Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (199)

Search Parameters:
Keywords = excellent tribological performances

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4423 KiB  
Article
Effect of B Element Doping on High-Temperature Tribological Properties of WS2-Based Composite Coatings
by Songmin Zhang, Xiaopeng Zhang, Haichao Cai, Zixuan Huang, Yujun Xue, Lulu Pei and Bowei Kang
Lubricants 2025, 13(8), 332; https://doi.org/10.3390/lubricants13080332 - 30 Jul 2025
Viewed by 210
Abstract
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, [...] Read more.
WS2 coating, as a solid lubricating material, plays a significant role in the lubrication of rotating components in spacecraft. During the launch process, however, spacecraft are exposed to high-temperature and humid atmospheric environments, which can lead to oxidative failure in the coating, thereby limiting its engineering applications. By doping with B elements, B/WS2 was successfully prepared as a composite coating. The results demonstrate that the fabricated coating exhibits excellent high-temperature tribological performance in atmospheric environments. The mechanism through which B doping improves the high-temperature friction and wear properties of the WS2 composite coating was revealed through high-temperature friction and wear tests. With the incorporation of B elements, the average friction coefficient of the coating was 0.071, and the wear rate was 7.63 × 10−7 mm3·N−1·m−1, with the wear mechanisms identified as abrasive wear and spalling. Due to high-temperature oxidation, thermal decomposition effects, and the formation of WB4 during sputtering, the wear resistance and anti-plastic deformation capability of the coating were further improved. Compared to room-temperature test conditions, the B/WS2 composite coating at different high temperatures exhibited superior friction coefficients and wear rates. Notably, at 150 °C, the average friction coefficient was as low as 0.015, and the wear forms were abrasive wear and adhesive wear. Full article
Show Figures

Figure 1

32 pages, 4464 KiB  
Review
Multifunctional Polyimide for Packaging and Thermal Management of Electronics: Design, Synthesis, Molecular Structure, and Composite Engineering
by Xi Chen, Xin Fu, Zhansheng Chen, Zaiteng Zhai, Hongkang Miu and Peng Tao
Nanomaterials 2025, 15(15), 1148; https://doi.org/10.3390/nano15151148 - 24 Jul 2025
Viewed by 491
Abstract
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. [...] Read more.
Polyimide, a class of high-performance polymers, is renowned for its exceptional thermal stability, mechanical strength, and chemical resistance. However, in the context of high-integration and high-frequency electronic packaging, polyimides face critical challenges including relatively high dielectric constants, inadequate thermal conductivity, and mechanical brittleness. Recent advances have focused on molecular design and composite engineering strategies to address these limitations. This review first summarizes the intrinsic properties of polyimides, followed by a systematic discussion of chemical synthesis, surface modification approaches, molecular design principles, and composite fabrication methods. We comprehensively examine both conventional polymerization synthetic routes and emerging techniques such as microwave-assisted thermal imidization and chemical vapor deposition. Special emphasis is placed on porous structure engineering via solid-template and liquid-template methods. Three key modification strategies are highlighted: (1) surface modifications for enhanced hydrophobicity, chemical stability, and tribological properties; (2) molecular design for optimized dielectric performance and thermal stability; and (3) composite engineering for developing high-thermal-conductivity materials with improved mechanical strength and electromagnetic interference (EMI) shielding capabilities. The dielectric constant of polyimide is reduced while chemical stability and wear resistance can be enhanced through the introduction of fluorine groups. Ultra-low dielectric constant and high-temperature resistance can be achieved by employing rigid monomers and porous structures. Furthermore, the incorporation of fillers such as graphene and boron nitride can endow the composite materials with high thermal conductivity, excellent EMI shielding efficiency, and improved mechanical properties. Finally, we discuss representative applications of polyimide and composites in electronic device packaging, EMI shielding, and thermal management systems, providing insights into future development directions. Full article
(This article belongs to the Special Issue Functional and Structural Properties of Polymeric Nanocomposites)
Show Figures

Figure 1

14 pages, 6297 KiB  
Article
Enhancing the Elevated-Temperature Mechanical Properties of Levitation Melted NbMoTaW Refractory High-Entropy Alloys via Si Addition
by Yunzi Liu, Xiaoxiao Li, Shuaidan Lu, Jialiang Zhou, Shangkun Wu, Shengfeng Lin and Long Wang
Materials 2025, 18(15), 3465; https://doi.org/10.3390/ma18153465 - 24 Jul 2025
Viewed by 205
Abstract
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix ( [...] Read more.
To enhance the mechanical properties of NbMoTaW refractory high-entropy alloys (RHEAs), Si was added at varying concentrations (x = 0, 0.25, and 0.5) via vacuum induction levitation melting (re-melted six times for homogeneity). The microstructure and mechanical properties of NbMoTaWSix (x = 0, 0.25, and 0.5) RHEAs were characterized using scanning electron microscopy (SEM), universal testing, microhardness testing, and tribological equipment. Experimental results manifested that Si addition induces the formation of the (Nb,Ta)5Si3 phase, and the volume fraction of the silicide phase increases with higher Si content, which significantly improves the alloy’s strength and hardness but deteriorates its plasticity. Enhanced wear resistance with Si addition is attributed to improved hardness and oxidation resistance. Tribological tests confirm that Si3N4 counterfaces are optimal for evaluating RHEA wear mechanisms. This work can provide guidance for the fabrication of RHEAs with excellent performance. Full article
(This article belongs to the Special Issue High-Entropy Alloys: Synthesis, Characterization, and Applications)
Show Figures

Graphical abstract

17 pages, 11614 KiB  
Article
Influence of Si Content on the Microstructure and Properties of Hydrogenated Amorphous Carbon Films Deposited by Magnetron Sputtering Technique
by Zhen Yu, Jiale Shang, Qingye Wang, Haoxiang Zheng, Haijuan Mei, Dongcai Zhao, Xingguang Liu, Jicheng Ding and Jun Zheng
Coatings 2025, 15(7), 793; https://doi.org/10.3390/coatings15070793 - 6 Jul 2025
Viewed by 392
Abstract
Hydrogenated amorphous carbon (a-C:H) films are widely valued for their excellent mechanical strength and low friction, but their performance significantly degrades at elevated temperatures, limiting practical applications in aerospace environments. In this work, we aimed to enhance the high-temperature tribological behavior of a-C:H [...] Read more.
Hydrogenated amorphous carbon (a-C:H) films are widely valued for their excellent mechanical strength and low friction, but their performance significantly degrades at elevated temperatures, limiting practical applications in aerospace environments. In this work, we aimed to enhance the high-temperature tribological behavior of a-C:H films through controlled silicon (Si) doping. A series of a-C:H:Si films with varying Si contents were fabricated via direct current magnetron sputtering, and their microstructure, mechanical properties, and friction behavior were systematically evaluated from room temperature up to 400 °C. Results show that moderate Si doping (8.3 at.%) substantially enhances hardness and wear resistance, while enabling ultralow friction (as low as 0.0034) at 400 °C. This superior performance is attributed to the synergistic effects of transfer layer formation, preferential Si oxidation, and tribo-induced graphitization. This study provides new insights into the high-temperature lubrication mechanisms of Si-doped a-C:H films and demonstrates the critical role of Si content optimization, highlighting a viable strategy for extending the thermal stability and lifespan of solid-lubricating films. Full article
(This article belongs to the Special Issue Sputtering Deposition for Advanced Materials and Interfaces)
Show Figures

Figure 1

31 pages, 4803 KiB  
Review
Advanced HVOF-Sprayed Carbide Cermet Coatings as Environmentally Friendly Solutions for Tribological Applications: Research Progress and Current Limitations
by Basma Ben Difallah, Yamina Mebdoua, Chaker Serdani, Mohamed Kharrat and Maher Dammak
Technologies 2025, 13(7), 281; https://doi.org/10.3390/technologies13070281 - 3 Jul 2025
Viewed by 541
Abstract
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome [...] Read more.
Thermally sprayed carbide cermet coatings, particularly those based on tungsten carbide (WC) and chromium carbide (Cr3C2) and produced with the high velocity oxygen fuel (HVOF) process, are used in tribological applications as environmentally friendly alternatives to electroplated hard chrome coatings. These functional coatings are especially prevalent in the automotive industry, offering excellent wear resistance. However, their mechanical and tribological performances are highly dependent on factors such as feedstock powders, spray parameters, and service conditions. This review aims to gain deeper insights into the above elements. It also outlines emerging advancements in HVOF technology—including in situ powder mixing, laser treatment, artificial intelligence integration, and the use of novel materials such as rare earth elements or transition metals—which can further enhance coating performance and broaden their applications to sectors such as the aerospace and hydro-machinery industries. Finally, this literature review focuses on process optimization and sustainability, including environmental and health impacts, critical material use, and operational limitations. It uses a life cycle assessment (LCA) as a tool for evaluating ecological performance and addresses current challenges such as exposure risks, process control constraints, and the push toward safer, more sustainable alternatives to traditional WC and Cr3C2 cermet coatings. Full article
Show Figures

Figure 1

17 pages, 13043 KiB  
Article
Lubrication Performance Promotion of GTL Base Oil by BN Nanosheets via Cascade Centrifugation-Assisted Liquid-Phase Exfoliation
by Jiashun Liu, Shuo Xiang, Xiaoyu Zhou, Shigang Lin, Kehong Dong, Yiwei Liu, Donghai He, Yunhong Fan, Yuehao Liu, Bingxue Xiong, Kai Ma, Kaiyang Xiao, Genmao Luo, Qinhui Zhang and Xin Yang
Lubricants 2025, 13(7), 281; https://doi.org/10.3390/lubricants13070281 - 23 Jun 2025
Viewed by 376
Abstract
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare [...] Read more.
Broad lateral size and thickness distributions impede the application of hexagonal boron nitride nanosheets (BNNSs) as friction modifiers in base oil, although they possess remarkable potential for lubrication performance promotion. In this work, a cascade centrifugation-assisted liquid-phase exfoliation approach was presented to prepare BNNSs from hexagonal boron nitride (h-BN) efficiently and scalably. Subsequently, they were ultrasonically dispersed into gas-to-liquid (GTL) base oil, and their lubrication performance promotion was evaluated by a four-ball tribotester. Tribological tests demonstrated that BNNS possesses excellent friction-reducing and anti-wear properties in GTL. Furthermore, the findings indicate that at a BNNS content of 0.8 wt.%, the system displayed the lowest COF and WSD. Particularly, with an addition of 0.8 wt.% BNNS into GTL, the AFC and WSD are reduced significantly by 40.1% and 35.4% compared to pure base oil, respectively, and the surface roughness, wear depth, and wear volume were effectively reduced by 91.0%, 68.5%, and 76.8% compared to GTL base oil, respectively. Raman, SEM-EDS, and XPS results proved that the outstanding friction-reducing and anti-wear properties of BNNS can mainly be ascribed to the presence of physical adsorption film and tribo-chemical film, which were composed of FeOOH, FeO, Fe3O4, and B2O3. Full article
Show Figures

Figure 1

13 pages, 3130 KiB  
Article
Tribological Property of AlCoCrFeNi Coating Electrospark-Deposited on H13 Steel
by Ke Lv, Guanglin Zhu, Jie Li, Xiong Cao, Haonan Song and Cean Guo
Metals 2025, 15(6), 649; https://doi.org/10.3390/met15060649 - 10 Jun 2025
Viewed by 791
Abstract
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear [...] Read more.
AlCoCrFeNi coatings were electrospark-deposited (ESD) on H13 steel substrates, and their nano-mechanical and tribological properties under a load of 2 N, 4 N, 6 N, 8 N, and 10 N were investigated by utilizing a nanoindentation instrument and a reciprocating friction and wear tester, respectively. The morphologies, composition, and phase structure of the as-deposited and worn AlCoCrFeNi coating were characterized using SEM (Scanning electron Microscope), EDS (Energy dispersive spectrometer), and XRD (X-Ray Diffraction). The results showed that the as-deposited AlCoCrFeNi coating with a nanocrystalline microstructure mainly consists of a BCC and B2 phase structure, and a gradient transition of elements between the coating and the substrate ensures an excellent bond between the coating and the substrate. The hardness of the AlCoCrFeNi coating exhibits an 8% increase, while its elastic modulus is reduced by 16% compared to the H13 steel. The AlCoCrFeNi coating remarkably increased the tribological property of the H13 steel under various loads, and its wear mechanism belongs to micro-cutting abrasive wear whilst that of the H13 steel can be characterized as severe adhesive wear. The friction coefficient and weight loss of the AlCoCrFeNi coating decrease with increasing load, both following a linear relationship with respect to the applied load. As the load intensifies, the work hardening sensitivity and oxidation degree on the worn surface of the coating are significantly enhanced, which collectively contributes to the improved tribological performance of the AlCoCrFeNi coating. Full article
(This article belongs to the Special Issue Advances in the Design and Behavior Analysis of High-Strength Steels)
Show Figures

Figure 1

15 pages, 3349 KiB  
Article
Potential of Graphene Doping Towards Superlubric Performance of Additively Manufactured Structures
by Pinelopi Katsivardi, Nikolaos Koutroumanis, Alexandros E. Karantzalis, Pantelis G. Nikolakopoulos and Konstantinos G. Dassios
Materials 2025, 18(12), 2730; https://doi.org/10.3390/ma18122730 - 10 Jun 2025
Viewed by 479
Abstract
Significant improvements in the tribological performance of graphene-doped additively manufactured structures are reported, with absolute values of friction coefficients reaching 0.09 corresponding to ca. 70% decreases from plain/un-doped samples. The findings highlight an impressive potential of the nanocarbon variant, to endow superior tribological [...] Read more.
Significant improvements in the tribological performance of graphene-doped additively manufactured structures are reported, with absolute values of friction coefficients reaching 0.09 corresponding to ca. 70% decreases from plain/un-doped samples. The findings highlight an impressive potential of the nanocarbon variant, to endow superior tribological performance to polymers, bringing them a step closer to the ideal superlubric regime. Such structures of intrinsic superlubric performance are envisioned as viable candidates for the containment of great amounts of energy, currently wasted as friction in a plethora of applications, hence also promoting an ecologically sustainable development. Indications that superlubricity is greatly promoted by nanocarbons, especially by the two-dimensional variant of graphene with excellent response in shear action, are investigated in combination with the effect of surface topography, for the investigation of the tribological performance of three-dimensional structures with geometric surface patterning, additively manufactured from graphene-doped polymers. Spectroscopic, mechanical, and microstructural characterization of plain polymer-based samples and their graphene-enhanced nanocomposite counterparts was followed by tribometric measurements for the establishment of the evolution of the friction coefficient on a certified commercial tribometer operating under the ball-on-disk configuration as well as on a conceptual purpose-built setup. The individual and combined effects of nanomaterial presence and patterning are reported, and the influence of manufacturing-prone micropatterning is examined. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

22 pages, 3503 KiB  
Article
Advancing Compatibility and Interfacial Interaction Between PEEK and GNPs Through a Strategic Approach Using Pyrene-Functionalized PDMAEMA-b-PMMA Copolymer
by Chae-Yun Nam, Dohyun Im, Jun-Hyung Lee, Jinwon Kim, Kie-Yong Cho and Ho-Gyu Yoon
Polymers 2025, 17(12), 1599; https://doi.org/10.3390/polym17121599 - 8 Jun 2025
Viewed by 785
Abstract
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we [...] Read more.
Polyetheretherketone (PEEK), known for its high heat and chemical resistance and excellent mechanical properties, is extensively utilized, particularly as a metal substitute, in the automotive industry. Although PEEK exhibits outstanding properties, enhancements are essential to improve its practical performance. In this study, we aimed to improve the performance of PEEK by incorporating graphene nanoplatelets (GNPs) and optimizing their dispersion through non-covalent functionalization. We synthesized pyrene-functionalized poly(dimethylaminoethyl methacrylate)-b-poly(methyl methacrylate) (py-PDMAEMA-b-PMMA) as a compatibilizer of PEEK and GNPs and investigated the thermal, mechanical, and tribological properties of the PEEK/GNP composites—GNPs treated with py-PDMAEMA-b-PMMA (F-GNP) and untreated GNPs (pristine GNPs, P-GNP). The F-GNP composites exhibited higher crystallinity and tensile strength than the P-GNP composites, with the best performance observed at a GNP content of 0.1 wt.%. Furthermore, scanning electron microscopy analysis confirmed the enhanced tribological behavior (including a low friction coefficient and reduced abrasive wear) of the F-GNP composites. These enhancements were attributed to the improved interfacial bonding and uniform stress distribution enabled by py-PDMAEMA-b-PMMA. These findings highlight the potential of F-GNP composites to expand the application scope of PEEK to fields requiring superior mechanical performance, such as the automotive and electronics industries. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

17 pages, 4979 KiB  
Article
Dispersion Stability and Tribological Properties of Cold Plasma-Modified h-BN Nanofluid
by Zhenjing Duan, Ziheng Wang, Yishuai Jia, Shuaishuai Wang, Peng Bian, Ji Tan, Jinlong Song and Xin Liu
Nanomaterials 2025, 15(11), 874; https://doi.org/10.3390/nano15110874 - 5 Jun 2025
Viewed by 531
Abstract
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck [...] Read more.
h-BN spherical nanoparticles, known as white graphene, have good anti-wear properties, long service life, chemical inertness, and stability, which provide superior lubricating performance as a solid additive item to nanofluids. However, the poor dispersion stability of h-BN nanoparticles in nanofluids is a bottleneck that restricts their application. Currently, to prepare h-BN nanofluids with good dispersion stability, a cold plasma (CP) modification of h-BN nanoparticles is proposed in this study. In this research, h-BN nanofluid with added surfactant (SNL), CP-modified h-BN nanofluid with N2 as the working gas (CP(N2)NL), and CP-modified h-BN nanofluid with O2 as the working gas (CP(O2)NL) were prepared, separately. The mechanism of the dispersion stability of CP-modified h-BN nanofluid was analyzed using X-ray photoelectron spectroscopy (XPS), and the performance of CP-modified nanofluid was analyzed based on static observation of nanofluid, kinematic viscosity, and heat transfer properties. Finally, friction and wear experiments were conducted to further analyze the tribological performance of h-BN nanofluids based on the coefficient of friction, 3D surface morphology, surface roughness (Sa), scratches, and micro-morphology. The results show that CP-modified h-BN nanofluid has excellent dispersed suspension stability and can be statically placed for more than 336 h. The CP-modified h-BN nanofluid showed stable friction-reducing, anti-wear, and heat transfer performance, in which the coefficient of friction of h-BN nanofluid was about 0.66 before and after 24 h of settling. The Sa value of the sample was reduced by 31.6–49.2% in comparison with pure cottonseed oil (CO). Full article
(This article belongs to the Section Physical Chemistry at Nanoscale)
Show Figures

Figure 1

16 pages, 3550 KiB  
Article
Design of a Superlubricity System Using Polyimide Film Surface-Modified Poly-Ether-Ether-Ketone
by Yuwei Cheng, Rui Yu, Tingting Wang and Xinlei Gao
Polymers 2025, 17(11), 1439; https://doi.org/10.3390/polym17111439 - 22 May 2025
Viewed by 358
Abstract
Poly-ether-ether-ketone (PEEK) is widely used in dynamic sealing applications due to its excellent properties. However, its tribological performance as a sealing material still has limitations, as its relatively high friction coefficient may lead to increased wear of sealing components, affecting sealing effectiveness and [...] Read more.
Poly-ether-ether-ketone (PEEK) is widely used in dynamic sealing applications due to its excellent properties. However, its tribological performance as a sealing material still has limitations, as its relatively high friction coefficient may lead to increased wear of sealing components, affecting sealing effectiveness and service life. To optimize its lubrication performance, this study employs surface modification techniques to synthesize a thin polyimide (PI) film on the surface of PEEK. When paired with bearing steel, this modification reduces the friction coefficient and enhances the anti-wear performance of sealing components. The tribological properties of a friction pair composed of GCr15 steel and PI-modified PEEK were systematically investigated using a nematic liquid crystal as the lubricant. The friction system was analyzed through various tests. The experimental results show that, under identical conditions, the friction coefficient of the PI-modified PEEK system decreased by 83.3% compared to pure PEEK. Under loads of 5 N and 25 N and rotational speeds ranging from 50 rpm to 400 rpm, the system exhibited induced alignment superlubricity. At 50 rpm, superlubricity was maintained when the load was below 105 N, while at 200 rpm, this occurred when the load was below 125 N. Excessively high rotational speeds (above 300 rpm) might affect system stability. The friction coefficient initially decreased and then increased with increasing load. The friction system demonstrated induced alignment superlubricity under the tested conditions, suggesting the potential application of PI-modified PEEK in friction components. Full article
Show Figures

Figure 1

27 pages, 5523 KiB  
Review
Tribological Aspects of Graphene and Its Derivatives
by Çağla Gizem Acar and Audrius Žunda
Lubricants 2025, 13(6), 232; https://doi.org/10.3390/lubricants13060232 - 22 May 2025
Viewed by 838
Abstract
Tribology is the branch of science and engineering that focuses on understanding friction, wear, and lubrication, which is essential for saving energy, improving performance, reducing vibration, and creating eco-friendly lubricants and wear resistance. Over the past decade, nanomaterials have captured the immense interest [...] Read more.
Tribology is the branch of science and engineering that focuses on understanding friction, wear, and lubrication, which is essential for saving energy, improving performance, reducing vibration, and creating eco-friendly lubricants and wear resistance. Over the past decade, nanomaterials have captured the immense interest of tribology science. This review aimed to analyze how graphene and its derivatives can be incorporated into lubricants to enhance their properties, particularly in mitigating friction and wear. This is due to graphene’s excellent specific properties, such as a low friction coefficient, mechanical strength, high thermal and electrical conductivity, biocompatibility, high load-carrying capacity, wear resistance, and chemical stability. This study briefly introduces graphite, graphene, and graphene oxide, as well as presents graphene as a material for tribological applications. Among other things, the environmentally friendly possibilities of chemical reduction of reduced graphene oxide are analyzed here, as well as the macro-, micro-, and nano-tribological examination of graphene and its derivatives. Despite what is already known about graphene in tribology, further research is needed to gain a deeper understanding of development regarding integration with different materials, long-term performance, eco-friendly synthesis using green reducing agents, and comprehending how these approaches may affect systems at various scales. Full article
Show Figures

Figure 1

54 pages, 20544 KiB  
Review
A Comprehensive Review of Recent Advancements in 3D-Printed Co-Cr-Based Alloys and Their Applications
by Subhrojyoti Mazumder, Jibin Boban and Afzaal Ahmed
J. Manuf. Mater. Process. 2025, 9(5), 169; https://doi.org/10.3390/jmmp9050169 - 21 May 2025
Cited by 1 | Viewed by 1624
Abstract
Co-Cr-based alloys are outstanding materials widely used in applications ranging from engineering to biomedical devices due to their excellent physico-mechanical properties, chemical stability, and biocompatibility. The demand for these alloys is steadily increasing, prompting a shift from conventional fabrication methods, such as casting [...] Read more.
Co-Cr-based alloys are outstanding materials widely used in applications ranging from engineering to biomedical devices due to their excellent physico-mechanical properties, chemical stability, and biocompatibility. The demand for these alloys is steadily increasing, prompting a shift from conventional fabrication methods, such as casting and subtractive manufacturing, to advanced additive manufacturing (AM) techniques. These modern methods enable the production of complex geometrical shapes with enhanced properties. However, comprehensive information on current trends in 3D printing of Co-Cr-based alloys and their performance in specific applications remains limited. Therefore, the present article addresses this gap by reviewing recent advancements in the AM of Co-Cr-based alloys, offering insights for manufacturers, engineers, and researchers looking to develop optimized products. Key characteristics, including physical, mechanical, tribological, chemical, and biocompatibility properties, are thoroughly discussed, along with their applications, with a focus on potential future developments in this field. The exhaustive outlook of this paper provides a strong basis for future research endeavors in the domain of Co-Cr-alloy part production using AM. Full article
Show Figures

Figure 1

15 pages, 3303 KiB  
Article
The Effects of ECAP and Recovery Treatment on the Microstructure and the Mechanical, Tribological, and Corrosion Properties of 316L Steel
by Ata Radnia, Mostafa Ketabchi, Anqiang He, Guijiang Diao and Dongyang Li
Metals 2025, 15(5), 558; https://doi.org/10.3390/met15050558 - 19 May 2025
Viewed by 400
Abstract
316L steel is widely used in various industries and is also one of the metallic materials used for biomedical applications because of its excellent mechanical properties, corrosion resistance, and biocompatibility. This article reports a comprehensive study on the effects of equal channel angular [...] Read more.
316L steel is widely used in various industries and is also one of the metallic materials used for biomedical applications because of its excellent mechanical properties, corrosion resistance, and biocompatibility. This article reports a comprehensive study on the effects of equal channel angular pressing (ECAP) and subsequent recovery treatment on the microstructure and the mechanical, tribological, and corrosion properties of 316L. The process includes an initial annealing at 1050 °C for 2 h to obtain a homogenous microstructure, ECAP at room temperature with a 120° inner angle, and subsequent recovery treatment at 340 °C for 1 h. The microstructure was investigated with an optical microscope and a transmission electron microscope. The mechanical properties were evaluated with hardness and compression tests. The corrosion behavior was analyzed with dynamic polarization tests. The wear test was performed using a scratching tester, and the volume loss was measured with a profilometer. The results of the study demonstrate that the ECAP–recovery sample exhibits improved properties compared to both the annealed sample and the ECAP sample. The corrosion tests show that the ECAP sample has a corrosion resistance higher than that of the annealed sample but lower than that of the ECAP–recovery sample. The ECAP–recovery sample shows the highest wear resistance and corrosive wear resistance among the three samples. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

17 pages, 3659 KiB  
Article
Tribological Performance of TiN–WS2 Soft–Hard Multifunctional Composite Coatings Deposited by Magnetron Sputtering
by Hu Qiao, Shengchao Zhu, Suixin Fan, Jiawei Kang, Peichao Tian, Jianxin Yang and Youqing Wang
Coatings 2025, 15(5), 596; https://doi.org/10.3390/coatings15050596 - 17 May 2025
Viewed by 946
Abstract
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature [...] Read more.
Titanium nitride (TiN) is a widely used industrial hard coating material, known for its excellent hardness and chemical stability. However, its relatively high coefficient of friction (COF) often leads to interfacial heat accumulation and adhesive wear during service, limiting its applicability in high-temperature tribological environments. To enhance its tribological performance, a TiN–WS2 soft–hard composite coating was fabricated on cemented carbide substrates using reactive co-sputtering magnetron deposition. By adjusting the sputtering parameters and target power ratio, a synergistic deposition of the hard (TiN) and lubricating (WS2) phases was achieved and compared with a pure TiN coating. The results revealed that the incorporation of WS2 significantly reduced the COF at both room temperature (25 °C) and an elevated temperature (200 °C), with the average values decreasing from 0.61 to 0.39 at 25 °C and from 0.53 to 0.36 at 200 °C. A white light interferometry analysis showed that the TiN–WS2 coating exhibited narrower wear tracks and less surface damage than TiN at elevated temperatures, demonstrating superior friction-reducing and wear-resistant capabilities. In terms of mechanical properties, the composite coating showed a reduction in the hardness, the reduced elastic modulus (Er), and the adhesion strength by 27.3%, 19.8%, and 9.5%, respectively, compared to pure TiN. These findings indicate that the introduction of a quantitatively controlled lubricating WS2 phase allows for a balance between nanoscale hardness and wear resistance, offering promising potential for engineering applications under complex working conditions. Full article
Show Figures

Graphical abstract

Back to TopTop