Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = excipient-free

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2108 KiB  
Article
Gelatin-Based Microspheres of Ciprofloxacin for Enhanced Lung Delivery and Biofilm Eradication in Pseudomonas aeruginosa Pulmonary Infections
by Luis Monrreal-Ortega, Rocío Iturriaga-Gallardo, Andrea Vilicic-Rubio, Pedro Torres, Patricio Leyton, Javier O. Morales, Tania F. Bahamondez-Canas and Daniel Moraga-Espinoza
Gels 2025, 11(8), 567; https://doi.org/10.3390/gels11080567 - 23 Jul 2025
Viewed by 304
Abstract
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid [...] Read more.
Chronic lung infection is the main predictor of morbidity and mortality in cystic fibrosis (CF), and current pharmacological alternatives are ineffective against Pseudomonas aeruginosa infections. We developed ciprofloxacin (CIP) for inhalation, aiming at improving its solubility through the formation of an amorphous solid dispersion (ASD) using gelatin (GA). CIP and GA were dissolved in varying ratios and then spray-dried, obtaining CIP-GA microspheres in a single step. The dissolution rate, size distribution, morphology, and aerodynamic properties of CIP-GA microspheres were studied, as well as their antimicrobial activity on P. aeruginosa biofilms. Microspheres formulated with a higher GA ratio increased the dissolution of CIP ten-fold at 6 h compared to gelatin-free CIP. Formulations with 75% GA or more could form ASDs and improve CIP’s dissolution rate. CIP-GA microspheres outperformed CIP in eradicating P. aeruginosa biofilm at 24 h. The spray-drying process produced CIP-GA microspheres with good aerodynamic properties, as indicated by a fine particle fraction (FPF) of 67%, a D50 of 3.52 μm, and encapsulation efficiencies above 70%. Overall, this study demonstrates the potential of gelatin to enhance the solubility of poorly soluble drugs by forming ASDs. As an FDA-approved excipient for lung delivery, these findings are valuable for particle engineering and facilitating the rapid translation of technologies to the market. Full article
Show Figures

Graphical abstract

22 pages, 2633 KiB  
Review
Implications of Anaphylaxis Following mRNA-LNP Vaccines: It Is Urgent to Eliminate PEG and Find Alternatives
by Jinxing Song, Dihan Su, Hongbing Wu and Jeremy Guo
Pharmaceutics 2025, 17(6), 798; https://doi.org/10.3390/pharmaceutics17060798 - 19 Jun 2025
Viewed by 2893
Abstract
The mRNA vaccine has protected humans from the Coronavirus disease 2019 (COVID-19) and has taken the lead in reversing the epidemic efficiently. However, the Centre of Disease Control (CDC) reported and raised the alarm of allergic or acute inflammatory adverse reactions after vaccination [...] Read more.
The mRNA vaccine has protected humans from the Coronavirus disease 2019 (COVID-19) and has taken the lead in reversing the epidemic efficiently. However, the Centre of Disease Control (CDC) reported and raised the alarm of allergic or acute inflammatory adverse reactions after vaccination with mRNA-LNP vaccines. Meanwhile, the US Food and Drug Administration (FDA) has added four black-box warnings in the instructions for mRNA-LNP vaccines. Numerous studies have proven that the observance of side effects after vaccination is indeed positively correlated to the level of anti-PEG antibodies (IgM or IgG), which are enhanced by PEGylated preparations like LNP vaccine and environmental exposure. After literature research and review in the past two decades, it was found that the many clinical trial failures (BIND-014, RB006 fell in phase II) of PEG modified delivery system or PEGylated drug were related to the high expression of anti-PEG IgM and IgG. In the background of shooting multiple mRNA-LNP vaccines in billions of people around the world in the past three years, the level of anti-PEG antibodies in the population may have significantly increased, which brings potential risks for PEG-modified drug development and clinical safety. This review summarizes the experience of using mRNA-LNP vaccines from the mechanism of the anti-PEG antibodies generation, detection methods, clinical failure cases of PEG-containing products, harm analysis of abuse of PEGylation, and alternatives. In light of the increasing prevalence of anti-PEG antibodies in the population and the need to avoid secondary injuries, this review article holds greater significance by offering insights for drug developers. It suggests avoiding the use of PEG excipients when designing PEGylated drugs or PEG-modified nano-formulations and provides references for strategies such as utilizing PEG-free or alternative excipients. Full article
Show Figures

Graphical abstract

60 pages, 981 KiB  
Review
Innovative Formulation Strategies for Biosimilars: Trends Focused on Buffer-Free Systems, Safety, Regulatory Alignment, and Intellectual Property Challenges
by Tomas Gabriel Bas
Pharmaceuticals 2025, 18(6), 908; https://doi.org/10.3390/ph18060908 - 17 Jun 2025
Viewed by 1219
Abstract
The formulation of biosimilar products critically determines their stability, safety, immunogenicity, and market accessibility. This article presents a novel integrative framework for biosimilar formulation that balances scientific, regulatory, and intellectual property dimensions, offering a holistic perspective rarely unified in the literature. It highlights [...] Read more.
The formulation of biosimilar products critically determines their stability, safety, immunogenicity, and market accessibility. This article presents a novel integrative framework for biosimilar formulation that balances scientific, regulatory, and intellectual property dimensions, offering a holistic perspective rarely unified in the literature. It highlights the growing trend toward buffer-free, high-concentration systems that leverage protein self-buffering to improve patient comfort and formulation stability. The article also addresses regulatory flexibility from the FDA and EMA, which allows scientifically justified deviations from reference formulations to ensure pharmaceutical equivalence and minimize immunogenicity. A novelty of this article is its comprehensive analysis of how digital innovations, such as Quality-by-Design, Process-Analytical-Technology, and AI-based in silico simulations, are transforming formulation design and bioprocess optimization to reduce immunogenic risks and enhance bioequivalence. Two important key takeaways emerge: (1) strategic innovation in formulation, especially using buffer-free and high concentration systems, improve product stability and patient tolerability while complying with regulatory standards; and (2) intellectual property challenges, including patent thickets, strongly influence formulation decisions, making early legal-strategic alignment essential for market entry. The article confirms that practical recommendations for the selection of recombinant therapeutic protein formulations can effectively guide developers and regulators toward safer, more efficient, and commercially viable biosimilar products. Full article
(This article belongs to the Special Issue Biosimilars Development Strategies)
Show Figures

Figure 1

19 pages, 3044 KiB  
Article
Automated 3D Printing-Based Non-Sterile Compounding Technology for Pediatric Corticosteroid Dosage Forms in a Health System Pharmacy Setting
by M. Brooke Bernhardt, Farnaz Shokraneh, Ludmila Hrizanovska, Julius Lahtinen, Cynthia A. Brasher and Niklas Sandler
Pharmaceutics 2025, 17(6), 762; https://doi.org/10.3390/pharmaceutics17060762 - 9 Jun 2025
Cited by 1 | Viewed by 866
Abstract
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage [...] Read more.
Background: Pharmaceutical compounding remains a predominantly manual process with limited innovation, particularly in non-sterile applications. This study explores the implementation of an automated compounding platform based on 3D printing to enhance precision, efficiency, and adaptability in pediatric corticosteroid formulations. Methods: Personalized hydrocortisone dosage forms were prepared in a hospital pharmacy setting using a proprietary excipient base and standardized procedures, including automated dosing and syringe heating when required. Three dosage forms—3.2 mg gel tablets, 2.8 mg water-free troches, and 1.2 mg orodispersible films (ODFs)—were selected to demonstrate the platform’s versatility and to address pediatric needs for varying strengths and dosage types. All products were prepared using a reproducible semi-solid extrusion (SSE)-based workflow with the consistent API-excipient blending and automated deposition. Results: Analytical testing confirmed that all formulations met pharmacopeial criteria for mass and content uniformity. The ODF and troche forms achieved rapid drug release, exceeding 75% within 5 min, while the gel tablet showed a slower release profile, reaching 86% by 60 min. Additionally, in-process homogeneity testing across syringe printing cycles confirmed the consistent API distribution. Conclusions: The results support the feasibility of integrating automated compounding technologies into pharmacy workflows. Such systems can improve accuracy, minimize variability, and streamline the production of customized pediatric medications, particularly for drugs with poor palatability or narrow therapeutic windows. Overall, this study highlights the potential of automation to modernize non-sterile compounding, and to better support individualized therapy. Full article
Show Figures

Figure 1

17 pages, 8085 KiB  
Article
Synthesis and Characterization of Poly(Lactic-Co-Glycolic Acid)–Paclitaxel (PLGA-PTX) Nanoparticles Evaluated in Ovarian Cancer Models
by Sylwia A. Dragulska, Maxier Acosta Santiago, Sabina Swierczek, Linus Chuang, Olga Camacho-Vanegas, Sandra Catalina Camacho, Maria M. Padron-Rhenals, John A. Martignetti and Aneta J. Mieszawska
Pharmaceutics 2025, 17(6), 689; https://doi.org/10.3390/pharmaceutics17060689 - 23 May 2025
Viewed by 755
Abstract
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer [...] Read more.
We developed a novel biodegradable poly(lactic-co-glycolic acid) (PLGA) polymer chemically modified with paclitaxel (PTX) to form a PLGA-PTX hybrid. Pre-modification of PTX enhanced its loading in PLGA-PTX nanoparticles (NPs). Background/Objectives: PTX is one of the most effective chemotherapy agents used in cancer therapy. The primary mode of PTX’s action is the hyperstabilization of microtubules leading to cell growth arrest. Although highly potent, the drug is water insoluble and requires the Cremophor EL excipient. The toxic effects of the free drug (e.g., neurotoxicity) as well as its solubilizing agent are well established. Thus, there is strong clinical rationale and need for exploring alternative PTX delivery approaches, retaining biological activity and minimizing systemic effects. Methods: The PTX modification method features reacting the C-2′ and C-7 residues with a linker (succinic anhydride) to produce easily accessible carboxyl groups on the PTX for enhanced coupling to the hydroxyl group of PLGA. The PLGA-PTX hybrid, formed via esterification reaction, was used to formulate lipid-coated PLGA-PTX NPs. As proof of concept, the PLGA-PTX NPs were tested in ovarian cancer (OvCA) models, including several patient-derived cell lines (PDCLs), one of which was generated from a platinum-resistant patient. Results: The PLGA-PTX NPs critically remained stable in water and serum while enabling slow drug release. Importantly, PLGA-PTX NPs demonstrated biological activity. Conclusions: We suggest that this approach offers both a new and effective PTX formulation and a possible path towards the development of a new generation of OvCA treatment. Full article
(This article belongs to the Special Issue PLGA Micro/Nanoparticles in Drug Delivery)
Show Figures

Graphical abstract

25 pages, 6552 KiB  
Article
Comprehensive Aerodynamic and Physicochemical Stability Evaluations of Nanocrystal-Based Dry Powder Inhalers: The Role of Mannitol and Leucine in Enhancing Performance
by Heba Banat, Attila Nagy, Árpád Farkas, Rita Ambrus and Ildikó Csóka
Pharmaceutics 2025, 17(4), 436; https://doi.org/10.3390/pharmaceutics17040436 - 28 Mar 2025
Cited by 2 | Viewed by 877
Abstract
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based [...] Read more.
Background: Nanocrystals, a carrier-free nanotechnology, offer significant advantages for pulmonary drug delivery by enhancing the dissolution and solubility of poorly soluble drugs while maintaining favorable biological properties and low toxicity. This study aims to investigate the aerodynamic performance and stability of nanocrystal-based dry powders (NC-DPs). Methods: Nanocrystalline suspensions were produced via wet media milling and subjected to stability studies before undergoing nano spray drying. A factorial design was employed to optimize the process parameters. The influence of mannitol and leucine, individually and in combination, was evaluated in terms of aerodynamic properties (Aerodynamic Particle Sizer (APS), in silico modeling) and the physicochemical stability at room temperature (in a desiccator) and accelerated conditions (40 ± 2 °C, 75 ± 5% relative humidity). Results: APS analysis revealed that leucine-containing powders (K-NC-Ls) exhibited the smallest median (1.357 µm) and geometric mean (1.335 µm) particle sizes, enhancing dispersibility. However, in silico results indicated the highest exhaled fraction for K-NC-L, highlighting the need for optimized excipient selection. Although mannitol showed the lowest exhaled fraction, it was mainly deposited in the extra-thoracic region in silico. The mannitol/leucine combination (K-NC-ML) revealed a low exhaled fraction and high lung deposition in silico. Also, K-NC-ML demonstrated superior stability, with a 6% reduction in D[0.5] and a 5% decrease in span overtime. Furthermore, no significant changes in crystallinity, thermal behavior, drug release, or mass median aerodynamic diameter were observed under stress conditions. Conclusions: These findings confirm that combined incorporation of mannitol and leucine in NC-DP formulations enhances stability and aerodynamic performance, making it a promising approach for pulmonary drug delivery. Full article
Show Figures

Graphical abstract

9 pages, 676 KiB  
Case Report
Carnitine Deficiency Caused by Salcaprozic Acid Sodium Contained in Oral Semaglutide in a Patient with Multiple Acyl-CoA Dehydrogenase Deficiency
by Yasuko Mikami-Saito, Masamitsu Maekawa, Masahiro Watanabe, Shinichiro Hosaka, Kei Takahashi, Eriko Totsune, Natsuko Arai-Ichinoi, Atsuo Kikuchi, Shigeo Kure, Hideki Katagiri and Yoichi Wada
Int. J. Mol. Sci. 2025, 26(7), 2962; https://doi.org/10.3390/ijms26072962 - 25 Mar 2025
Viewed by 884
Abstract
Carnitine plays an essential role in maintaining energy homeostasis and metabolic flexibility. Various medications, such as pivalate-conjugated antibiotics, valproic acid, and anticancer agents, can induce carnitine deficiency, inhibit the utilization of fatty acid, and contribute to the development of hypoglycemia. No studies have [...] Read more.
Carnitine plays an essential role in maintaining energy homeostasis and metabolic flexibility. Various medications, such as pivalate-conjugated antibiotics, valproic acid, and anticancer agents, can induce carnitine deficiency, inhibit the utilization of fatty acid, and contribute to the development of hypoglycemia. No studies have linked oral semaglutide to carnitine deficiency. Herein, we report the case of a 34-year-old male patient with multiple acyl-CoA dehydrogenase deficiency who developed carnitine deficiency attributable to salcaprozic acid sodium (SNAC) in oral semaglutide. The patient was diagnosed with type 2 diabetes mellitus at 32 years of age and was treated with semaglutide injections. Hypoglycemic symptoms appeared after switching to oral semaglutide, and the mean levels of blood-free carnitine significantly decreased. Liquid chromatography–tandem mass spectrometry analysis revealed a peak corresponding to the SNAC–carnitine complex (m/z 423.24) in the urine exclusively during the oral administration of semaglutide. The MS/MS spectra at m/z 423.24 contained peaks consistent with those of the SNAC and carnitine product ions. Our results suggest that through complexation with carnitine, SNAC may induce carnitine deficiency. Healthcare providers should monitor for carnitine deficiency when administering SNAC-containing medications to at-risk individuals. Furthermore, this case can raise more significant concerns about the potential impact of pharmaceutical excipients like SNAC on metabolic pathways. Full article
(This article belongs to the Special Issue Molecular Therapeutics for Diabetes and Related Complications)
Show Figures

Figure 1

19 pages, 5096 KiB  
Article
Study on Lyophilised Orodispersible Tablets from Plant-Based Drinks as Bulking Agents
by Adrienn Katalin Demeter, Dóra Farkas, Márton Király, Zoltán Kovács, Krisztina Ludányi, István Antal and Nikolett Kállai-Szabó
Pharmaceutics 2025, 17(2), 195; https://doi.org/10.3390/pharmaceutics17020195 - 4 Feb 2025
Cited by 2 | Viewed by 1280
Abstract
Background/Objectives: Oral administration of active pharmaceutical ingredients (APIs) is the most commonly used route of administration. As dysphagia is a prevalent problem, the size of the swallowed dosage form could negatively influence patient adherence. Orally disintegrating tablets (ODTs) are beneficial dosage forms because [...] Read more.
Background/Objectives: Oral administration of active pharmaceutical ingredients (APIs) is the most commonly used route of administration. As dysphagia is a prevalent problem, the size of the swallowed dosage form could negatively influence patient adherence. Orally disintegrating tablets (ODTs) are beneficial dosage forms because they disintegrate within a few seconds in the oral cavity without water. Lactose is one of the most commonly used excipients in the pharmaceutical industry; it served as the central concept of a recent publication on the formulation of milk-based ODTs despite lactose malabsorption being widespread worldwide. Consequently, the plant-based alternative market has grown exponentially and has become a prevailing food trend, with various alternatives to choose from. For this reason, the development of a nonsteroidal anti-inflammatory drug (NSAID)-containing ODT with plant-based drinks (PBDs) was assessed for its innovative potential. Methods: Different PBDs were investigated and compared to traditional and lactose-free milk. The liquids’ viscosity, pH, and particle size were determined, and an electronic tongue was used for the sensory evaluation. The various ODTs were prepared with the freeze-drying method, and then the qualitative characteristics of the dosage form were investigated. Results: Our different measurements show that different plant beverages differ from each other and that these differences have an impact on the technological processing. According to the HPLC-DAD measurements, all values were in the required range. Conclusions: These measurements suggest that the soya drink is the most similar to traditional cow milk and would be the most appropriate choice among the investigated plant-based drinks to be used as a carrier system for an ibuprofen-containing ODT. Full article
(This article belongs to the Special Issue Advance in Development of Patient-Centric Dosage Form, 3rd Edition)
Show Figures

Graphical abstract

18 pages, 4747 KiB  
Article
Evaluation of Permeability, Safety, and Stability of Nanosized Ketoprofen Co-Spray-Dried with Mannitol for Carrier-Free Pulmonary Systems
by Heba Banat, Ilona Gróf, Mária A. Deli, Rita Ambrus and Ildikó Csóka
Appl. Sci. 2025, 15(3), 1547; https://doi.org/10.3390/app15031547 - 3 Feb 2025
Cited by 1 | Viewed by 1156
Abstract
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized [...] Read more.
Pulmonary drug delivery presents a promising approach for managing respiratory diseases, enabling localized drug deposition and minimizing systemic side effects. Building upon previous research, this study investigates the cytotoxicity, permeability, and stability of a novel carrier-free dry powder inhaler (DPI) formulation comprising nanosized ketoprofen (KTP) and mannitol (MNT). The formulation was prepared using wet media milling to produce KTP-nanosuspensions, followed by spray drying to achieve combined powders suitable for inhalation. Cell viability and permeability were conducted in both alveolar (A549) and bronchial (CFBE) models. Stability was assessed after storage in hydroxypropyl methylcellulose (HPMC) capsules under stress conditions (40 °C, 75% RH), as per ICH guidelines. KTP showed good penetration through both models, with lower permeability through the CFBE barrier. The MNT-containing sample (F1) increased permeability by 1.4-fold in A549. All formulations had no effect on cell barrier integrity or viability after the impedance test, confirming their safety. During stability assessment, the particle size remained consistent, and the partially amorphous state of KTP was retained over time. However, moisture absorption induced surface roughening and partial agglomeration, leading to reduced fine particle fraction (FPF) and emitted fraction (EF). Despite these changes, the mass median aerodynamic diameter (MMAD) remained stable, confirming the formulation’s continued applicability for pulmonary delivery. Future research should focus on optimizing excipient content, alternative capsule materials, and storage conditions to mitigate moisture-related issues. Hence, the findings demonstrate that the developed ketoprofen–mannitol DPI retains its quality and performance characteristics over an extended period, making it a viable option for pulmonary drug delivery. Full article
Show Figures

Figure 1

19 pages, 6253 KiB  
Article
Development and Evaluation of Lactose-Free Single-Unit and Multiple-Unit Preparations of a BCS Class II Drug, Rivaroxaban
by Daniel Zakowiecki, Peter Edinger, Markos Papaioannou, Michael Wagner, Tobias Hess, Jadwiga Paszkowska, Marcela Staniszewska, Daria Myslitska, Michal Smolenski, Justyna Dobosz, Grzegorz Garbacz and Dorota Haznar Garbacz
Pharmaceutics 2024, 16(11), 1485; https://doi.org/10.3390/pharmaceutics16111485 - 20 Nov 2024
Viewed by 3559
Abstract
Background/Objectives: The aim of the present study was to develop lactose-free formulations of rivaroxaban, a novel oral anticoagulant used for the treatment and prevention of blood clotting. As a BCS Class II drug, rivaroxaban is characterized by poor solubility in aqueous media, [...] Read more.
Background/Objectives: The aim of the present study was to develop lactose-free formulations of rivaroxaban, a novel oral anticoagulant used for the treatment and prevention of blood clotting. As a BCS Class II drug, rivaroxaban is characterized by poor solubility in aqueous media, posing a significant formulation challenge. Methods: To address this, phosphate-based excipients were employed to prepare both traditional single-unit dosage forms (tablets) and modern multiple-unit pellet systems (MUPS). These formulations were successfully developed and thoroughly evaluated for their physical properties and performance. Results: The resulting formulations demonstrated very good mechanical strength, including appropriate hardness and friability, alongside strong chemical stability. Their dissolution profiles met the requirements of the compendial monograph for Rivaroxaban Tablets and were comparable to those of the reference product, Xarelto® film-coated tablets. Conclusions: This study shows the potential for producing effective, stable, and patient-friendly medications that meet the needs of contemporary society, where an increasing number of individuals suffer from lactose intolerance or seek vegan-friendly alternatives. Full article
Show Figures

Graphical abstract

18 pages, 2038 KiB  
Review
Analytical Challenges in Novel Pentavalent Meningococcal Conjugate Vaccine (A, C, Y, W, X)
by Pankaj Sharma, Sameer Kale, Swapnil Phugare, Sunil Kumar Goel and Sunil Gairola
Vaccines 2024, 12(11), 1227; https://doi.org/10.3390/vaccines12111227 - 29 Oct 2024
Cited by 3 | Viewed by 2143
Abstract
Multivalent meningococcal conjugate vaccines are a significant focus for the scientific community in light of the WHO’s mission to defeat meningitidis by 2030. Well-known meningococcal vaccines such as MenAfriVac, Nimenrix, Menveo, and MenQuadfi are licensed in various parts of the world and have [...] Read more.
Multivalent meningococcal conjugate vaccines are a significant focus for the scientific community in light of the WHO’s mission to defeat meningitidis by 2030. Well-known meningococcal vaccines such as MenAfriVac, Nimenrix, Menveo, and MenQuadfi are licensed in various parts of the world and have been successful. Recently, the World Health Organization (WHO) qualified MenFive (meningococcal A, C, Y, W, and X) conjugate vaccine, further enhancing the battery of vaccines against meningitis. The antigenic nature of the current and new serogroups, the selection of carrier proteins, and the optimal formulation of these biomolecules are pivotal parameters for determining whether a biological preparation qualifies as a vaccine candidate. Creating appropriate quality control analytical tools for a complex biological formulation is challenging. A scoping review aims to identify the main challenges and gaps in analyzing multivalent vaccines, especially in the case of novel serogroups, such as X, as the limited literature addresses these analytical challenges. In summary, the similarities in polysaccharide backbones between meningococcal serogroups (C, Y, W sharing a sialic acid backbone and A, X sharing a phosphorous backbone) along with various conjugation chemistries (such as CNBr activation, reductive amination, CDAP, CPIP, thioether bond formation, N-hydroxy succinimide activation, and carbodiimide-mediated coupling) resulting into a wide variety of polysaccharide -protein conjugates. The challenge in analyzing carrier proteins used in conjugation (such as diphtheria toxoid, tetanus toxoid, CRM diphtheria protein, and recombinant CRM) is assessing their purity (whether they are monomeric or polymeric in nature as well as their polydispersity). Additional analytical challenges include the impact of excipients, potential interference from serogroups, selection and establishment of standards, age-dependent behavior of biomolecules indicated by molecular size distributions, and process-driven variations. This article explains the analytical insights gained (polysaccharide content, free saccharide, free proteins, MSD) during the development of the MenFive vaccine and highlights the crucial gaps and challenges in testing. Full article
Show Figures

Figure 1

15 pages, 4021 KiB  
Article
Feasibility of a High-Dose Inhaled Indomethacin Dry Powder with Dual Deposition for Pulmonary and Oral Delivery
by Jamie E. Spahn, Amr Hefnawy, Feng Zhang and Hugh D. C. Smyth
Pharmaceutics 2024, 16(10), 1269; https://doi.org/10.3390/pharmaceutics16101269 - 28 Sep 2024
Viewed by 1406
Abstract
In this study we have developed a high-dose dry powder inhaler formulation of indomethacin using a novel approach to carrier-based formulations. Specifically, larger drug particles serve as the carrier for the smaller micronized drug particles, such that an inhaled dose is combined with [...] Read more.
In this study we have developed a high-dose dry powder inhaler formulation of indomethacin using a novel approach to carrier-based formulations. Specifically, larger drug particles serve as the carrier for the smaller micronized drug particles, such that an inhaled dose is combined with an oral dose. To study this system, the aerosol performance of a standard indomethacin–lactose formulation was compared to carrier-free micronized indomethacin and a drug-as-carrier formulation (a micronized indomethacin–coarse indomethacin blend). Indomethacin with lactose showed a very poor aerosol performance, indicating high adhesion between the drug and carrier. The performance of the carrier-free micronized drug was significantly better, indicating low cohesion. Coarse drug particles as a carrier allowed improved powder flow and aerosol performance while also providing a potential secondary route of absorption of indomethacin, namely oral. An optimal formulation ratio of 1:1 (w/w) fine indomethacin–coarse indomethacin was developed in this study. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Graphical abstract

20 pages, 8504 KiB  
Article
Ionic Liquid-Based Grapeseed Oil Emulsion for Enhanced Anti-Wrinkle Treatment
by Bo Yang, Xu Zhang, Liguo Zhang, Jinjin Wu, Wei Wang, Qiaomei Huang, Zhenyuan Wang, Jichuan Zhang, Tongjie Xu, Chengyu Wu and Jiaheng Zhang
Pharmaceuticals 2024, 17(10), 1273; https://doi.org/10.3390/ph17101273 - 26 Sep 2024
Viewed by 1612
Abstract
Objectives: To address the poor efficacy and percutaneous penetration of grape seed oil, ionic liquids and nanotechnology were combined to prepare a grape seed oil emulsion. Methods: A novel Menthol-CoQ10 ionic liquid and ionic liquid based grapeseed oil emulsion were prepared and confirmed. [...] Read more.
Objectives: To address the poor efficacy and percutaneous penetration of grape seed oil, ionic liquids and nanotechnology were combined to prepare a grape seed oil emulsion. Methods: A novel Menthol-CoQ10 ionic liquid and ionic liquid based grapeseed oil emulsion were prepared and confirmed. Results: The average size of the grapeseed oil emulsion was 218 nm, and its zeta potential was −33.5 mV. The ionic liquid-based grape seed oil emulsion exhibited a transdermal penetration effect 4.63-fold higher than that of ordinary grape seed oil emulsion. Ionic liquid also displayed enhanced efficiency both in vitro and in vivo. It significantly inhibited the production of DPPH free radicals and tyrosinase, inhibited melanin and matrix metalloproteinase-1 (MMP-1) produced by cells, and promoted type I collagen expression in fibroblasts. After 28 days of continuous use, the grapeseed oil emulsion improved the water content of the stratum corneum and the rate of transepidermal water loss, enhanced the firmness and elasticity of the skin, and significantly improved the total number and length of under-eye lines, tail lines, nasolabial folds, and marionette lines on the face. Conclusions: Menthol-CoQ10 ionic liquid is a promising functional excipient for both transdermal delivery increase and efficient enhancement. Ionic liquid and nanotechnology for grape seed oil facial mask displayed significantly enhanced efficacy and permeability. Full article
(This article belongs to the Special Issue Pharmaceutical Excipients in Formulation Design and Drug Delivery)
Show Figures

Figure 1

16 pages, 17787 KiB  
Article
Development, Stability, and In Vitro/In Vivo Studies of Volatile Oil Pickering Emulsion Stabilized by Modified Amber
by Maomao Zhu, Zhonghuan Qu, Yanjun Yang, Ruyu Shi, Bing Yang, Yajun Shi, Junbo Zou and Xiaobin Jia
Pharmaceuticals 2024, 17(9), 1117; https://doi.org/10.3390/ph17091117 - 24 Aug 2024
Cited by 4 | Viewed by 1374
Abstract
Volatile oil stabilization strategies based on encapsulation with a large number of excipients limit further applications. The primary objective of this study is to improve the stability of volatile oils using Pickering emulsion (PE) stabilized by Chinese medicinal powder based on the principle [...] Read more.
Volatile oil stabilization strategies based on encapsulation with a large number of excipients limit further applications. The primary objective of this study is to improve the stability of volatile oils using Pickering emulsion (PE) stabilized by Chinese medicinal powder based on the principle of “integrating drug and excipient”. Modified amber was acquired through surface modification, and a stable oil-in-water PE loaded with Acorus tatarinowii volatile oil (ATVO) was constructed from modified amber. The stability, including the peroxide value (PV), malondialdehyde (MDA) content, and the content and composition of volatile components in modified amber-PE (MAPE) under intense light exposure, was analyzed deeply. In addition, the in vitro release and pharmacokinetics of MAPE and ATVO were investigated. The results demonstrate that the PV and MDA content in MAPE were significantly lower than in free ATVO, and the content and composition of volatile components in MAPE were closer to those in untreated ATVO. The release kinetics of β-asarone and α-asarone in MAPE demonstrated rapid and higher release, and pharmacokinetic studies show that MAPE has better bioavailability. This research provides a distinctive Chinese medicine solution to address the vaporization of volatile oil in solid formulations. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

17 pages, 2155 KiB  
Article
The Infusion of Piperacillin/Tazobactam with an Elastomeric Device: A Combined 24-H Stability Study and Drug Solution Flow Rate Analysis
by Laura Négrier, Anthony Martin Mena, Christian Dupont, Philémon Gamache, Jeanne-Olive Zimbril, Yasmine Abdoune, Youness Karrout, Pascal Odou, Stéphanie Genay and Bertrand Décaudin
Pharmaceuticals 2024, 17(8), 1085; https://doi.org/10.3390/ph17081085 - 19 Aug 2024
Viewed by 2243
Abstract
Bacterial respiratory tract infections (e.g., in patients with cystic fibrosis) may be treated with the intravenous infusion of a piperacillin/tazobactam (P/T) solution through an elastomeric device. In the present work, we combined a 24-h drug stability study with an assessment of the drug [...] Read more.
Bacterial respiratory tract infections (e.g., in patients with cystic fibrosis) may be treated with the intravenous infusion of a piperacillin/tazobactam (P/T) solution through an elastomeric device. In the present work, we combined a 24-h drug stability study with an assessment of the drug solution flow rate during an in vitro simulated infusion. Experiments were performed in triplicate with two excipient-free generic P/T solutions and an excipient-containing proprietary P/T solution in saline (all 50/6.25 mg/mL) released from an elastomeric infusion device at 32 °C. The P/T solutions’ stability was assessed by an HPLC-UV assay, pH and osmolality measurements, a visual assessment, and particle counting. Before these analyses, a forced degradation study was performed. To assess the flow rate, a precision scale was used to weigh the solution collected at the infusion line outlet. The stability criteria were <10% degradation and a flow rate within ± 15% of the nominal value over the 24-h infusion period: all three P/T solutions were found to be stable. The actual flow rate was lower than the expected flow rate; this difference was probably due to the drug solution’s high viscosity and must be taken into account in clinical use. Full article
Show Figures

Figure 1

Back to TopTop