Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (156)

Search Parameters:
Keywords = ex-situ experiment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3631 KB  
Article
A Study on the Lithium-Ion Battery Fire Prevention Diagnostic Technique Based on Time-Resolved Partial Discharge Algorithm
by Wen-Cheng Jin, Chang-Won Kang, Soon-Hyung Lee, Kyung-Min Lee and Yong-Sung Choi
Energies 2025, 18(24), 6510; https://doi.org/10.3390/en18246510 - 12 Dec 2025
Viewed by 272
Abstract
Lithium-ion batteries are extensively employed in electric vehicles (EVs) and energy storage systems (ESSs) owing to their high energy density, long cyclability, and cost-effectiveness. However, the use of flammable electrolytes makes them inherently susceptible to thermal runaway (TR), which can lead to ignition, [...] Read more.
Lithium-ion batteries are extensively employed in electric vehicles (EVs) and energy storage systems (ESSs) owing to their high energy density, long cyclability, and cost-effectiveness. However, the use of flammable electrolytes makes them inherently susceptible to thermal runaway (TR), which can lead to ignition, explosion, and large-scale fires. Accordingly, early detection of defect internal conditions that precede thermal events is essential for ensuring battery safety. This study proposes a time-resolved partial discharge (TRPD)-based diagnostic method for identifying early electrical precursors of fire hazards in lithium-ion batteries. Both destructive (ex situ) and non-destructive (in situ) experiments were performed to collect defect signal data under physical deformation and accelerated degradation conditions. Through fast fourier transform (FFT) analysis of the acquired signals, specific frequency-domain characteristics associated with micro internal short circuits (MISC) were identified, particularly within the 3.9 MHz, 11.9 MHz, and 19 MHz bands. Defect signals were clearly distinguishable from background common-mode voltage (CMV) noise, confirming the diagnostic sensitivity of the proposed approach. The results demonstrate that the TRPD-based technique enables early recognition of latent insulation degradation and internal short-circuit phenomena before thermal runaway occurs. This work bridges the gap between conventional insulation monitoring and battery safety diagnostics, providing a scalable framework for integrating high-frequency signal analysis into EV and ESS battery management systems for fire prevention. Full article
(This article belongs to the Special Issue Advances in Battery Modelling, Applications, and Technology)
Show Figures

Figure 1

19 pages, 4260 KB  
Article
Investigation of In Situ Strategy Based on Zn/Al-Layered Double Hydroxides for Enhanced PFOA Removal: Adsorption Mechanism and Fluoride Effect
by Yafan Wang, Yusuf Olalekan Zubair and Chiharu Tokoro
Appl. Sci. 2025, 15(24), 13064; https://doi.org/10.3390/app152413064 - 11 Dec 2025
Viewed by 252
Abstract
Perfluorooctanoic acid (PFOA) contamination poses serious environmental risks due to its persistence and mobility. Conventional ex situ method using preformed layered double hydroxides (LDHs) shows limited performance, particularly under complex leachate conditions. This study developed an effective in situ Zn/Al LDH strategy for [...] Read more.
Perfluorooctanoic acid (PFOA) contamination poses serious environmental risks due to its persistence and mobility. Conventional ex situ method using preformed layered double hydroxides (LDHs) shows limited performance, particularly under complex leachate conditions. This study developed an effective in situ Zn/Al LDH strategy for enhanced PFOA removal. Batch experiments, solid-phase characterization, and theoretical simulations were conducted to elucidate the adsorption mechanism and the effect of fluoride ion (F). The results demonstrated that the in situ method exhibited superior performance in the presence of fluoride, achieving a PFOA adsorption density of up to 54.93 mmol/mol-Al, which is significantly higher than that of the ex situ method (26.76 mmol/mol-Al). Unlike the competitive adsorption observed in the ex situ method, the in situ process relies on synergistic mechanisms: F participates in LDH formation as an interlayer anion and coordinates with Zn2+ and Al3+ to regulate LDH growth, thereby optimizing the surface chemical environment for PFOA capture. Molecular dynamics (MDs) and density functional theory (DFT) further showed that preferentially adsorbed F affects hydrogen-bond networks and stabilizes PFOA through inner and outer sphere complexation. Overall, these findings clarify the fluoride-regulated adsorption mechanism and demonstrate the potential of in situ LDH coprecipitation for PFAS remediation in leachates. Full article
(This article belongs to the Special Issue PFAS Removal: Challenges and Solutions)
Show Figures

Figure 1

23 pages, 2089 KB  
Article
Can Micro/Nanoplastics Influence PM2.5 Characteristics: An Ex Situ Investigation by Physicochemical Indicators of PM2.5 and Their Bacterial Model Toxicity
by Hasan Saygin, Asli Baysal, Batuhan Tilkili and Sinem Karniyarik
Microplastics 2025, 4(4), 103; https://doi.org/10.3390/microplastics4040103 - 9 Dec 2025
Viewed by 208
Abstract
Exposure to PM2.5 and its associated micropollutants, including micro- and nanoplastics, has been strongly linked to adverse health effects in humans. The risk posed by micro/nanoplastics can be attributed to the particles themselves and their ability to leach into the surrounding environment. However, [...] Read more.
Exposure to PM2.5 and its associated micropollutants, including micro- and nanoplastics, has been strongly linked to adverse health effects in humans. The risk posed by micro/nanoplastics can be attributed to the particles themselves and their ability to leach into the surrounding environment. However, the impact of micro/nanoplastics on the surrounding environment through leaching is still underestimated. In this study, we conducted ex situ experiments involving micro/nanoplastics and PM2.5 at various particulate matter mass concentrations and exposure times (1–336 h). The micro/nanoplastics were then removed from the PM2.5 media, and the aromaticity, light absorption, zeta potential, and oxidative potential of the PM2.5 were measured. Furthermore, the toxicity of the PM2.5 was investigated using a bacterial model by Staphylococcus aureus. Changes in the aromaticity, light absorption, zeta potential, and oxidative potential of PM2.5 indicated the impact of the micro/nanoplastics on the PM2.5. For example, PM2.5 exhibited higher aromaticity in the initial exposure stages (2–4% and 9–11%), whereas its light absorption (0.5–6-fold) increased with prolonged exposure to micro/nanoplastics. Overall, more negative zeta potentials and higher oxidative inputs (~6–40%) were obtained in PM2.5 after micro/nanoplastic treatment. The bacterial model revealed that the viability and biofilm formation of bacteria were affected by PM2.5 exposed to micro/nanoplastics, compared to PM2.5 not exposed to micro/nanoplastics, for example, 0.5–2-fold higher bacterial activity with longer MNP exposure and 4–39% higher biofilm formation. Furthermore, the oxidative stress-related bacterial indicators were primarily influenced by the aromaticity, zeta potential, and oxidative potential of PM2.5. The results of this study suggest that the bacterium Staphylococcus aureus can adapt to PM2.5 contaminated with micro/nanoplastics. Therefore, this study highlights the potential impact of micro/nanoplastics on bacterial adaptation to environmental contaminants and antibiotic resistance via PM2.5. Full article
(This article belongs to the Collection Feature Papers in Microplastics)
Show Figures

Figure 1

21 pages, 3538 KB  
Article
Research on the Combined Treatment of Composite Organic-Contaminated Soil Using Diversion-Type Ultra-High-Temperature Pyrolysis and Chemical Oxidation
by Shuyuan Xing, Xianglong Duan and Minquan Feng
Sustainability 2025, 17(23), 10807; https://doi.org/10.3390/su172310807 - 2 Dec 2025
Viewed by 235
Abstract
Remediating complex-contaminated soils demands the synergistic optimization of efficiency, cost-effectiveness, and carbon emission reduction. Currently, ultra-high-temperature thermal desorption technology is mature in terms of principle and laboratory-scale performance; however, ongoing efforts are focusing on achieving stable, efficient, controllable, and cost-optimized operation in large-scale [...] Read more.
Remediating complex-contaminated soils demands the synergistic optimization of efficiency, cost-effectiveness, and carbon emission reduction. Currently, ultra-high-temperature thermal desorption technology is mature in terms of principle and laboratory-scale performance; however, ongoing efforts are focusing on achieving stable, efficient, controllable, and cost-optimized operation in large-scale engineering applications. To address this gap, this study aimed to (1) verify the energy efficiency and economic benefits of removing over 98% of target pollutants at a 7.5 × 104 m3 contaminated site and (2) elucidate the mechanisms underlying parallel scale–technology dual-factor cost reduction and energy–carbon–cost optimization, thereby accumulating case experience and data support for large-scale engineering deployment. To achieve these objectives, a “thermal stability–chemical oxidizability” classification criterion was developed to guide a parallel remediation strategy, integrating ex situ ultra-high-temperature thermal desorption (1000 °C) with persulfate-based chemical oxidation. This strategy was implemented at a 7.5 × 104 m3 large-scale site, delivering robust performance: the total petroleum hydrocarbon (TPH) and pentachlorophenol (PCP) removal efficiencies exceeded 99%, with a median removal rate of 98% for polycyclic aromatic hydrocarbons (PAHs). It also provided a critical operational example of a large-scale engineering application, demonstrating a daily treatment capacity of 987 m3, a unit remediation cost of 800 CNY·m−3, and energy consumption of 820 kWh·m−3, outperforming established benchmarks reported in the literature. A net reduction of 2.9 kilotonnes of CO2 equivalent (kt CO2e) in greenhouse gas emissions was achieved, which could be further enhanced with an additional 8.8 kt CO2e by integrating a hybrid renewable energy system (70% photovoltaic–molten salt thermal storage + 30% green power). In summary, this study establishes a “high-temperature–parallel oxidation–low-carbon energy” framework for the rapid remediation of large-scale multi-contaminant sites, proposes a feasible pathway toward developing a soil carbon credit mechanism, and fills a critical gap between laboratory-scale success and large-scale engineering applications of ultra-high-temperature remediation technologies. Full article
Show Figures

Figure 1

18 pages, 1590 KB  
Review
Crop Safeguarding Activities by the Mediterranean Germplasm Gene Bank Hosted by the CNR-IBBR in Bari (Italy)
by Gaetano Laghetti and Mariano Zonna
Sustainability 2025, 17(22), 10296; https://doi.org/10.3390/su172210296 - 18 Nov 2025
Viewed by 341
Abstract
The Mediterranean Germplasm Gene Bank (MGG) of the CNR-IBBR in Bari (Italy) is the oldest gene bank of the Mediterranean area. Thanks to Vavilov, this area is considered an important gene centre. The first safeguarding activities of the MGG began in 1969 and [...] Read more.
The Mediterranean Germplasm Gene Bank (MGG) of the CNR-IBBR in Bari (Italy) is the oldest gene bank of the Mediterranean area. Thanks to Vavilov, this area is considered an important gene centre. The first safeguarding activities of the MGG began in 1969 and continue today following traditional and innovative approaches. The strategy followed by the MGG for safeguarding plant genetic resources of Mediterranean origin and of agricultural interest is described in detail together with the activities and methods used. Some examples of rare agrobiodiversity discovered in the area are reported and described. The MGG seed collection (as ex situ conservation) contains about 59,000 accessions from 34 families, 208 genera and 872 species. Over 13,000 samples have been directly collected over time by exploration teams, while others have been acquired from 314 donor institutions through a seed exchange. MGG studies in the Mediterranean region show a severe genetic erosion of about 75%. The approach adopted by the CNR-IBBR research group to combat this phenomenon can be broken down into two main areas. Firstly, new collecting missions could secure still available valuable material as old landraces cultivated in the fields and gardens of less anthropized areas; the considerable experience and knowledge acquired over the span of five decades, accumulated through this endeavour, undoubtedly plays a pivotal role. Moreover, the integration of conservation methods, ex situ and on farm, for cultivated material, and predominantly in situ for wild species, is necessary for the sustainable development and use of Mediterranean plant genetics resources. In pursuit of this objective, the international standing of the MGG and its extensive network of collaborations represent a foundational element. Full article
(This article belongs to the Topic Mediterranean Biodiversity, 2nd Edition)
Show Figures

Figure 1

12 pages, 2898 KB  
Article
Unraveling the Electrochemical Reaction Mechanism of Bronze-Phase Titanium Dioxide in Sodium-Ion Batteries
by Denis Opra, Sergey Sinebryukhov, Alexander Sokolov, Andrey Gerasimenko, Sviatoslav Sukhoverkhov, Andrey Sidorin, Alexandra Zavidnaya and Sergey Gnedenkov
Reactions 2025, 6(4), 56; https://doi.org/10.3390/reactions6040056 - 7 Oct 2025
Viewed by 751
Abstract
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na [...] Read more.
Searching anode materials is an important task for the development of sodium-ion batteries. In this regard, bronze-phase titanium dioxide, TiO2(B), has been considered as one of the promising materials, owing to its crystal structure with open channels and voids facilitating Na+ diffusion and storage. However, the electrochemical de-/sodiation mechanism of TiO2(B) has not been clearly comprehended, and further experiments are required. Herein, in situ and ex situ observations by a combination of X-ray photoelectron spectroscopy, X-ray diffraction, Raman spectroscopy, gas chromatography–mass spectrometry was used to provide additional insights into the electrochemical reaction scenario of bronze-phase TiO2 in Na-ion batteries. The findings reveal that de-/sodiation of TiO2(B) occurs through a reversible intercalation reaction and without the involvement of the conversion reaction (no metallic titanium is formed and no oxygen is released). At the same time, upon the first Na+ uptake process, crystalline TiO2(B) becomes partially amorphous, but is still driven by the Ti4+/Ti3+ redox couple. Importantly, TiO2(B) has pseudocapacitive electrochemical behavior during de-/sodiation based on a quantitative analysis of the cyclic voltammetry data. The results obtained in this study complement existing insights into the sodium storage mechanisms of TiO2(B) and provide useful knowledge for further improving its anode performance for SIBs application. Full article
Show Figures

Figure 1

11 pages, 10889 KB  
Article
Post-Irradiation Annealing of Bi Ion Tracks in Si3N4: In-Situ and Ex-Situ Transmission Electron Microscopy Study
by Anel Ibrayeva, Jacques O’Connell, Ruslan Rymzhanov, Arno Janse van Vuuren and Vladimir Skuratov
Crystals 2025, 15(10), 852; https://doi.org/10.3390/cryst15100852 - 30 Sep 2025
Viewed by 469
Abstract
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room [...] Read more.
High-energy (710 MeV) Bi ion track morphology in polycrystalline silicon nitride was investigated during post-irradiation annealing. Using both in-situ and ex-situ transmission electron microscopy, we monitored the recovery of crystallinity within initially amorphous ion track regions. In-situ annealing involved heating samples from room temperature to 1000 °C in 50 °C increments, each held for 10 s. We observed a steady decrease in both the size and number of tracks, with only a small number of residual crystalline defects remaining at 1000 °C. Ex-situ annealing experiments were conducted at 400 °C, 700 °C, and 1000 °C for durations of 10, 20, and 30 min. Complete restoration of the crystalline lattice occurred after 30 min at 700 °C and 20 min at 1000 °C. Due to inherent differences in geometry, heat flow, and stress conditions between thin lamella and bulk specimens, in-situ and ex-situ results cannot be compared. Molecular dynamics simulations further revealed that track shrinkage begins in cells within picoseconds, supporting the notion that recrystallization can start on very short timescales. Overall, these findings demonstrate that thermal recrystallization of damage induced by swift heavy ion irradiation in polycrystalline Si3N4 is possible. This study provides a foundation for future research aimed at better understanding radiation damage recovery in this material. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

20 pages, 4457 KB  
Article
Seed Dormancy and Germination Characteristics of Scutellaria indica L. var. coccinea S.T.Kim & S.T.Lee., an Endemic Species Found on Jeju Island, South Korea
by Jae Hui Kim, Hak Cheol Kwon and Seung Youn Lee
Horticulturae 2025, 11(9), 1019; https://doi.org/10.3390/horticulturae11091019 - 29 Aug 2025
Cited by 1 | Viewed by 1198
Abstract
Globally, biodiversity is declining, meaning that many endemic plants are under threat; therefore, it is essential to develop conservation strategies. Scutellaria indica var. coccinea has great potential as an ornamental ground cover plant, but it is a plant that requires ex situ conservation. [...] Read more.
Globally, biodiversity is declining, meaning that many endemic plants are under threat; therefore, it is essential to develop conservation strategies. Scutellaria indica var. coccinea has great potential as an ornamental ground cover plant, but it is a plant that requires ex situ conservation. This study was conducted in order to investigate the seed germination characteristics and classify the dormancy type of S. indica var. coccinea seeds, with the aim of developing mass propagation protocols for ex situ conservation and preservation of their genetic diversity. Fresh and mature seeds of S. indica var. coccinea are in a dormant state, which is released by low temperatures during winter, resulting in radicle and seedling emergence the following spring. At the time of dispersal, the seeds had fully developed embryos, and the seed coat was permeable. When the seeds were incubated under four different temperature regimes (4, 15/6, 20/10, or 25/15 °C), they showed a low germination percentage (≤20%), indicating that a substantial proportion of the seeds remained in a dormant state. In the cold stratification experiment (0, 4, 8, or 12 weeks at 4 °C), germination increased, and the time required for germination shortened as the duration of cold treatment lengthened. This suggests that low temperatures are the primary environmental signal that induces germination. In the gibberellic acid (GA3) treatment (GA3 0, 10, 100, or 1000 mg·L−1), relatively high concentrations (100 and 1000 mg·L−1) were effective in promoting germination. The highest germination was obtained in GA3 1000 mg·L−1 with 100.0%, which is about 7 times higher than the control (13.6%). Therefore, seeds of S. indica var. coccinea were classified as having non-deep physiological dormancy (PD). Additionally, because the minimum germinable temperature range of the seeds was extended to lower temperatures, the seeds were classified as having type 2 non-deep PD. Full article
(This article belongs to the Special Issue Propagation and Flowering of Ornamental Plants)
Show Figures

Figure 1

18 pages, 3360 KB  
Article
Hydrogen Sulfide Has a Minor Impact on Human Gut Microbiota Across Age Groups
by Linshu Liu, Johanna M. S. Lemons, Jenni Firrman, Karley K. Mahalak, Venkateswari J. Chetty, Adrienne B. Narrowe, Stephanie Higgins, Ahmed M. Moustafa, Aurélien Baudot, Stef Deyaert and Pieter Van den Abbeele
Sci 2025, 7(3), 102; https://doi.org/10.3390/sci7030102 - 1 Aug 2025
Viewed by 2115
Abstract
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health [...] Read more.
Hydrogen sulfide (H2S) can be produced from the metabolism of foods containing sulfur in the gastrointestinal tract (GIT). At low doses, H2S regulates the gut microbial community and supports GIT health, but depending on dose, age, and individual health conditions, it may also contribute to inflammatory responses and gut barrier dysfunction. Controlling H2S production in the GIT is important for maintaining a healthy gut microbiome. However, research on this subject is limited due to the gaseous nature of the chemical and the difficulty of accessing the GIT in situ. In the present ex vivo experiment, we used a single-dose sodium sulfide preparation (SSP) as a H2S precursor to test the effect of H2S on the human gut microbiome across different age groups, including breastfed infants, toddlers, adults, and older adults. Metagenomic sequencing and metabolite measurements revealed that the development of the gut microbial community and the production of short-chain fatty-acids (SCFAs) were age-dependent; that the infant and the older adult groups were more sensitive to SSP exposure; that exogeneous SSP suppressed SCFA production across all age groups, except for butyrate in the older adult group, suggesting that H2S selectively favors specific gut microbial processes. Full article
(This article belongs to the Section Biology Research and Life Sciences)
Show Figures

Figure 1

27 pages, 13836 KB  
Article
Combining Microbial Cellulose with FeSO4 and FeCl2 by Ex Situ and In Situ Methods
by Silvia Barbi, Marcello Brugnoli, Salvatore La China, Monia Montorsi and Maria Gullo
Polymers 2025, 17(13), 1743; https://doi.org/10.3390/polym17131743 - 23 Jun 2025
Cited by 1 | Viewed by 769
Abstract
Environmentally sustainable methods for producing flexible electronics, such as paper-based energy harvesters in nanogenerators, are a major objective in materials science. In this frame, the present study investigated two different Komagataeibacter sp. strains (K2G30 and K2G44), never tested as biocatalysts for the production [...] Read more.
Environmentally sustainable methods for producing flexible electronics, such as paper-based energy harvesters in nanogenerators, are a major objective in materials science. In this frame, the present study investigated two different Komagataeibacter sp. strains (K2G30 and K2G44), never tested as biocatalysts for the production of bacterial cellulose (BC) functionalized with iron particles to provide potential electrical conductivity. Two functionalization strategies (ex situ and in situ) were evaluated using two iron compounds FeCl2 and FeSO4, individually and in combination (up to 0.1% w/v), to assess efficiency and feasibility. In addition, a Design of Experiment approach was implemented to calculate quantitative mathematical models to correlate the functionalization methods with the iron amount in the BC. Among the tested conditions, BC produced by strain K2G44 using the ex situ method with FeCl2 showed the most promising results, achieving the highest iron content (~37% atomic weight) with a highly homogeneous dispersion of iron nanoparticles. Moreover, the in situ BC functionalization using FeSO4 led to the formation of iron gluconate. FeSO4 alone significantly enhanced BC production in the in situ process, with yields of 2.62 ± 0.15 g/L for K2G30 and 2.05 ± 0.09 g/L for K2G44. Full article
(This article belongs to the Special Issue Sustainable Bio-Based and Circular Polymers and Composites)
Show Figures

Figure 1

15 pages, 4415 KB  
Article
Advances Towards Ex Situ Conservation of Critically Endangered Rhodomyrtus psidioides (Myrtaceae)
by Lyndle K. Hardstaff, Bryn Funnekotter, Karen D. Sommerville, Catherine A. Offord and Ricardo L. Mancera
Plants 2025, 14(5), 699; https://doi.org/10.3390/plants14050699 - 24 Feb 2025
Cited by 3 | Viewed by 2249
Abstract
Rhodomyrtus psidioides (G.Don) Benth. (Myrtaceae) is a critically endangered rainforest species from the east coast of Australia, where populations have severely and rapidly declined due to the effects of repeated myrtle rust infection. With very limited material available in the wild and freezing-sensitive [...] Read more.
Rhodomyrtus psidioides (G.Don) Benth. (Myrtaceae) is a critically endangered rainforest species from the east coast of Australia, where populations have severely and rapidly declined due to the effects of repeated myrtle rust infection. With very limited material available in the wild and freezing-sensitive seeds that have prevented storage in a seed bank, ex situ conservation of this exceptional species has proven difficult. Material from a seed orchard grown at the Australian Botanic Garden Mount Annan was successfully used to initiate three new accessions into tissue culture from cuttings, and to undertake cryopreservation experiments using a droplet-vitrification (DV) protocol for both seeds and cultured shoot tips. Use of seedling material for tissue culture initiation was very effective, with a 94–100% success rate for semi-hardwood explants and a 50–62% success rate for softwood explants. Although no survival of seeds after cryopreservation was observed, seeds of R. psidioides showed some tolerance of desiccation and exposure to cryoprotective agents. Regeneration after cryopreservation using a DV protocol was demonstrated in only one shoot tip precultured on basal medium containing 0.4 M sucrose and incubated in PVS2 for 20 min prior to immersion in liquid nitrogen. These results demonstrate the value of living collections in botanic gardens for conservation research, highlight the importance of germplasm choice for tissue culture initiation, and demonstrate the potential of cryobiotechnologies for the ex situ conservation of exceptional plant species. Full article
(This article belongs to the Special Issue Advances and Applications in Plant Tissue Culture—2nd Edition)
Show Figures

Figure 1

12 pages, 1969 KB  
Article
Bioleaching of Metal-Polluted Mine Tailings: A Comparative Approach Between Ex Situ Slurry-Phase Stirred Reactors Versus In Situ Electrokinetic Percolation
by Irene Acosta Hernández, Martín Muñoz Morales, Francisco Jesús Fernández Morales, Luis Rodríguez Romero and José Villaseñor Camacho
Appl. Sci. 2024, 14(24), 11756; https://doi.org/10.3390/app142411756 - 17 Dec 2024
Cited by 2 | Viewed by 2693
Abstract
This work compares two technologies for the remediation of metal-polluted mine tailings based on lab-scale bioleaching experiments performed in (a) conventional agitated slurry-phase reactors and (b) in situ electrokinetic percolation. While ex situ bioleaching in agitated reactors has been widely studied, only a [...] Read more.
This work compares two technologies for the remediation of metal-polluted mine tailings based on lab-scale bioleaching experiments performed in (a) conventional agitated slurry-phase reactors and (b) in situ electrokinetic percolation. While ex situ bioleaching in agitated reactors has been widely studied, only a few previous works have studied the in situ option that couples bioleaching and electrokinetics. Real mine tailings from an abandoned sphalerite mine in southern Spain were used. The leaching medium was externally generated in a bioreactor using an autochthonous acidophilic culture and then added to tailings in batch experiments. This medium enabled metal leaching from mine tailings without the stringent operating conditions required by a classic bioleaching process. Metal removal efficiencies and kinetic rate constants after 15 d of treatments were calculated. Additionally, advantages or disadvantages between the two methods were discussed. The results for the innovative EK-percolation method showed rates and efficiencies that were comparable to, and in some cases better than, those achieved with conventional stirred slurry systems. Full article
Show Figures

Figure 1

13 pages, 4116 KB  
Article
Unveiling the Influence of Activation Protocols on Cobalt Catalysts for Sustainable Fuel Synthesis
by M. Amine Lwazzani, Andrés A. García Blanco, Martí Biset-Peiró, Elena Martín Morales and Jordi Guilera
Catalysts 2024, 14(12), 920; https://doi.org/10.3390/catal14120920 - 13 Dec 2024
Cited by 3 | Viewed by 1224
Abstract
The Fischer–Tropsch Synthesis process is projected to have a significant impact in the near future due to its potential for synthesizing sustainable fuels from biomass, carbon dioxide and organic wastes. In this catalytic process, catalyst activation plays a major role in the overall [...] Read more.
The Fischer–Tropsch Synthesis process is projected to have a significant impact in the near future due to its potential for synthesizing sustainable fuels from biomass, carbon dioxide and organic wastes. In this catalytic process, catalyst activation plays a major role in the overall performance of Fischer–Tropsch Synthesis. Catalyst activation temperatures are considerably higher than the typical operating conditions of industrial reactors. Consequently, ex situ activation is often required for industrial Fischer–Tropsch Synthesis processes. This study evaluated the influence of different activation approaches (in situ, ex situ, passivation and low-temperature activation). Catalytic experiments were conducted in a fixed-bed reactor at 230 °C and 20 bar·g using a reference supported Co/γ-Al2O3 catalyst. Experimental results demonstrate that catalysts can be effectively reduced ex situ. This work reveals that re-activation of the catalyst after ex situ reduction is unnecessary, as the reaction conditions themselves re-reduce any superficial oxides formed, owing to the reducing nature of the reactant mixture. This approach could simplify reactor design by enabling temperature requirements to match operating conditions (e.g., 230 °C), thereby reducing both investment and operational costs and eliminating additional catalyst preparation steps. Full article
Show Figures

Figure 1

17 pages, 1600 KB  
Article
Comparison of Orchid Conservation Between China and Other Countries
by Shixing Li, Cuiyi Liang, Shuwen Deng, Chen Chen, Liangchen Yuan, Zhen Liu, Shasha Wu, Siren Lan, Ziang Tang, Zhongjian Liu and Junwen Zhai
Diversity 2024, 16(11), 692; https://doi.org/10.3390/d16110692 - 12 Nov 2024
Cited by 4 | Viewed by 2446
Abstract
Global attention is highly focused on biodiversity conservation. Various countries are actively implementing relevant conservation measures. To advance these efforts in China, it is essential to understand global conservation actions. The orchid family, one of the most diverse groups of flowering plants, has [...] Read more.
Global attention is highly focused on biodiversity conservation. Various countries are actively implementing relevant conservation measures. To advance these efforts in China, it is essential to understand global conservation actions. The orchid family, one of the most diverse groups of flowering plants, has become a “flagship” group for plant conservation. In this study, we summarized 3418 policies and regulations related to orchid conservation in 45 countries. We found that orchid conservation actions in various countries have focused on in situ conservation, with 1469 policies and regulations issued for nature reserves, while ex situ conservation has been seriously neglected, with only seven relevant regulations. Most developing countries have experienced an increase in orchid conservation actions, while developed countries have plateaued. We amassed 370 non-governmental organizations (NGOs) for orchid conservation. At present, the total number of policies and regulations for orchid protection in China is approximately 84, with 67 issued since 2000. Two non-governmental organizations have been established for orchid conservation. Although the benefit of orchid conservation in China is significant, it still requires continuous improvement compared to many other countries. We recommend that the Chinese government draws on the experiences of the United States, Canada, and Australia in areas such as policy and regulation formulation, optimization of non-governmental organizations, and implementation of related conservation projects. Through learning and collaboration, challenges can be transformed into opportunities for development. Full article
(This article belongs to the Special Issue Plant Diversity Hotspots in the 2020s)
Show Figures

Figure 1

12 pages, 2216 KB  
Article
The Effects of Elevated Temperatures on the Reproductive Biology of a Mediterranean Coral, Oculina patagonica
by Tamar Shemesh, Shani Levy, Abigail Einbinder, Itai Kolsky, Jessica Bellworthy and Tali Mass
Oceans 2024, 5(4), 758-769; https://doi.org/10.3390/oceans5040043 - 9 Oct 2024
Cited by 1 | Viewed by 3277
Abstract
Global climate change is profoundly impacting coral ecosystems. Rising sea surface temperatures, in particular, disrupt coral reproductive synchrony, cause bleaching, and mortality. Oculina patagonica, a temperate scleractinian coral abundant across the Mediterranean Sea, can grow at a temperature range of 10–31 °C. [...] Read more.
Global climate change is profoundly impacting coral ecosystems. Rising sea surface temperatures, in particular, disrupt coral reproductive synchrony, cause bleaching, and mortality. Oculina patagonica, a temperate scleractinian coral abundant across the Mediterranean Sea, can grow at a temperature range of 10–31 °C. Studies conducted three decades ago documented this species bleaching during the summer months, the same time as its gonads mature. However, the Eastern Mediterranean Sea is experiencing some of the fastest-warming sea surface temperatures worldwide. This study repeated the year-round in situ assessment of the reproductive cycle and gonad development and correlation to summer bleaching. In addition, thermal performance of the holobiont was assessed in an ex situ thermal stress experiment. In situ monitoring revealed no temporal changes in gonad development compared to previous studies, despite sea surface warming and concurrent bleaching. Experimental thermal performance curves indicated that photosynthetic rate peaked at 23 °C, bleached coral area was significant at 29 °C, and peaked at 34 °C. With local sea surface temperature reaching 31 °C, O. patagonica is exposed beyond its bleaching threshold during the summer months in situ. Despite this, O. patagonica maintains gonad development and physiologically recovers at the end of summer demonstrating resilience to current warming trends. Full article
Show Figures

Figure 1

Back to TopTop