based Multizone RCCI Combustion for Optimal Performance with Methane Oxidation Catalyst
by Alireza Kakoee, Jacek Hunicz and Maciej Mikulski
J. Mar. Sci. Eng. 2024, 12(4), 594; https://doi.org/10.3390/jmse12040594 - 29 Mar 2024
Cited by 4 | Viewed by 1744
Abstract
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power model was coupled with a [...] Read more.
This paper presents a comprehensive investigation into the design of a methane oxidation catalyst aftertreatment system specifically tailored for the Wärtsilä W31DF natural gas engine which has been converted to a reactivity-controlled compression ignition NG/Diesel engine. A GT-Power model was coupled with a predictive physical base chemical kinetic multizone model (MZM) as a combustion object. In this MZM simulation, a set of 54 species and 269 reactions as chemical kinetic mechanism were used for modelling combustion and emissions. Aftertreatment simulations were conducted using a 1D air-path model in the same GT-Power model, integrated with a chemical kinetic model featuring 15 catalytic reactions, based on activation energy and species concentrations from combustion outputs. The latter offered detailed exhaust composition and exhaust thermodynamic data under specific operating conditions, effectively capturing the intricate interactions between the investigated aftertreatment system, combustion, and exhaust composition. Special emphasis was placed on the formation of intermediate hydrocarbons such as C2H4 and C2H6, despite their concentrations being lower than that of CH4. The analysis of catalytic conversion focused on key species, including H2O, CO2, CO, CH4, C2H4, and C2H6, examining their interactions. After consideration of thermal management and pressure drop, a practical choice of a 400 mm long catalyst with a density of 10 cells per cm2 was selected. Investigations of this catalyst’s specification revealed complete CO conversion and a minimum of 89% hydrocarbon conversion efficiency. Integrating the exhaust aftertreatment system into the air path resulted in a reduction in engine-indicated efficiency by up to 2.65% but did not affect in-cylinder combustion. Full article
Show Figures

Figure 1

22 pages, 4099 KiB  
Article
Transferability Assessment of OBD-Related Calibration and Validation Activities from the Vehicle to HiL Applications
by Frank Dorscheidt, Stefan Pischinger, Peter Bailly, Marc Timur Düzgün, Sascha Krysmon, Christoph Lisse, Martin Nijs and Michael Görgen
Appl. Sci. 2024, 14(3), 1245; https://doi.org/10.3390/app14031245 - 2 Feb 2024
Viewed by 1257
Abstract
With the Euro 7 pollutant emission legislation currently under discussion, advanced and more efficient exhaust aftertreatment systems are being developed. The technologies required for these are leading to an increase in the number of components and control systems requiring diagnoses strategies under the [...] Read more.
With the Euro 7 pollutant emission legislation currently under discussion, advanced and more efficient exhaust aftertreatment systems are being developed. The technologies required for these are leading to an increase in the number of components and control systems requiring diagnoses strategies under the on-board diagnostics (OBD) legislation. With concurrent shorter development times and significant reductions in budgets allocated to conventional powertrain development, challenges in the field of OBD calibration and verification are already rising sharply. In response to these challenges, hardware-in-the-loop (HiL) approaches have been successfully introduced to support and replace conventional development methods. The use of complex simulation models significantly improves the quality of calibrations while minimizing the number of required prototype vehicles and test resources, thus reducing development costs. This paper presents a feasibility study for moving OBD-related calibration and validation tasks from the vehicle to a HiL platform. In this context, the calibration and verification process of an active diagnostic for monitoring the condition of the three-way catalyst (TWC) and the oxygen sensors in the exhaust aftertreatment system is presented. It is shown that all relevant signals are simulated with sufficient accuracy to ensure a robust transfer from the vehicle to a HiL test bench. Special attention is given to the simulation of aged components and their influence on the emission behavior of the system. Furthermore, it is discussed that transferring OBD tasks from the vehicle to the HiL test bench could result in significant savings in development time and a reduction in the number of physical prototype vehicles and test resources required. Full article
Show Figures

Figure 1

32 pages, 10642 KiB  
Review
A Review of Thermal Energy Management of Diesel Exhaust after-Treatment Systems Technology and Efficiency Enhancement Approaches
by Gang Wu, Guoda Feng, Yuelin Li, Tao Ling, Xuejun Peng, Zhilai Su and Xiaohuan Zhao
Energies 2024, 17(3), 584; https://doi.org/10.3390/en17030584 - 25 Jan 2024
Cited by 9 | Viewed by 3767
Abstract
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the [...] Read more.
The DOC (diesel oxidation catalyst), DPF (diesel particulate filter), SCR (selective catalytic reduction), and ASC (ammonia slip catalyst) are widely used in diesel exhaust after-treatment systems. The thermal management of after-treatment systems using DOC, DPF, SCR, and ASC were investigated to improve the efficiency of these devices. This paper aims to identify the challenges of this topic and seek novel methods to control the temperature. Insulation methods and catalysts decrease the energy required for thermal management, which improves the efficiency of thermal management. Thermal insulation decreases the heat loss of the exhaust gas, which can reduce the after-treatment light-off time. The DOC light-off time was reduced by 75% under adiabatic conditions. A 400 W microwave can heat the DPF to the soot oxidation temperature of 873 K at a regeneration time of 150 s. An SCR burner can decrease NOx emissions by 93.5%. Electrically heated catalysts can decrease CO, HC, and NOx emissions by 80%, 80%, and 66%, respectively. Phase-change materials can control the SCR temperature with a two-thirds reduction in NOx emissions. Pt-Pd application in the catalyst can decrease the CO light-off temperature to 113 °C. Approaches of catalysts can enhance the efficiency of the after-treatment systems and reduce the energy consumption of thermal management. Full article
(This article belongs to the Special Issue Advanced Thermal Management Technologies and Heat Transfer)
Show Figures

Figure 1

24 pages, 2029 KiB  
Article
Study on Urea Crystallization Risk Assessment and Influencing Factors in After-Treatment System of Diesel Engines
by Ke Sun, Gecheng Zhang, Kui Zhao, Wen Sun, Guoxiang Li, Shuzhan Bai, Chunjin Lin and Hao Cheng
Appl. Sci. 2024, 14(2), 684; https://doi.org/10.3390/app14020684 - 13 Jan 2024
Viewed by 2998
Abstract
In order to meet the increasing pollutants discharge standard, the selective catalytic reduction (SCR) module in the diesel engine after-treatment system is an important means to reduce nitrogen oxide (NOx) emissions. SCR systems are prone to urea crystallization at lower temperatures, especially during [...] Read more.
In order to meet the increasing pollutants discharge standard, the selective catalytic reduction (SCR) module in the diesel engine after-treatment system is an important means to reduce nitrogen oxide (NOx) emissions. SCR systems are prone to urea crystallization at lower temperatures, especially during the cold-start conditions of diesel engines. In this study, we use the diesel engine after-treatment system test bench to obtain the boundary parameter of the simulation modules, and the urea crystallization risk assessment model of the diesel SCR system is established. Comparing the computational fluid dynamics (CFD) results with the test bench results, it is shown that the predicted urea film distribution of the assessment model is in good agreement with the experimental results. In order to clarify the various factors that affect the urea crystallization risk, this paper conducts a simulation analysis on a nozzle and mixer structure and operating parameters. The CFD results indicate that the increase in urea spray time will increase the maximum urea film thickness on the SCR system mixer surface. Exhaust temperature is the most important influencing factor. When the diesel engine exhaust temperature increases from 190 °C to 300 °C, the maximum urea film thickness decreases by 32 and the urea film mass accumulation decreases by 5%. Exhaust flow has a small impact on urea crystallization risk. When the exhaust flow increases from 300 kg/h to 600 kg/h, the maximum urea film thickness decreases by 39% and the urea film mass accumulation decreases by about 1%. In addition, urea spray rate, nozzle numbers, spray angle, and spray cone angle are also factors that affect urea crystallization risk. Full article
Show Figures

Figure 1

Back to TopTop