Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals
Abstract
1. Introduction
2. Potential Reaction Mechanism in TWC Containing Cu and PGMs as Active Phase
2.1. CO Oxidation Reaction
2.2. HC Oxidation Reaction
- (1)
- Initial C-H bond cleavage on Pd sites by reacting with adsorbed O species followed by adsorption of C3H(8-n) (n = 1, 2, …)
- (2)
- Reaction of activated C3H(8-n) species with activated O species leading to cleavages of the first C-C bond and additional C-H bonds to form intermediate species.
- (3)
- Reaction of the first-C-C bond cleaved intermediate species with activated O species leading to cleavages of the second C-C bond and additional C-H bonds to form intermediate species.
- (4)
- Decomposition and release of the adsorbed intermediate species as CO2 and H2O.
CH4 Oxidation Reaction
2.3. NO Reduction Reaction
2.3.1. Formation of By-Products During NO Reduction Reaction
N2O Formation
NH3 Formation
2.4. Role of OSC Properties of the Support
2.5. Potential Polychlorinated Dibenzo-Para-Dioxins (PCCD) and Polychlorinated Dibenzo Furans (PCDF) Formation
3. Proposed Reaction Scheme for a Three-Way Catalytic Converter Containing Cu and PGMs
4. Conclusions/Summary
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, T.; Joshi, A. Review of Vehicle Engine Efficiency and Emissions. SAE Int. J. Engines 2018, 11, 1307–1330. [Google Scholar] [CrossRef]
- Johnson, T. Vehicular Emissions in Review. SAE Int. J. Engines 2016, 9, 1258–1275. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Melas, A.; Martini, G.; Dilara, P. Overview of Vehicle Exhaust Particle Number Regulations. Processes 2021, 9, 2216. [Google Scholar] [CrossRef]
- Farrauto, R.J.; Deeba, M.; Alerasool, S. Gasoline automobile catalysis and its historical journey to cleaner air. Nat. Catal. 2019, 2, 603–613. [Google Scholar] [CrossRef]
- Dey, S.; Mehta, N.S. Automobile pollution control using catalysis. Resour. Environ. Sustain. 2020, 2, 100006. [Google Scholar] [CrossRef]
- Regulation (EU) 2023/851 of the European Parliament and of the Council of 19 April 2023 Amending Regulation (EU) 2019/631 as Regards Strengthening the CO2 Emission Performance Standards for New Passenger Cars and New Light Commercial Vehicles in Line with the Union’s Increased Climate Ambition. 2023. Available online: https://eur-lex.europa.eu/eli/reg/2023/851/oj/eng (accessed on 7 February 2025).
- Council of the EU. Euro 7: Council Adopts New Rules on Emission Limits for Cars, Vans and Trucks. 12 April 2024. Available online: https://www.consilium.europa.eu/en/press/press-releases/2024/04/12/euro-7-council-adopts-new-rules-on-emission-limits-for-cars-vans-and-trucks/ (accessed on 7 February 2025).
- Robles-Lorite, L.; Dorado-Vicente, R.; Torres-Jiménez, E.; Bombek, G.; Lešnik, L. Recent Advances in the Development of Automotive Catalytic Converters: A Systematic Review. Energies 2023, 16, 6425. [Google Scholar] [CrossRef]
- Boger, T.; Rose, D.; He, S.; Joshi, A. Developments for future EU7 regulations and the path to zero impact emissions—A catalyst substrate and filter supplier’s perspective. Transp. Eng. 2022, 10, 100129. [Google Scholar] [CrossRef]
- Datye, A.K.; Votsmeier, M. Opportunities and challenges in the development of advanced materials for emission control catalysts. Nat. Mater. 2021, 20, 1049–1059. [Google Scholar] [CrossRef]
- Hassdenteufel, A.; Schünemann, E.; Neubert, V.; Hirchenhein, A. Gasoline powertrain solutions with ultra low tailpipe emissions. Transp. Eng. 2022, 8, 100109. [Google Scholar] [CrossRef]
- Aminzadegan, S.; Shahriari, M.; Mehranfar, F.; Abramović, B. Factors affecting the emission of pollutants in different types of transportation: A literature review. Energy Rep. 2022, 8, 2508–2529. [Google Scholar] [CrossRef]
- Rood, S.; Eslava, S.; Manigrasso, A.; Bannister, C. Recent advances in gasoline three-way catalyst formulation: A review. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2019, 234, 936–949. [Google Scholar] [CrossRef]
- Li, P.; Chen, X.; Li, Y.; Schwank, J.W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115. [Google Scholar] [CrossRef]
- Hughes, A.E.; Haque, N.; Northey, S.A.; Giddey, S. Platinum Group Metals: A Review of Resources, Production and Usage with a Focus on Catalysts. Resources 2021, 10, 93. [Google Scholar] [CrossRef]
- Koltsakis, G.C.; Kandylas, I.P.; Stamatelos, A.M. Three-way catalytic converter modeling and applications. Chem. Eng. Commun. 1998, 164, 153–189. [Google Scholar] [CrossRef]
- Chatterjee, D.; Deutschmann, O.; Warnatz, J. Detailed surface reaction mechanism in a three-way catalyst. Faraday Discuss. 2002, 119, 371–384. [Google Scholar] [CrossRef]
- Oh, S.H.; Triplett, T. Reaction pathways and mechanism for ammonia formation and removal over palladium-based three-way catalysts: Multiple roles of CO. Catal. Today 2014, 231, 22–32. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, B.; Xu, Y.; Wu, Y.; Yang, W.; Huang, C.; Wang, X.; Zhong, L.; Wang, J.; Chen, Y. The formation mechanism of N2O and NH3 on PtRh three-way catalyst of natural gas vehicles. Mol. Catal. 2023, 547, 113392. [Google Scholar] [CrossRef]
- Pârvulescu, V.I.; Grange, P.; Delmon, B. Catalytic removal of NO. Catal. Today 1998, 46, 233–316. [Google Scholar] [CrossRef]
- Burch, R. Knowledge and Know-How in Emission Control for Mobile Applications. Catal. Rev. 2004, 46, 271–334. [Google Scholar] [CrossRef]
- Kočí, P.; Kubíček, M.; Marek, M. Modeling of Three-Way-Catalyst Monolith Converters with Microkinetics and Diffusion in the Washcoat. Ind. Eng. Chem. Res. 2004, 43, 4503–4510. [Google Scholar] [CrossRef]
- Koltsakis, G.C.; Konstantinidis, P.A.; Stamatelos, A.M. Development and application range of mathematical models for 3-way catalytic converters. Appl. Catal. B Environ. 1997, 12, 161–191. [Google Scholar] [CrossRef]
- Montenegro, G.; Onorati, A. 1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters. SAE Int. J. Engines 2009, 2, 1444–1459. [Google Scholar] [CrossRef]
- Pontikakis, G.N.; Konstantas, G.S.; Stamatelos, A.M. Three-Way Catalytic Converter Modeling as a Modern Engineering Design Tool. J. Eng. Gas Turbines Power 2004, 126, 906–923. [Google Scholar] [CrossRef]
- Zeng, F.; Finke, J.; Olsen, D.; White, A.; Hohn, K.L. Modeling of three-way catalytic converter performance with exhaust mixtures from dithering natural gas-fueled engines. Chem. Eng. J. 2018, 352, 389–404. [Google Scholar] [CrossRef]
- PGM Prices and Trading. Available online: https://matthey.com/products-and-markets/pgms-and-circularity/pgm-management (accessed on 5 February 2025).
- Grilli, M.L.; Slobozeanu, A.E.; Larosa, C.; Paneva, D.; Yakoumis, I.; Cherkezova-Zheleva, Z. Platinum Group Metals: Green Recovery from Spent Auto-Catalysts and Reuse in New Catalysts—A Review. Crystals 2023, 13, 550. [Google Scholar] [CrossRef]
- Nakayama, H.; Kanno, Y.; Nagata, M.; Zheng, X. Development of TWC and PGM Free Catalyst Combination as Gasoline Exhaust Aftertreatment. SAE Int. J. Engines 2016, 9, 2194–2200. [Google Scholar] [CrossRef]
- Zhou, C.; Zhang, Y.; Hu, L.; Yin, H.; Guo Wang, W. Synthesis, Characterization, and Catalytic Activity of Mn-doped Perovskite Oxides for Three-Way Catalysis. Chem. Eng. Technol. 2015, 38, 291–296. [Google Scholar] [CrossRef]
- Perin, G.; Fabro, J.; Guiotto, M.; Xin, Q.; Natile, M.M.; Cool, P.; Canu, P.; Glisenti, A. Cu@LaNiO3 based nanocomposites in TWC applications. Appl. Catal. B Environ. 2017, 209, 214–227. [Google Scholar] [CrossRef]
- Dey, S.; Chandra Dhal, G. Controlling carbon monoxide emissions from automobile vehicle exhaust using copper oxide catalysts in a catalytic converter. Mater. Today Chem. 2020, 17, 100282. [Google Scholar] [CrossRef]
- Yoshida, H.; Yamashita, N.; Ijichi, S.; Okabe, Y.; Misumi, S.; Hinokuma, S.; Machida, M. A Thermally Stable Cr–Cu Nanostructure Embedded in the CeO2 Surface as a Substitute for Platinum-Group Metal Catalysts. ACS Catal. 2015, 5, 6738–6747. [Google Scholar] [CrossRef]
- Yoshida, H.; Okabe, Y.; Misumi, S.; Oyama, H.; Tokusada, K.; Hinokuma, S.; Machida, M. Structures and Catalytic Properties of Cr–Cu Embedded CeO2 Surfaces with Different Cr/Cu Ratios. J. Phys. Chem. C 2016, 120, 26852–26863. [Google Scholar] [CrossRef]
- Machida, M. Heat- and corrosion-resistant catalytic materials for environmental and energy applications. J. Ceram. Soc. Jpn. 2021, 129, 234–240. [Google Scholar] [CrossRef]
- Hirakawa, T.; Shimokawa, Y.; Tokuzumi, W.; Sato, T.; Tsushida, M.; Yoshida, H.; Ohyama, J.; Machida, M. Multicomponent 3d Transition-Metal Nanoparticles as Catalysts Free of Pd, Pt, or Rh for Automotive Three-Way Catalytic Converters. ACS Appl. Nano Mater. 2020, 3, 9097–9107. [Google Scholar] [CrossRef]
- Pacella, M.; Garbujo, A.; Fabro, J.; Guiotto, M.; Xin, Q.; Natile, M.M.; Canu, P.; Cool, P.; Glisenti, A. PGM-free CuO/LaCoO3 nanocomposites: New opportunities for TWC application. Appl. Catal. B Environ. 2018, 227, 446–458. [Google Scholar] [CrossRef]
- Glisenti, A.; Pacella, M.; Guiotto, M.; Natile, M.M.; Canu, P. Largely Cu-doped LaCo1−Cu O3 perovskites for TWC: Toward new PGM-free catalysts. Appl. Catal. B Environ. 2016, 180, 94–105. [Google Scholar] [CrossRef]
- Ueda, K.; Ohyama, J.; Satsuma, A. Investigation of Reaction Mechanism of NO–C3H6–CO–O2 Reaction over NiFe2O4 Catalyst. ACS Omega 2017, 2, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, H.; Hirakawa, T.; Oyama, H.; Nakashima, R.; Hinokuma, S.; Machida, M. Effect of Thermal Aging on Local Structure and Three-Way Catalysis of Cu/Al2O3. J. Phys. Chem. C 2019, 123, 10469–10476. [Google Scholar] [CrossRef]
- Copper Metal Prices. Available online: https://tradingeconomics.com/commodity/copper (accessed on 5 February 2025).
- Du, Y.; Gao, F.; Zhou, Y.; Yi, H.; Tang, X.; Qi, Z. Recent advance of CuO-CeO2 catalysts for catalytic elimination of CO and NO. J. Environ. Chem. Eng. 2021, 9, 106372. [Google Scholar] [CrossRef]
- Sun, J.; Ge, C.; Yao, X.; Zou, W.; Hong, X.; Tang, C.; Dong, L. Influence of different impregnation modes on the properties of CuO-CeO2/γ-Al2O3 catalysts for NO reduction by CO. Appl. Surf. Sci. 2017, 426, 279–286. [Google Scholar] [CrossRef]
- Luo, M.-F.; Fang, P.; He, M.; Xie, Y.-L. In situ XRD, Raman, and TPR studies of CuO/Al2O3 catalysts for CO oxidation. J. Mol. Catal. A Chem. 2005, 239, 243–248. [Google Scholar] [CrossRef]
- Artizzu, P.; Garbowski, E.; Primet, M.; Brulle, Y.; Saint-Just, J. Catalytic combustion of methane on aluminate-supported copper oxide. Catal. Today 1999, 47, 83–93. [Google Scholar] [CrossRef]
- Hu, Y.; Dong, L.; Shen, M.; Liu, D.; Wang, J.; Ding, W.; Chen, Y. Influence of supports on the activities of copper oxide species in the low-temperature NO+CO reaction. Appl. Catal. B Environ. 2001, 31, 61–69. [Google Scholar] [CrossRef]
- Chen, X.; Liu, Y.; Liu, Y.; Lian, D.; Chen, M.; Ji, Y.; Xing, L.; Wu, K.; Liu, S. Recent Advances of Cu-Based Catalysts for NO Reduction by CO under O2-Containing Conditions. Catalysts 2022, 12, 1402. [Google Scholar] [CrossRef]
- Papagianni, S.; Moschovi, A.-M.; Polyzou, E.; Yakoumis, I. Platinum Recovered from Automotive Heavy-Duty Diesel Engine Exhaust Systems in Hydrometallurgical Operation. Metals 2022, 12, 31. [Google Scholar] [CrossRef]
- Yakoumis, I.; Moschovi, A.; Panou, M.; Panias, D. Single-Step Hydrometallurgical Method for the Platinum Group Metals Leaching from Commercial Spent Automotive Catalysts. J. Sustain. Metall. 2020, 6, 259–268. [Google Scholar] [CrossRef]
- Moschovi, A.M.; Giuliano, M.; Kourtelesis, M.; Nicol, G.; Polyzou, E.; Parussa, F.; Yakoumis, I.; Sgroi, M.F. First of Its Kind Automotive Catalyst Prepared by Recycled PGMs-Catalytic Performance. Catalysts 2021, 11, 942. [Google Scholar] [CrossRef]
- Yakoumis, I. PROMETHEUS: A Copper-Based Polymetallic Catalyst for Automotive Applications. Part I: Synthesis and Characterization. Materials 2021, 14, 622. [Google Scholar] [CrossRef] [PubMed]
- Yakoumis, I.; Polyzou, E.; Moschovi, A. Prometheus: A Copper-Based Polymetallic Catalyst for Automotive Applications. Part II: Catalytic Efficiency an Endurance as Compared with Original Catalysts. Materials 2021, 14, 2226. [Google Scholar] [CrossRef]
- Yakoumis, I. Copper and Noble Metal Polymetallic Catalysts for Engine Exhaust Gas Treatment. European Patent EP3569309A1, 20 November 2019. [Google Scholar]
- Soto Beobide, A.; Moschovi, A.M.; Mathioudakis, G.N.; Kourtelesis, M.; Lada, Z.G.; Andrikopoulos, K.S.; Sygellou, L.; Dracopoulos, V.; Yakoumis, I.; Voyiatzis, G.A. High Catalytic Efficiency of a Nanosized Copper-Based Catalyst for Automotives: A Physicochemical Characterization. Molecules 2022, 27, 7402. [Google Scholar] [CrossRef]
- Lu, C.-Y.; Chang, W.-C.; Wey, M.-Y. CuO/CeO2 catalysts prepared with different cerium supports for CO oxidation at low temperature. Mater. Chem. Phys. 2013, 141, 512–518. [Google Scholar] [CrossRef]
- Zeng, S.; Wang, Y.; Ding, S.; Sattler, J.J.H.B.; Borodina, E.; Zhang, L.; Weckhuysen, B.M.; Su, H. Active sites over CuO/CeO2 and inverse CeO2/CuO catalysts for preferential CO oxidation. J. Power Sources 2014, 256, 301–311. [Google Scholar] [CrossRef]
- Tang, C.; Sun, J.; Yao, X.; Cao, Y.; Liu, L.; Ge, C.; Gao, F.; Dong, L. Efficient fabrication of active CuO-CeO2/SBA-15 catalysts for preferential oxidation of CO by solid state impregnation. Appl. Catal. B Environ. 2014, 146, 201–212. [Google Scholar] [CrossRef]
- Yu Yao, Y.-F. The oxidation of CO and C2H4 over metal oxides: V. SO2 effects. J. Catal. 1975, 39, 104–114. [Google Scholar] [CrossRef]
- Martínez-Arias, A.; Fernández-García, M.; Gálvez, O.; Coronado, J.M.; Anderson, J.A.; Conesa, J.C.; Soria, J.; Munuera, G. Comparative Study on Redox Properties and Catalytic Behavior for CO Oxidation of CuO/CeO2 and CuO/ZrCeO4 Catalysts. J. Catal. 2000, 195, 207–216. [Google Scholar] [CrossRef]
- Yang, Z.; He, B.; Lu, Z.; Hermansson, K. Physisorbed, Chemisorbed, and Oxidized CO on Highly Active Cu−CeO2(111). J. Phys. Chem. C 2010, 114, 4486–4494. [Google Scholar] [CrossRef]
- Jia, A.-P.; Jiang, S.-Y.; Lu, J.-Q.; Luo, M.-F. Study of Catalytic Activity at the CuO−CeO2 Interface for CO Oxidation. J. Phys. Chem. C 2010, 114, 21605–21610. [Google Scholar] [CrossRef]
- Mrabet, D.; Abassi, A.; Cherizol, R.; Do, T.-O. One-pot solvothermal synthesis of mixed Cu-Ce-Ox nanocatalysts and their catalytic activity for low temperature CO oxidation. Appl. Catal. A Gen. 2012, 447–448, 60–66. [Google Scholar] [CrossRef]
- Guo, Y.; Li, C.; Lu, S.; Zhao, C. Low temperature CO catalytic oxidation and kinetic performances of KOH–Hopcalite in the presence of CO2. RSC Adv. 2016, 6, 7181–7188. [Google Scholar] [CrossRef]
- Vinodkumar, T.; Durgasri, D.N.; Maloth, S.; Reddy, B.M. Tuning the structural and catalytic properties of ceria by doping with Zr4+, La3+ and Eu3+ cations. J. Chem. Sci. 2015, 127, 1145–1153. [Google Scholar] [CrossRef]
- Dey, S.; Dhal, G.C. Highly Active Palladium Nanocatalysts for Low-Temperature Carbon Monoxide Oxidation. Polytechnica 2020, 3, 1–25. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef]
- Xu, F.; Mudiyanselage, K.; Baber, A.E.; Soldemo, M.; Weissenrieder, J.; White, M.G.; Stacchiola, D.J. Redox-Mediated Reconstruction of Copper during Carbon Monoxide Oxidation. J. Phys. Chem. C 2014, 118, 15902–15909. [Google Scholar] [CrossRef]
- Royer, S.; Duprez, D. Catalytic Oxidation of Carbon Monoxide over Transition Metal Oxides. ChemCatChem 2011, 3, 24–65. [Google Scholar] [CrossRef]
- Rodriguez, J.A.; Liu, P.; Wang, X.; Wen, W.; Hanson, J.; Hrbek, J.; Pérez, M.; Evans, J. Water-gas shift activity of Cu surfaces and Cu nanoparticles supported on metal oxides. Catal. Today 2009, 143, 45–50. [Google Scholar] [CrossRef]
- Liu, Y.; Fu, Q.; Stephanopoulos, M.F. Preferential oxidation of CO in H2 over CuO-CeO2 catalysts. Catal. Today 2004, 93–95, 241–246. [Google Scholar] [CrossRef]
- Oh, S.H.; Sinkevitch, R.M. Carbon Monoxide Removal from Hydrogen-Rich Fuel Cell Feedstreams by Selective Catalytic Oxidation. J. Catal. 1993, 142, 254–262. [Google Scholar] [CrossRef]
- Abdelsayed, V.; Aljarash, A.; El-Shall, M.S.; Al Othman, Z.A.; Alghamdi, A.H. Microwave Synthesis of Bimetallic Nanoalloys and CO Oxidation on Ceria-Supported Nanoalloys. Chem. Mater. 2009, 21, 2825–2834. [Google Scholar] [CrossRef]
- Hungría, A.B.; Iglesias-Juez, A.; Martínez-Arias, A.; Fernández-García, M.; Anderson, J.A.; Conesa, J.C.; Soria, J. Effects of Copper on the Catalytic Properties of Bimetallic Pd–Cu/(Ce,Zr)Ox/Al2O3 and Pd–Cu/(Ce,Zr)Ox Catalysts for CO and NO Elimination. J. Catal. 2002, 206, 281–294. [Google Scholar] [CrossRef]
- Fernandez-García, M.; Martínez-Arias, A.; Anderson, J.A.; Conesa, J.C.; Soria, J. CO and NO elimination over Pd-Cu catalysts. In Studies in Surface Science and Catalysis; Corma, A., Melo, F.V., Mendioroz, S., Fierro, J.L.G., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 130, pp. 1325–1330. [Google Scholar]
- Fernandez-García, M.; Martínez-Arias, A.; Belver, C.; Anderson, J.A.; Conesa, J.C.; Soria, J. Behavior of Palladium–Copper Catalysts for CO and NO Elimination. J. Catal. 2000, 190, 387–395. [Google Scholar] [CrossRef]
- Cai, F.; Yang, L.; Shan, S.; Mott, D.; Chen, B.H.; Luo, J.; Zhong, C.-J. Preparation of PdCu Alloy Nanocatalysts for Nitrate Hydrogenation and Carbon Monoxide Oxidation. Catalysts 2016, 6, 96. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, H.; He, D. Catalytic oxidation of low-concentration CO at ambient temperature over supported Pd—Cu catalysts. Environ. Technol. 2014, 35, 347–354. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhao, K.; Zhang, H.; Dong, Y.; Wang, T.; He, D. Low temperature CO catalytic oxidation over supported Pd–Cu catalysts calcined at different temperatures. Chem. Eng. J. 2014, 242, 10–18. [Google Scholar] [CrossRef]
- Wang, F.; Lu, G. Hydrogen feed gas purification over bimetallic Cu–Pd catalysts—Effects of copper precursors on CO oxidation. Int. J. Hydrogen Energy 2010, 35, 7253–7260. [Google Scholar] [CrossRef]
- Heo, I.; Wiebenga, M.H.; Gaudet, J.R.; Nam, I.-S.; Li, W.; Kim, C.H. Ultra low temperature CO and HC oxidation over Cu-based mixed oxides for future automotive applications. Appl. Catal. B Environ. 2014, 160–161, 365–373. [Google Scholar] [CrossRef]
- Singhania, A.; Gupta, S.M. Low-Temperature CO Oxidation: Effect of the Second Metal on Activated Carbon Supported Pd Catalysts. Catal. Lett. 2018, 148, 946–952. [Google Scholar] [CrossRef]
- Zedan, A.F.; Gaber, S.; AlJaber, A.S.; Polychronopoulou, K. CO Oxidation at Near-Ambient Temperatures over TiO2-Supported Pd-Cu Catalysts: Promoting Effect of Pd-Cu Nanointerface and TiO2 Morphology. Nanomaterials 2021, 11, 1675. [Google Scholar] [CrossRef] [PubMed]
- Kugai, J.; Moriya, T.; Seino, S.; Nakagawa, T.; Ohkubo, Y.; Nitani, H.; Daimon, H.; Yamamoto, T.A. CeO2-supported Pt–Cu alloy nanoparticles synthesized by radiolytic process for highly selective CO oxidation. Int. J. Hydrogen Energy 2012, 37, 4787–4797. [Google Scholar] [CrossRef]
- Nikolaev, S.A.; Golubina, E.V.; Shilina, M.I. The effect of H2 treatment at 423–573K on the structure and synergistic activity of Pd–Cu alloy catalysts for low-temperature CO oxidation. Appl. Catal. B Environ. 2017, 208, 116–127. [Google Scholar] [CrossRef]
- Yao, Y.-F.Y. The oxidation of CO and hydrocarbons over noble metal catalysts. J. Catal. 1984, 87, 152–162. [Google Scholar] [CrossRef]
- Nguyen, T.-S.; Morfin, F.; Aouine, M.; Bosselet, F.; Rousset, J.-L.; Piccolo, L. Trends in the CO oxidation and PROX performances of the platinum-group metals supported on ceria. Catal. Today 2015, 253, 106–114. [Google Scholar] [CrossRef]
- Choi, K.I.; Vannice, M.A. CO oxidation over Pd and Cu catalysts III. Reduced Al2O3-supported Pd. J. Catal. 1991, 131, 1–21. [Google Scholar] [CrossRef]
- Nibbelke, R.H.; Campman, M.A.J.; Hoebink, J.H.B.J.; Marin, G.B. Kinetic Study of the CO Oxidation over Pt/γ-Al2O3and Pt/Rh/CeO2/γ-Al2O3in the Presence of H2O and CO2. J. Catal. 1997, 171, 358–373. [Google Scholar] [CrossRef]
- Oran, U.; Uner, D. Mechanisms of CO oxidation reaction and effect of chlorine ions on the CO oxidation reaction over Pt/CeO2 and Pt/CeO2/γ-Al2O3 catalysts. Appl. Catal. B Environ. 2004, 54, 183–191. [Google Scholar] [CrossRef]
- Liu, W.; Flytzanistephanopoulos, M. Total Oxidation of Carbon-Monoxide and Methane over Transition Metal Fluorite Oxide Composite Catalysts: II. Catalyst Characterization and Reaction-Kinetics. J. Catal. 1995, 153, 317–332. [Google Scholar] [CrossRef]
- Avgouropoulos, G.; Ioannides, T. Kinetics of CO and H2 oxidation over CuO–CeO2 and CuO catalysts. Chem. Eng. J. 2011, 176–177, 14–21. [Google Scholar] [CrossRef]
- Moreno, M.; Baronetti, G.T.; Laborde, M.A.; Mariño, F.J. Kinetics of preferential CO oxidation in H2 excess (COPROX) over CuO/CeO2 catalysts. Int. J. Hydrogen Energy 2008, 33, 3538–3542. [Google Scholar] [CrossRef]
- Marbán, G.; Fuertes, A.B. Highly active and selective CuOx/CeO2 catalyst prepared by a single-step citrate method for preferential oxidation of carbon monoxide. Appl. Catal. B Environ. 2005, 57, 43–53. [Google Scholar] [CrossRef]
- Sedmak, G.; Hočevar, S.; Levec, J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2−y catalyst. J. Catal. 2003, 213, 135–150. [Google Scholar] [CrossRef]
- Tangpakonsab, P.; Genest, A.; Yang, J.; Meral, A.; Zou, B.; Yigit, N.; Schwarz, S.; Rupprechter, G. Kinetic and Computational Studies of CO Oxidation and PROX on Cu/CeO2 Nanospheres. Top. Catal. 2023, 66, 1129–1142. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.I.; Vannice, M.A. CO oxidation over Pd and Cu catalysts IV. Prereduced Al2O3-supported copper. J. Catal. 1991, 131, 22–35. [Google Scholar] [CrossRef]
- Fernández-García, M.; Conesa, J.C.; Clotet, A.; Ricart, J.M.; López, N.; Illas, F. Study of the Heterometallic Bond Nature in PdCu(111) Surfaces. J. Phys. Chem. B 1998, 102, 141–147. [Google Scholar] [CrossRef]
- Kamiuchi, N.; Haneda, M.; Ozawa, M. Propene oxidation over palladium catalysts supported on zirconium rich ceria–zirconia. Catal. Today 2015, 241, 100–106. [Google Scholar] [CrossRef]
- Kareem, H.; Shan, S.; Wu, Z.-P.; Velasco, L.; Moseman, K.; O’Brien, C.P.; Tran, D.T.; Lee, I.C.; Maswadeh, Y.; Yang, L.; et al. Catalytic oxidation of propane over palladium alloyed with gold: An assessment of the chemical and intermediate species. Catal. Sci. Technol. 2018, 8, 6228–6240. [Google Scholar] [CrossRef]
- Holder, R.; Bollig, M.; Anderson, D.R.; Hochmuth, J.K. A discussion on transport phenomena and three-way kinetics of monolithic converters. Chem. Eng. Sci. 2006, 61, 8010–8027. [Google Scholar] [CrossRef]
- Courtois, X.; Perrichon, V.; Primet, M. Three-way catalytic activity of alumina-supported copper catalysts modified by rhodium. Comptes Rendus De L’académie Des Sci. Ser. IIC Chem. 2000, 3, 429–436. [Google Scholar] [CrossRef]
- Courtois, X.; Perrichon, V. Distinct roles of copper in bimetallic copper–rhodium three-way catalysts deposited on redox supports. Appl. Catal. B Environ. 2005, 57, 63–72. [Google Scholar] [CrossRef]
- Ferri, D.; Elsener, M.; Kröcher, O. Methane oxidation over a honeycomb Pd-only three-way catalyst under static and periodic operation. Appl. Catal. B Environ. 2018, 220, 67–77. [Google Scholar] [CrossRef]
- Jiang, D.; Khivantsev, K.; Wang, Y. Low-Temperature Methane Oxidation for Efficient Emission Control in Natural Gas Vehicles: Pd and Beyond. ACS Catal. 2020, 10, 14304–14314. [Google Scholar] [CrossRef]
- Trivedi, S.; Prasad, R.; Mishra, A.; Kalam, A.; Yadav, P. Current scenario of CNG vehicular pollution and their possible abatement technologies: An overview. Environ. Sci. Pollut. Res. 2020, 27, 39977–40000. [Google Scholar] [CrossRef]
- Xi, Y.; Ottinger, N.; Liu, Z.G. The Dynamics of Methane and NOx Removal by a Three-Way Catalyst: A Transient Response Study. SAE Int. J. Engines 2018, 11, 1331–1341. [Google Scholar] [CrossRef]
- Raj, B.A. Methane Emission Control. Johns. Matthey Technol. Rev. 2016, 60, 228–235. [Google Scholar] [CrossRef]
- Dimaratos, A.; Toumasatos, Z.; Doulgeris, S.; Triantafyllopoulos, G.; Kontses, A.; Samaras, Z. Assessment of CO2 and NOx Emissions of One Diesel and One Bi-Fuel Gasoline/CNG Euro 6 Vehicles During Real-World Driving and Laboratory Testing. Front. Mech. Eng. 2019, 5, 62. [Google Scholar] [CrossRef]
- Dimaratos, A.; Toumasatos, Z.; Triantafyllopoulos, G.; Kontses, A.; Samaras, Z. Real-world gaseous and particle emissions of a Bi-fuel gasoline/CNG Euro 6 passenger car. Transp. Res. Part D Transp. Environ. 2020, 82, 102307. [Google Scholar] [CrossRef]
- Wang, M.; Dimopoulos Eggenschwiler, P.; Franken, T.; Ferri, D.; Kröcher, O. Reaction pathways of methane abatement in Pd-Rh three-way catalyst in heavy duty applications: A combined approach based on exhaust analysis, model gas reactor and DRIFTS measurements. Chem. Eng. J. 2021, 422, 129932. [Google Scholar] [CrossRef]
- Stoian, M.; Rogé, V.; Lazar, L.; Maurer, T.; Védrine, J.C.; Marcu, I.-C.; Fechete, I. Total Oxidation of Methane on Oxide and Mixed Oxide Ceria-Containing Catalysts. Catalysts 2021, 11, 427. [Google Scholar] [CrossRef]
- Najbar, M.; Barańska, M.; Jura, W. Low temperature oxidation of light hydrocarbons over silica supported noble metal catalysts. Catal. Today 1993, 17, 201–208. [Google Scholar] [CrossRef]
- Lampert, J.K.; Kazi, M.S.; Farrauto, R.J. Palladium catalyst performance for methane emissions abatement from lean burn natural gas vehicles. Appl. Catal. B Environ. 1997, 14, 211–223. [Google Scholar] [CrossRef]
- Farrauto, R.J.; Hobson, M.C.; Kennelly, T.; Waterman, E.M. Catalytic chemistry of supported palladium for combustion of methane. Appl. Catal. A Gen. 1992, 81, 227–237. [Google Scholar] [CrossRef]
- Domingos, D.; Simplício, L.M.T.; Estrela, G.l.S.; Prazeres, M.A.G.d.; Brandão, S.T. Catalytic combustion of methane over pdo-ceO2/al2O3 and pdo-ceO2/zrO2 catalysts. In Studies in Surface Science and Catalysis; Bellot Noronha, F., Schmal, M., Falabella Sousa-Aguiar, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 167, pp. 7–12. [Google Scholar]
- Lapisardi, G.; Urfels, L.; Gélin, P.; Primet, M.; Kaddouri, A.; Garbowski, E.; Toppi, S.; Tena, E. Superior catalytic behaviour of Pt-doped Pd catalysts in the complete oxidation of methane at low temperature. Catal. Today 2006, 117, 564–568. [Google Scholar] [CrossRef]
- Reyes, P.; Figueroa, A.; Pecchi, G.; Fierro, J.L.G. Catalytic combustion of methane on Pd–Cu/SiO2 catalysts. Catal. Today 2000, 62, 209–217. [Google Scholar] [CrossRef]
- Stotz, H.; Maier, L.; Deutschmann, O. Methane Oxidation over Palladium: On the Mechanism in Fuel-Rich Mixtures at High Temperatures. Top. Catal. 2017, 60, 83–109. [Google Scholar] [CrossRef]
- Chrzan, M.; Chlebda, D.; Jodłowski, P.; Salomon, E.; Kołodziej, A.; Gancarczyk, A.; Sitarz, M.; Łojewska, J. Towards Methane Combustion Mechanism on Metal Oxides Supported Catalysts: Ceria Supported Palladium Catalysts. Top. Catal. 2019, 62, 403–412. [Google Scholar] [CrossRef]
- He, L.; Fan, Y.; Bellettre, J.; Yue, J.; Luo, L. A review on catalytic methane combustion at low temperatures: Catalysts, mechanisms, reaction conditions and reactor designs. Renew. Sustain. Energy Rev. 2020, 119, 109589. [Google Scholar] [CrossRef]
- Au-Yeung, J.; Chen, K.; Bell, A.T.; Iglesia, E. Isotopic Studies of Methane Oxidation Pathways on PdO Catalysts. J. Catal. 1999, 188, 132–139. [Google Scholar] [CrossRef]
- Ciuparu, D.; Lyubovsky, M.R.; Altman, E.; Pfefferle, L.D.; Datye, A. Catalytic combustion of methane over palladium-based catalysts. Catal. Rev. 2002, 44, 593–649. [Google Scholar] [CrossRef]
- Oh, D.G.; Aleksandrov, H.A.; Kim, H.; Koleva, I.Z.; Khivantsev, K.; Vayssilov, G.N.; Kwak, J.H. Understanding of Active Sites and Interconversion of Pd and PdO during CH4 Oxidation. Molecules 2023, 28, 1957. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Jiang, M.; Yang, L.; Li, Z.; Tian, F.-X.; He, Y. Recent progress of catalytic methane combustion over transition metal oxide catalysts. Front. Chem. 2022, 10, 959422. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.-F.; Chou, F.-C.; Lee, F.-C.; Lin, C.-Y.; Tsai, D.-H. Synergistic Catalysis of Methane Combustion Using Cu–Ce–O Hybrid Nanoparticles with High Activity and Operation Stability. J. Phys. Chem. C 2016, 120, 27389–27398. [Google Scholar] [CrossRef]
- Ribeiro, F.H.; Chow, M.; Dallabetta, R.A. Kinetics of the Complete Oxidation of Methane over Supported Palladium Catalysts. J. Catal. 1994, 146, 537–544. [Google Scholar] [CrossRef]
- Anderson, R.B.; Stein, K.C.; Feenan, J.J.; Hofer, L.J.E. Catalytic Oxidation of Methane. Ind. Eng. Chem. 1961, 53, 809–812. [Google Scholar] [CrossRef]
- Cullis, C.F.; Willatt, B.M. Oxidation of methane over supported precious metal catalysts. J. Catal. 1983, 83, 267–285. [Google Scholar] [CrossRef]
- Yao, Y.-F.Y. Oxidation of Alkanes over Noble Metal Catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1980, 19, 293–298. [Google Scholar] [CrossRef]
- Arandiyan, H.; Dai, H.; Ji, K.; Sun, H.; Li, J. Pt Nanoparticles Embedded in Colloidal Crystal Template Derived 3D Ordered Macroporous Ce0.6Zr0.3Y0.1O2: Highly Efficient Catalysts for Methane Combustion. ACS Catal. 2015, 5, 1781–1793. [Google Scholar] [CrossRef]
- Bozo, C.; Guilhaume, N.; Garbowski, E.; Primet, M. Combustion of methane on CeO2–ZrO2 based catalysts. Catal. Today 2000, 59, 33–45. [Google Scholar] [CrossRef]
- Burch, R.; Loader, P.K. Investigation of Pt/Al2O3 and Pd/Al2O3 catalysts for the combustion of methane at low concentrations. Appl. Catal. B Environ. 1994, 5, 149–164. [Google Scholar] [CrossRef]
- Kumar, R.S.; Mmbaga, J.P.; Semagina, N.; Hayes, R.E. Methane Combustion Kinetics over Palladium-Based Catalysts: Review and Modelling Guidelines. Catalysts 2024, 14, 319. [Google Scholar] [CrossRef]
- Kundakovic, L.; Flytzani-Stephanopoulos, M. Reduction characteristics of copper oxide in cerium and zirconium oxide systems. Appl. Catal. A Gen. 1998, 171, 13–29. [Google Scholar] [CrossRef]
- Iamarino, M.; Chirone, R.; Lisi, L.; Pirone, R.; Salatino, P.; Russo, G. Cu/γ-Al2O3 catalyst for the combustion of methane in a fluidized bed reactor. Catal. Today 2002, 75, 317–324. [Google Scholar] [CrossRef]
- Águila, G.; Gracia, F.; Cortés, J.; Araya, P. Effect of copper species and the presence of reaction products on the activity of methane oxidation on supported CuO catalysts. Appl. Catal. B Environ. 2008, 77, 325–338. [Google Scholar] [CrossRef]
- DiGiulio, C.D.; Pihl, J.A.; Ii, J.E.P.; Amiridis, M.D.; Toops, T.J. Passive-ammonia selective catalytic reduction (SCR): Understanding NH3 formation over close-coupled three way catalysts (TWC). Catal. Today 2014, 231, 33–45. [Google Scholar] [CrossRef]
- Forzatti, P.; Castoldi, L.; Nova, I.; Lietti, L.; Tronconi, E. NOx removal catalysis under lean conditions. Catal. Today 2006, 117, 316–320. [Google Scholar] [CrossRef]
- Cheng, X.; Zhang, X.; Su, D.; Wang, Z.; Chang, J.; Ma, C. NO reduction by CO over copper catalyst supported on mixed CeO2 and Fe2O3: Catalyst design and activity test. Appl. Catal. B Environ. 2018, 239, 485–501. [Google Scholar] [CrossRef]
- Yao, X.; Yu, Q.; Ji, Z.; Lv, Y.; Cao, Y.; Tang, C.; Gao, F.; Dong, L.; Chen, Y. A comparative study of different doped metal cations on the reduction, adsorption and activity of CuO/Ce0.67M0.33O2 (M=Zr4+, Sn4+, Ti4+) catalysts for NO+CO reaction. Appl. Catal. B Environ. 2013, 130–131, 293–304. [Google Scholar] [CrossRef]
- Liu, L.; Liu, B.; Dong, L.; Zhu, J.; Wan, H.; Sun, K.; Zhao, B.; Zhu, H.; Dong, L.; Chen, Y. In situ FT-infrared investigation of CO or/and NO interaction with CuO/Ce0.67Zr0.33O2 catalysts. Appl. Catal. B Environ. 2009, 90, 578–586. [Google Scholar] [CrossRef]
- Liu, L.; Yao, Z.; Liu, B.; Dong, L. Correlation of structural characteristics with catalytic performance of CuO/CexZr1−xO2 catalysts for NO reduction by CO. J. Catal. 2010, 275, 45–60. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H.; Hu, Z.; Yao, M.; Li, Y. A Review on the Pd-Based Three-Way Catalyst. Catal. Rev. 2015, 57, 79–144. [Google Scholar] [CrossRef]
- Asakura, H.; Hosokawa, S.; Ina, T.; Kato, K.; Nitta, K.; Uera, K.; Uruga, T.; Miura, H.; Shishido, T.; Ohyama, J.; et al. Dynamic Behavior of Rh Species in Rh/Al2O3 Model Catalyst during Three-Way Catalytic Reaction: An Operando X-ray Absorption Spectroscopy Study. J. Am. Chem. Soc. 2018, 140, 176–184. [Google Scholar] [CrossRef] [PubMed]
- Burch, R.; Breen, J.P.; Meunier, F.C. A review of the selective reduction of NOx with hydrocarbons under lean-burn conditions with non-zeolitic oxide and platinum group metal catalysts. Appl. Catal. B Environ. 2002, 39, 283–303. [Google Scholar] [CrossRef]
- Burch, R.; Shestov, A.A.; Sullivan, J.A. A Steady-State Isotopic Transient Kinetic Analysis of the NO/O2/H2 Reaction over Pt/SiO2 Catalysts. J. Catal. 1999, 188, 69–82. [Google Scholar] [CrossRef]
- Granger, P.; Parvulescu, V.I. Catalytic NOx Abatement Systems for Mobile Sources: From Three-Way to Lean Burn after-Treatment Technologies. Chem. Rev. 2011, 111, 3155–3207. [Google Scholar] [CrossRef] [PubMed]
- Kameoka, S.; Chafik, T.; Ukisu, Y.; Miyadera, T. Reactivity of surface isocyanate species with NO, O2 and NO+O2 in selective reduction of NOχ over Ag/Al2O3 and Al2O3 catalysts. Catal. Lett. 1998, 55, 211–215. [Google Scholar] [CrossRef]
- Liang, J.; Wang, H.P.; Spicer, L.D. FT-IR study of nitric oxide chemisorbed on rhodium/alumina. J. Phys. Chem. 1985, 89, 5840–5845. [Google Scholar] [CrossRef]
- Almusaiteer, K.A.; Chuang, S.S.C. Infrared Characterization of Rh Surface States and Their Adsorbates during the NO−CO Reaction. J. Phys. Chem. B 2000, 104, 2265–2272. [Google Scholar] [CrossRef]
- Kondarides, D.I.; Chafik, T.; Verykios, X.E. Catalytic Reduction of NO by CO over Rhodium Catalysts: 2. Effect of Oxygen on the Nature, Population, and Reactivity of Surface Species Formed under Reaction Conditions. J. Catal. 2000, 191, 147–164. [Google Scholar] [CrossRef]
- Gayen, A.; Priolkar, K.R.; Sarode, P.R.; Jayaram, V.; Hegde, M.S.; Subbanna, G.N.; Emura, S. Ce1-xRhxO2-δ Solid Solution Formation in Combustion-Synthesized Rh/CeO2 Catalyst Studied by XRD, TEM, XPS, and EXAFS. Chem. Mater. 2004, 16, 2317–2328. [Google Scholar] [CrossRef]
- Frank, B.; Renken, A. Kinetics and Deactivation of the NO Reduction by CO on Pt-Supported Catalysts. Chem. Eng. Technol. 1999, 22, 490–494. [Google Scholar] [CrossRef]
- Oh, S.H.; Fisher, G.B.; Carpenter, J.E.; Goodman, D.W. Comparative kinetic studies of CO-O2 and CO-NO reactions over single crystal and supported rhodium catalysts. J. Catal. 1986, 100, 360–376. [Google Scholar] [CrossRef]
- Oh, S.H. Effects of cerium addition on the CO+NO reaction kinetics over alumina-supported rhodium catalysts. J. Catal. 1990, 124, 477–487. [Google Scholar] [CrossRef]
- Fu, Y.; Tian, Y.; Lin, P. A low-temperature IR spectroscopic study of selective adsorption of NO and CO on CuO/γ-Al2O3. J. Catal. 1991, 132, 85–91. [Google Scholar] [CrossRef]
- London, J.W.; Bell, A.T. A simultaneous infrared and kinetic study of the reduction of nitric oxide by carbon monoxide over copper oxide. J. Catal. 1973, 31, 96–109. [Google Scholar] [CrossRef]
- Li, P.; Feng, L.; Yuan, F.; Wang, D.; Dong, Y.; Niu, X.; Zhu, Y. Effect of Surface Copper Species on NO + CO Reaction over xCuO-Ce0.9Zr0.1O2 Catalysts: In Situ DRIFTS Studies. Catalysts 2016, 6, 124. [Google Scholar] [CrossRef]
- Zhang, R.; Teoh, W.Y.; Amal, R.; Chen, B.; Kaliaguine, S. Catalytic reduction of NO by CO over Cu/CexZr1−xO2 prepared by flame synthesis. J. Catal. 2010, 272, 210–219. [Google Scholar] [CrossRef]
- Yao, X.; Gao, F.; Yu, Q.; Qi, L.; Tang, C.; Dong, L.; Chen, Y. NO reduction by CO over CuO–CeO2 catalysts: Effect of preparation methods. Catal. Sci. Technol. 2013, 3, 1355–1366. [Google Scholar] [CrossRef]
- Ukisu, Y.; Sato, S.; Muramatsu, G.; Yoshida, K. Surface isocyanate intermediate formed during the catalytic reduction of nitrogen oxide in the presence of oxygen and propylene. Catal. Lett. 1991, 11, 177–181. [Google Scholar] [CrossRef]
- Sun, R.; Yu, F.; Wan, Y.; Pan, K.; Li, W.; Zhao, H.; Dan, J.; Dai, B. Reducing N2O Formation over CO-SCR Systems with CuCe Mixed Metal Oxides. ChemCatChem 2021, 13, 2709–2718. [Google Scholar] [CrossRef]
- Song, J.; Choi, M.; Lee, J.; Kim, J.M. Improvement of Fuel Economy and Greenhouse Gases Reduction in Gasoline Powered Vehicles Through the TWC-NOx Trap Catalyst. Int. J. Automot. Technol. 2020, 21, 441–449. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, H.; Li, N.; Tan, J.; Chen, D. Research on ammonia emissions from three-way catalytic converters based on small sample test and vehicle test. Sci. Total Environ. 2021, 795, 148926. [Google Scholar] [CrossRef] [PubMed]
- Suarez-Bertoa, R.; Pechout, M.; Vojtíšek, M.; Astorga, C. Regulated and Non-Regulated Emissions from Euro 6 Diesel, Gasoline and CNG Vehicles under Real-World Driving Conditions. Atmosphere 2020, 11, 204. [Google Scholar] [CrossRef]
- Hakeem, K.R.; Sabir, M.; Ozturk, M.; Akhtar, M.S.; Ibrahim, F.H. Nitrate and Nitrogen Oxides: Sources, Health Effects and Their Remediation. Rev. Environ. Contam. Toxicol. 2017, 242, 183–217. [Google Scholar] [CrossRef]
- Pinder, R.W.; Gilliland, A.B.; Dennis, R.L. Environmental impact of atmospheric NH3 emissions under present and future conditions in the eastern United States. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Wyer, K.E.; Kelleghan, D.B.; Blanes-Vidal, V.; Schauberger, G.; Curran, T.P. Ammonia emissions from agriculture and their contribution to fine particulate matter: A review of implications for human health. J. Environ. Manag. 2022, 323, 116285. [Google Scholar] [CrossRef] [PubMed]
- Lelieveld, J.; Evans, J.S.; Fnais, M.; Giannadaki, D.; Pozzer, A. The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 2015, 525, 367–371. [Google Scholar] [CrossRef]
- Ma, R.; Li, K.; Guo, Y.; Zhang, B.; Zhao, X.; Linder, S.; Guan, C.; Chen, G.; Gan, Y.; Meng, J. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 2021, 12, 6308. [Google Scholar] [CrossRef] [PubMed]
- Bauer, S.E.; Tsigaridis, K.; Miller, R. Significant atmospheric aerosol pollution caused by world food cultivation. Geophys. Res. Lett. 2016, 43, 5394–5400. [Google Scholar] [CrossRef]
- Bae, W.B.; Kim, D.Y.; Byun, S.W.; Hazlett, M.; Yoon, D.Y.; Jung, C.; Kim, C.H.; Kang, S.B. Emission of NH3 and N2O during NO reduction over commercial aged three-way catalyst (TWC): Role of individual reductants in simulated exhausts. Chem. Eng. J. Adv. 2022, 9, 100222. [Google Scholar] [CrossRef]
- Zhu, J.; Shen, M.; Wang, J.; Wang, X.; Wang, J. N2O formation during NOx storage and reduction using C3H6 as reductant. Catal. Today 2017, 297, 92–103. [Google Scholar] [CrossRef]
- Dimaratos, A.; Kontses, D.; Kontses, A.; Saltas, E.; Raptopoulos-Chatzistefanou, A.; Andersson, J.; Aakko-Saksa, P.; Samaras, Z. Emissions of currently non-regulated gaseous pollutants from modern passenger cars. Transp. Res. Procedia 2023, 72, 3078–3085. [Google Scholar] [CrossRef]
- Dégeilh, P.; Kermani, J.; Sery, J.; Michel, P. Study of Euro 6d-TEMP Emissions—IFPEN for DGEC; Summary Report; Ministère de l’Ecologie: Paris, France, 2020. [Google Scholar]
- Clairotte, M.; Suarez-Bertoa, R.; Zardini, A.A.; Giechaskiel, B.; Pavlovic, J.; Valverde, V.; Ciuffo, B.; Astorga, C. Exhaust emission factors of greenhouse gases (GHGs) from European road vehicles. Environ. Sci. Eur. 2020, 32, 125. [Google Scholar] [CrossRef]
- Macleod, N.; Isaac, J.; Lambert, R.M. A comparison of sodium-modified Rh/γ-Al2O3 and Pd/γ-Al2O3 catalysts operated under simulated TWC conditions. Appl. Catal. B Environ. 2001, 33, 335–343. [Google Scholar] [CrossRef]
- Obuchi, A.; Naito, S.; Onishi, T.; Tamaru, K. Mechanism of catalytic reduction of NO by H2 or CO on a Pd foil; Role of chemisorbed nitrogen on Pd. Surf. Sci. 1982, 122, 235–255. [Google Scholar] [CrossRef]
- Obuchi, A.; Naito, S.; Onishi, T.; Tamaru, K. Mechanism of NO+H2 reaction over Rh foil and the role of chemisorbed nitrogen atoms. Surf. Sci. 1983, 130, 29–40. [Google Scholar] [CrossRef]
- Giechaskiel, B.; Valverde, V.; Kontses, A.; Suarez-Bertoa, R.; Selleri, T.; Melas, A.; Otura, M.; Ferrarese, C.; Martini, G.; Balazs, A.; et al. Effect of Extreme Temperatures and Driving Conditions on Gaseous Pollutants of a Euro 6d-Temp Gasoline Vehicle. Atmosphere 2021, 12, 1011. [Google Scholar] [CrossRef]
- Wang, C.; Tan, J.; Harle, G.; Gong, H.; Xia, W.; Zheng, T.; Yang, D.; Ge, Y.; Zhao, Y. Ammonia Formation over Pd/Rh Three-Way Catalysts during Lean-to-Rich Fluctuations: The Effect of the Catalyst Aging, Exhaust Temperature, Lambda, and Duration in Rich Conditions. Environ. Sci. Technol. 2019, 53, 12621–12628. [Google Scholar] [CrossRef] [PubMed]
- Heeb, N.V.; Forss, A.-M.; Brühlmann, S.; Lüscher, R.; Saxer, C.J.; Hug, P. Three-way catalyst-induced formation of ammonia—Velocity- and acceleration-dependent emission factors. Atmos. Environ. 2006, 40, 5986–5997. [Google Scholar] [CrossRef]
- Heeb, N.V.; Saxer, C.J.; Forss, A.-M.; Brühlmann, S. Trends of NO-, NO2-, and NH3-emissions from gasoline-fueled Euro-3- to Euro-4-passenger cars. Atmos. Environ. 2008, 42, 2543–2554. [Google Scholar] [CrossRef]
- Hirano, H.; Yamada, T.; Tanaka, K.I.; Siera, J.; Cobden, P.; Nieuwenhuys, B.E. Mechanisms of the various nitric oxide reduction reactions on a platinum-rhodium (100) alloy single crystal surface. Surf. Sci. 1992, 262, 97–112. [Google Scholar] [CrossRef]
- Kobylinski, T.P.; Taylor, B.W. The catalytic chemistry of nitric oxide: II. Reduction of nitric oxide over noble metal catalysts. J. Catal. 1974, 33, 376–384. [Google Scholar] [CrossRef]
- Nova, I.; Lietti, L.; Forzatti, P.; Prinetto, F.; Ghiotti, G. Experimental investigation of the reduction of NOx species by CO and H2 over Pt–Ba/Al2O3 lean NOx trap systems. Catal. Today 2010, 151, 330–337. [Google Scholar] [CrossRef]
- Borsari, V.; Assunção, J.V.d. Ammonia emissions from a light-duty vehicle. Transp. Res. Part D Transp. Environ. 2017, 51, 53–61. [Google Scholar] [CrossRef]
- Breen, J.P.; Burch, R.; Lingaiah, N. An Investigation of Catalysts for the On Board Synthesis of NH3. A Possible Route to Low Temperature NOx Reduction for Lean-Burn Engines. Catal. Lett. 2002, 79, 171–174. [Google Scholar] [CrossRef]
- Schlatter, J.C.; Taylor, K.C. Platinum and palladium addition to supported rhodium catalysts for automotive emission control. J. Catal. 1977, 49, 42–50. [Google Scholar] [CrossRef]
- Wunsch, R.; Schön, C.; Frey, M.; Tran, D.; Proske, S.; Wandrey, T.; Kalogirou, M.; Schäffner, J. Detailed experimental investigation of the NOx reaction pathways of three-way catalysts with focus on intermediate reactions of NH3 and N2O. Appl. Catal. B Environ. 2020, 272, 118937. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Astorga, C. Isocyanic acid and ammonia in vehicle emissions. Transp. Res. Part D Transp. Environ. 2016, 49, 259–270. [Google Scholar] [CrossRef]
- Shelef, M.; Graham, G.W. Why Rhodium in Automotive Three-Way Catalysts? Catal. Rev. 1994, 36, 433–457. [Google Scholar] [CrossRef]
- Goula, G.; Botzolaki, G.; Osatiashtiani, A.; Parlett, C.M.A.; Kyriakou, G.; Lambert, R.M.; Yentekakis, I.V. Oxidative Thermal Sintering and Redispersion of Rh Nanoparticles on Supports with High Oxygen Ion Lability. Catalysts 2019, 9, 541. [Google Scholar] [CrossRef]
- Nagai, Y.; Hirabayashi, T.; Dohmae, K.; Takagi, N.; Minami, T.; Shinjoh, H.; Matsumoto, S.i. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J. Catal. 2006, 242, 103–109. [Google Scholar] [CrossRef]
- Taylor, K.C. Nitric Oxide Catalysis in Automotive Exhaust Systems. Catal. Rev. 1993, 35, 457–481. [Google Scholar] [CrossRef]
- WHO. Air Quality Guidelines for Europe, 2nd ed.; World Health Organization: Geneva, Switzerland, 2000.
- Smit, R.; Zeise, K.; Caffin, A.; Anyon, P. Dioxins Emissions from Motor Vehicles in Australia, National Dioxins Program Technical Report No. 2; Department of Climate Change, Energy, the Environment and Water: Canberra, Australia, 2004; pp. 1–55. [Google Scholar]
- Srogi, K. Levels and congener distributions of PCDDs, PCDFs and dioxin-like PCBs in environmental and human samples: A review. Environ. Chem. Lett. 2007, 6, 1–28. [Google Scholar] [CrossRef]
- Dyke, P.H.; Sutton, M.; Wood, D.; Marshall, J. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine. Chemosphere 2007, 67, 1275–1286. [Google Scholar] [CrossRef]
- Laroo, C.A.; Schenk, C.R.; Sanchez, L.J.; McDonald, J. Emissions of PCDD/Fs, PCBs, and PAHs from a modern diesel engine equipped with catalyzed emission control systems. Envrion. Sci Technol 2011, 45, 6420–6428. [Google Scholar] [CrossRef]
- Liu, Z.G.; Wall, J.C.; Barge, P.; Dettmann, M.E.; Ottinger, N.A. Investigation of PCDD/F emissions from mobile source diesel engines: Impact of copper zeolite SCR catalysts and exhaust aftertreatment configurations. Envrion. Sci Technol 2011, 45, 2965–2972. [Google Scholar] [CrossRef]
- Olie, K.; Addink, R.; Schoonenboom, M. Metals as Catalysts during the Formation and Decomposition of Chlorinated Dioxins and Furans in Incineration Processes. J. Air Waste Manag. Assoc. 1995 1998, 48, 101–105. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, H.J.; Troost, L.M.; Kuipers, G.; de Koning, J.; Sein, A.A. Emissions of Dioxins in the Netherlands; National Institute for Public Health and the Environment RIVM: Utrecht, The Netherlands, 1994. [Google Scholar]
- National Atomospheric Emissions Inventory. Dioxins (PCDD/F) Emission Summary Data. 2021. Available online: https://naei.energysecurity.gov.uk/node/25 (accessed on 7 February 2025).
- Environmental Protection Agency. An Inventory of Sources and Environmental Releases of Dioxin-like Compounds in the United States for the Years 1987, 1995, and 2000; National Center for Environmental Assessment: Washington, DC, USA, 2006.
- Heeb, N.V.; Zennegg, M.; Gujer, E.; Honegger, P.; Zeyer, K.; Gfeller, U.; Wichser, A.; Kohler, M.; Schmid, P.; Emmenegger, L.; et al. Secondary Effects of Catalytic Diesel Particulate Filters: Copper-Induced Formation of PCDD/Fs. Environ. Sci. Technol. 2007, 41, 5789–5794. [Google Scholar] [CrossRef] [PubMed]
- Laroo, C.A.; Schenk, C.; Sanchez, J.; McDonald, J.; Smith, P. Emissions of PCDD/Fs, PCBs, and PAHs from a Modern Diesel Engine Equipped with Selective Catalytic Reduction Filters. SAE Int. J. Engines 2013, 6, 1311–1339. [Google Scholar] [CrossRef]
- Clunies-Ross, C.; Stanmore, B.; Millar, G. Dioxins in diesel exhaust. Nature 1996, 381, 379. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.H.; Yeh, J.W.; Chein, H.M.; Hsu, L.Y.; Chi, K.H.; Chang, M.B. PCDD/F Adsorption and Destruction in the Flue Gas Streams of MWI and MSP via Cu and Fe Catalysts Supported on Carbon. Environ. Sci. Technol. 2008, 42, 5727–5733. [Google Scholar] [CrossRef] [PubMed]
- Gullett, B.K.; Ryan, J.V. On-Road Emissions of PCDDs and PCDFs from Heavy Duty Diesel Vehicles. Environ. Sci. Technol. 2002, 36, 3036–3040. [Google Scholar] [CrossRef] [PubMed]
Catalyst | T50% (°C) | Experimental Conditions | Reference |
---|---|---|---|
1.75% Pd/Al2O3 1.75% Pd-1.91% Cu/Al2O3 | 22 0 | 100–900 ppm CO air balance, GHSV = 60,000–120,000 mL/(gh) | [77] |
2% Pd/Al2O3 1.90% Pd-1.78% Cu/Al2O3 | 20 0 | 100 ppm CO air balance, GHSV = 36,000–60,000 mL/(gh) | [78] |
5% Pd/CeO2 5% Cu/CeO2 5% Rh/CeO2 5% Pt/CeO2 5% PdCu/CeO2 5% CuRh/CeO2 5% CuPt/CeO2 | 63 82 113 286 74 95 102 | 4 wt% CO and 20 wt% O2 Flow rate: 100 cm3/min 50 mg catalyst mass | [72] |
1% Pd10CZA 1% Pd-1% Cu10CZA 1% Pd33CZA 1% Pd-1% Cu33CZA | 132 55 111 34 | 1 wt% CO and 0.5 wt% O2 At 30,000 h−1 | [73] |
0.4% Pd/Al2O3 12% Cu/Al2O3 12% Cu-0.4% Pd/Al2O3 | 190 150 148 | 2.5 wt% CO and 20 wt% O2 At 36,000 h−1 | [79] |
1.5 PtPd/Al 1.5 PtPd/CZCu CZCu 3 PtPd/Al + CZCu | 179 125 124 129 | 500 ppm CO, 260 ppm C3H6, 90 ppm C3H8, 112 ppm C12H26, 83 ppm C8H10, 200 ppm NO, 8% O2, 8% H2O and N2 (balance) At 170,000 h−1 | [80] |
1.92% Pd/AC 0.97% Pd-0.95% Cu/AC | 70 30 | 500 ppm CO and 20 wt% O2 At 30,000 h−1 | [81] |
5% Pd/TiO2(wires) 2% Cu/TiO2 (wires) 5% Pd-2% Cu/TiO2 (wires) | 67.2 103.3 41.9 | 4 wt% CO and 20 wt% O2 At 72,000 h−1 | [82] |
Active Metal | Catalyst | Ea [kJ mol−1] | Reference |
---|---|---|---|
Pd | 0.154% Pd/20% CeO2 80% Al2O3 | 50 | [85] |
Pd/Al2O3 | 108–133 | ||
0.31% Pd/CeO2 | 45 | [86] | |
2.19% Pd/δ-Al2O3 | 63–96 | [87] | |
Pd/γ-Al2O3 | 90 | [84] | |
1.92% Pd/AC | 108.82 | [81] | |
Rh | 0.155% Rh/20% CeO2 80% Al2O3 | 105 | [85] |
Rh/Al2O3 | 92–117 | ||
0.73% Rh/CeO2 | 70 | [86] | |
Pt | Pt/Al2O3 | 104–125 | [85] |
0.23% Pt/20% CeO2 80% Al2O3 | 84 | ||
0.98% Pt/CeO2 | 59 | [86] | |
Pt/γ-Al2O3 | 112 | [88] | |
1% Pt/γ-Al2O3 | 120 | [89] | |
1% Pt/CeO2 | 70 | ||
Cu | Cu0.15[Ce(La)]0.85Ox | 50.1 | [90] |
0.25 CuO-CeO2 | 51 | [91] | |
1%CuO/CeO2 | 55 | [92] | |
CuOx/CeO2 | 40–50 | [93] | |
Cu0.1Ce0.9O2−y | 59 | [94] | |
CuO/CeO2 | 60.2 ± 1.7 | [95] | |
Cu/CeO2 | 58.1 ± 2.1 | ||
12% Cu/δ-A1203 | 71–92 | [96] | |
Cu/γ-Al2O3 | 110 | [84] | |
CuPd | Cu/Pd/γ-Al2O3 | 30 | [84] |
0.97% Pd-0.95% Cu/AC | 69.32 | [81] |
Active Metal | Catalyst | Ea [kJ mol−1] | Reference |
---|---|---|---|
Pd | 8.5% Pd/Al2O3 | 76 | [126] |
10% Pd/ZrO2 | 85 | ||
0.5% Pd/γ-Al2O3 3.5% PdO/γ-Al2O3 | 92 88 | [127] | |
2.7% Pd/γ-Al2O3 | 84 | [128] | |
0.037–1%Pd/Al2O3 | 62–84 | [129] | |
Pt | 1.2 wt% Pt/CZY | 72.5 | [130] |
Pt/Ce0.67Zr0.33O2 | 75 | [131] | |
0.5–4% Pt/γ-Al2O3 | 91.4–104 | [132] | |
2.7% Pt/γ-Al2O3 | 114 | [128] | |
0.5% Pt/γ-Al2O3 0.51% Pt/γ-Al2O3 0.22% Pt/Al2O3 | 98 103 101 | [127] [127,129] | |
Rh | 0.03–0.153% Rh/Al2O3 | 92–96 | [129] |
PtPd | 0.5% Pd 0.5% Pt/γ-Al2O3 | 75.4 | [133] |
Cu | 15% CuCe(La)O2 | 85.5–119 | [134] |
5.5% Cu/γ-Al2O3 | 88.7 | [135] | |
7% CuO/γ-Al2O3 0.25–9% Cu/ZrO2 | 93 92–96 | [127] [136] |
CO oxidation | ||
(I) | ||
Oxidation of hydrocarbons | ||
(II) | (slow oxidizing hydrocarbons) | |
(III) | (fast oxidizing hydrocarbons) | |
(IV) | ||
NO reduction by CO | ||
(V) | Direct | |
(VI) | Indirect, through N2O intermediate | |
(VII) | ||
Water—gas shift reaction | ||
(VIII) | ||
Steam reforming reactions | ||
(IX) | ||
(X) | ||
(XI) | ||
Reactions with H2 | ||
(XII) | ||
(XIII) | ||
(XIV) | ||
(XV) | ||
NH3 formation | ||
(XVI) | ||
(XVII) | ||
Role of OSC | ||
(XVIII) | ||
(XIX) | ||
(XX) | ||
(XXI) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papadopoulos, C.; Kourtelesis, M.; Dimaratos, A.; Moschovi, A.M.; Yakoumis, I.; Samaras, Z. Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals. Processes 2025, 13, 649. https://doi.org/10.3390/pr13030649
Papadopoulos C, Kourtelesis M, Dimaratos A, Moschovi AM, Yakoumis I, Samaras Z. Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals. Processes. 2025; 13(3):649. https://doi.org/10.3390/pr13030649
Chicago/Turabian StylePapadopoulos, Christos, Marios Kourtelesis, Athanasios Dimaratos, Anastasia Maria Moschovi, Iakovos Yakoumis, and Zissis Samaras. 2025. "Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals" Processes 13, no. 3: 649. https://doi.org/10.3390/pr13030649
APA StylePapadopoulos, C., Kourtelesis, M., Dimaratos, A., Moschovi, A. M., Yakoumis, I., & Samaras, Z. (2025). Mechanistic Aspects of the Chemical Reactions in a Three-Way Catalytic Converter Containing Cu and Platinum Group Metals. Processes, 13(3), 649. https://doi.org/10.3390/pr13030649