Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = ethyl carbamate precursors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1241 KB  
Article
The Use of Non-Conventional Yeast in Sake Production
by Agnieszka Wilkowska and Zuzanna Dzwonnik
Molecules 2025, 30(18), 3786; https://doi.org/10.3390/molecules30183786 - 18 Sep 2025
Viewed by 1909
Abstract
In response to the growing interest in less conventional alcoholic beverages, this study aimed to identify novel yeast strains suitable for sake production, with a focus on their potential application in bioflavouring. Commercially available strains of bottom-fermenting brewing yeasts (Saccharomyces pastorianus), [...] Read more.
In response to the growing interest in less conventional alcoholic beverages, this study aimed to identify novel yeast strains suitable for sake production, with a focus on their potential application in bioflavouring. Commercially available strains of bottom-fermenting brewing yeasts (Saccharomyces pastorianus), a cryotolerant wine yeast (Saccharomyces bayanus), and a wild wine yeast (Torulaspora delbrueckii) were evaluated. The quality characteristics of sake obtained using non-conventional yeasts were compared with sake produced using Saccharomyces cerevisiae K7, one of the most commonly used strains in sake brewing. Sake made with non-conventional yeasts exhibited differences in fermentation kinetics, chemical composition, and sensory properties. Wine yeasts produced sake with the most favorable ester profile, markedly distinct from those obtained with other yeast strains used in the study. Compared to the conventional strain, the concentrations of the key contributors to the fruity/floral aroma, namely 3-methylbutyl acetate and ethyl hexanoate, in sake produced with S. bayanus were higher by 249.5% and 199.3%, respectively. The wine yeast S. bayanus may be considered the most promising strain for sake production due to its ability to generate elevated levels of volatile aroma compounds associated with Ginjo-ka characteristics, as well as its effectiveness in supporting a consistent and efficient alcoholic fermentation process. Full article
(This article belongs to the Special Issue Wine Chemistry: From Flavor Profiling to Sensory Quality)
Show Figures

Figure 1

12 pages, 6475 KB  
Article
Characterization of Urease from Providencia sp. LBBE and Its Application in Degrading Urea and Ethyl Carbamate in Rice Wine
by Han Wang, Dandan Li, Sibao Zhu, Shuxian Guo, Jiahong Ding, Chuanchao Wu and Qingtao Liu
Fermentation 2024, 10(12), 653; https://doi.org/10.3390/fermentation10120653 - 17 Dec 2024
Cited by 2 | Viewed by 1618
Abstract
Enzymatic degradation of the carcinogen ethyl carbamate (EC) and its precursor urea is a promising method for controlling EC levels in alcoholic beverages. However, limited enzymes with EC-hydrolyzing activity and low ethanol or acid tolerance hinder their practical application. Here, a new urease [...] Read more.
Enzymatic degradation of the carcinogen ethyl carbamate (EC) and its precursor urea is a promising method for controlling EC levels in alcoholic beverages. However, limited enzymes with EC-hydrolyzing activity and low ethanol or acid tolerance hinder their practical application. Here, a new urease with urea- and EC-hydrolyzing activities from Providencia sp. LBBE was characterized. The enzyme displayed considerable ethanol tolerance, retaining 42.4% activity after 1 h of incubation with 30% (v/v) ethanol at 37 °C. It exhibited broad pH tolerance (pH 3.0–8.0), with optimal pH 7.0 for EC and 7.5 for urea. After treatment at pH 4.5 and 5.0, it retained 41.3% and 59.4% activity, respectively. The Km and Vmax for EC and urea at pH 4.5 were 515.6 mM, 33.9 µmol/(min⸱mg) and 32.0 mM, 263.6 µmol/(min⸱mg), respectively. Using 6000 U/L purified enzyme at 30 °C for 9 h, 49.8% and 81.6% of urea was removed from rice wine (pH 4.5 and 7.0), respectively. No appreciable reduction in EC was observed under identical conditions, which may be ascribed to the minimal EC affinity. This study contributes to the future realization of the effective control of EC content in alcoholic beverages. Full article
(This article belongs to the Special Issue Safety and Quality in Fermented Beverages)
Show Figures

Figure 1

24 pages, 5765 KB  
Article
Decoding the Formation and Elimination Mechanism of Ethyl Carbamate in Strong-Aroma Baijiu
by Liqiang Zhang, Yue Qiu, Yongqing Zhang, Yintao Jia, Baoguo Sun and Wei Dong
Foods 2024, 13(23), 3743; https://doi.org/10.3390/foods13233743 - 22 Nov 2024
Cited by 3 | Viewed by 1550
Abstract
In the present study, changes in the physicochemical indices, ethyl carbamate (EC) precursor and EC contents, and microbial communities of fermented grains under different fermentation patterns during strong-aroma Baijiu (SAB) fermentation and changes in EC precursor and EC contents during distillation were investigated [...] Read more.
In the present study, changes in the physicochemical indices, ethyl carbamate (EC) precursor and EC contents, and microbial communities of fermented grains under different fermentation patterns during strong-aroma Baijiu (SAB) fermentation and changes in EC precursor and EC contents during distillation were investigated to study EC formation during these processes. In detail, the amounts of sorghum added in protocols C and D were half those added in protocols A and B (the normal SAB-producing technology). When fermented for about 30 to 35 days, the fermented grains of protocols A and C were, respectively, remixed with Daqu and second-distilled SAB (so-called “Huijiu jiaqu”, HJJQ) and fermented for about 30 to 40 days. The results showed that the acidities of the final fermented grains of protocols A (2.43 ± 0.09 mmol/10 g) and C (3.18 ± 0.08 mmol/10 g) were lower than those of protocols B (3.71 ± 0.07 mmol/10 g) and D (4.66 ± 0.10 mmol/10 g), while the alcohol contents in the final fermented grains of protocols A (18.33 ± 0.76%) and C (15.33 ± 1.08%) were higher than those of protocols B (5.10 ± 0.85%) and D (1.85 ± 0.62%). No significant differences were observed in the other physicochemical indices among the samples. The HJJQ operation significantly increases the alcohol content and reduces the acidity of the fermented grains but has little influence on the other physicochemical indices during SAB fermentation. Excluding the influence of the HJJQ operation and a half input of sorghum on the EC precursor and EC contents for the fermented grains of protocol B, the linear relationships between the EC content and alcohol (R2: 0.4465), citrulline (R2: 0.6962), urea (R2: 0.4705), and HCN (R2: 0.6324) contents were good (all the confidence levels were at 0.05), indicating that these compounds were the dominant EC precursors during SAB fermentation. HJJQ also facilitated the reaction between alcohol and other EC precursors, decreasing EC precursor content and increasing the EC content. KEGG pathway analysis demonstrated that EC precursors were mainly synthesized by alcohol and arginine metabolism. HCN (R2: 0.3875 to 0.8198) and alcohol (R2: 0.4642 to 0.8423) were the dominant EC precursors during SAB distillation. Overall, the HJJQ operation, especially in protocol C, could significantly reduce the content of EC in base SAB, and the base SAB obtained was of good quality. This, therefore, may be an alternative and effective way to reduce the EC content in base Baijiu. Full article
Show Figures

Figure 1

16 pages, 2603 KB  
Article
The High-Throughput Screening of Microorganisms to Eliminate Ethyl Carbamate in Chinese Liquor
by Zirui Yin, Jianghua Li, Jian Chen, Guocheng Du and Xinrui Zhao
Foods 2024, 13(6), 864; https://doi.org/10.3390/foods13060864 - 13 Mar 2024
Cited by 5 | Viewed by 2366
Abstract
Ethyl carbamate (EC) is a 2A classified carcinogen in Chinese liquor that has raised many problems regarding food safety. Applying microorganisms to control the content of EC precursors in fermented grains has been proven as an effective method to reduce EC in alcoholic [...] Read more.
Ethyl carbamate (EC) is a 2A classified carcinogen in Chinese liquor that has raised many problems regarding food safety. Applying microorganisms to control the content of EC precursors in fermented grains has been proven as an effective method to reduce EC in alcoholic beverages. However, the utilization of microorganisms to decrease the precursors of EC (urea and cyanide) is still incomplete in regard to Chinese liquor. Thus, it is necessary to isolate strains with the degradative activities of urea and cyanide. Herein, Bacillus sonorensis F3 and Bacillus licheniformis YA2 strains were isolated from the fermented grains through multiple rounds of high-throughput screening, and the degradative abilities in urea and cyanide reached 95.72% and 75.48%, respectively. In addition, the urease from the B. sonorensis F3 strain and the carbon nitrogen hydrolase from the B. licheniformis YA2 strain were identified by the heterogeneous expression in Escherichia coli. Then, both F3 and YA2 strains were combined at a ratio of 5:1 and applied to eliminate the EC in the simulated fermentation of Chinese liquor; as a result, 51.10% of EC was reduced without affecting the main composition of flavor substances. The obtained strains have great potential in terms of the improvement of quality and safety of Chinese liquor. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

15 pages, 1637 KB  
Review
Ethyl Carbamate in Fermented Food Products: Sources of Appearance, Hazards and Methods for Reducing Its Content
by Maksim Yu. Shalamitskiy, Tatiana N. Tanashchuk, Sofia N. Cherviak, Egor A. Vasyagin, Nikolai V. Ravin and Andrey V. Mardanov
Foods 2023, 12(20), 3816; https://doi.org/10.3390/foods12203816 - 18 Oct 2023
Cited by 32 | Viewed by 4929
Abstract
Ethyl carbamate, the ethyl ester of carbamic acid, has been identified in fermented foods and alcoholic beverages. Since ethyl carbamate is a probable human carcinogen, reduction of its content is important for food safety and human health. In alcoholic beverages, ethyl carbamate is [...] Read more.
Ethyl carbamate, the ethyl ester of carbamic acid, has been identified in fermented foods and alcoholic beverages. Since ethyl carbamate is a probable human carcinogen, reduction of its content is important for food safety and human health. In alcoholic beverages, ethyl carbamate is mostly formed from the reaction of ethanol with urea, citrulline and carbamyl phosphate during fermentation and storage. These precursors are generated from arginine metabolism by wine yeasts and lactic acid bacteria. This review summarizes the mechanisms of ethyl carbamate formation, its impact on human health and methods used in winemaking to minimize its content. These approaches include genetic modification of Saccharomyces cerevisiae wine strains targeting pathways of arginine transport and metabolism, the use of lactic acid bacteria to consume arginine, direct degradation of ethyl carbamate by enzymes and microorganisms, and different technological methods of grape cultivation, alcoholic fermentation, wine aging, temperature and duration of storage and transportation. Full article
Show Figures

Figure 1

13 pages, 2275 KB  
Article
Simulation and Control of the Formation of Ethyl Carbamate during the Fermentation and Distillation Processes of Chinese Baijiu
by Yuhang Di, Jianghua Li, Jian Chen, Xinrui Zhao and Guocheng Du
Foods 2023, 12(4), 821; https://doi.org/10.3390/foods12040821 - 15 Feb 2023
Cited by 18 | Viewed by 3076
Abstract
Baijiu is a popular alcoholic beverage with a long history in China. However, the widespread presence of the ethyl carbamate (EC) carcinogen has raised many food safety concerns. To date, the main precursors of EC and its formation process have not been determined, [...] Read more.
Baijiu is a popular alcoholic beverage with a long history in China. However, the widespread presence of the ethyl carbamate (EC) carcinogen has raised many food safety concerns. To date, the main precursors of EC and its formation process have not been determined, resulting in difficulty controlling EC in Baijiu. In this study, the main precursors of EC are identified as urea and cyanide during the process of brewing for different flavors of Baijiu, while the dominant stage in which EC formation occurs is during the process of distillation rather than fermentation. In addition, the effects of temperature, pH value, alcohol concentration and metal ions on the formation of EC are confirmed. In the following study, the main precursor of EC is identified as cyanide during the process of distillation, and a combination of optimizing the distillation device and adding copper wire is proposed. Furthermore, the effect of this novel strategy is examined in gaseous reactions between cyanide and ethanol, reducing the concentration of EC by 74.0%. Finally, the feasibility of this strategy is verified in simulated distillations of fermented grains, reducing the formation of EC by 33.7–50.2%. This strategy has great application potential in industrial production. Full article
(This article belongs to the Section Food Quality and Safety)
Show Figures

Figure 1

11 pages, 1738 KB  
Article
Microbiota and Mycobiota of Soy Sauce-Supplied Lactic Acid Bacteria Treated with High Pressure
by Chiung-Yu Lai, Chih-Yao Hou, Pei-Ting Chuang, Wei-Hsuan Hsu and She-Ching Wu
Fermentation 2022, 8(7), 338; https://doi.org/10.3390/fermentation8070338 - 18 Jul 2022
Cited by 9 | Viewed by 4353
Abstract
Background: Ethyl carbamate (EC), a byproduct that naturally forms in fermented foods, can cause tumors and cell death and is classified as a probable human carcinogen (Group 2A). EC is naturally formed through the alcoholysis reaction between ethanol and carbamyl compounds. The major [...] Read more.
Background: Ethyl carbamate (EC), a byproduct that naturally forms in fermented foods, can cause tumors and cell death and is classified as a probable human carcinogen (Group 2A). EC is naturally formed through the alcoholysis reaction between ethanol and carbamyl compounds. The major precursors and dominantly emerging stages of EC differ with disparate food types, including soy sauce. This work aimed to clarify the formation of EC and its influence factors throughout the soy sauce production process with or without high-pressure process (HPP) treatment. Methods: Tetragenococcus halophilus, Pediococcus acidilactici, Zygosaccharomyces rouxii, and Candida versatilis were added to soy sauce. The levels of citrulline and EC were measured, and a 16S and ITS assay investigated the microbiota. Results: L-citrulline production was found in each group after fermentation for one month. In addition, L-citrulline levels were generated the most in group D (500 MPa treated raw soy sauce with 12% saltwater and mixed fermentation bacteria, including T. halophilus,P. acidilactici,Z. rouxii, and C. versatilis) and group E (soy sauce fermentation with 12% saltwater without HPP treatment) compared to group F (soy sauce fermentation with 18% saltwater without HPP treatment). Conclusions: These results indicated that salt concentration and mixed fermentation bacteria (T. halophilus,P. acidilactici,Z. rouxii,C. versatilis) might not be major factors for L-citrulline production. Full article
Show Figures

Figure 1

11 pages, 2282 KB  
Article
Chinese Yellow Rice Wine Processing with Reduced Ethyl Carbamate Formation by Deleting Transcriptional Regulator Dal80p in Saccharomyces cerevisiae
by Tianyu Wei, Zhihua Jiao, Jingjin Hu, Hanghang Lou and Qihe Chen
Molecules 2020, 25(16), 3580; https://doi.org/10.3390/molecules25163580 - 6 Aug 2020
Cited by 17 | Viewed by 3571
Abstract
Ethyl carbamate (EC) is a potential carcinogen that forms spontaneously during Chinese rice wine fermentation. The primary precursor for EC formation is urea, which originates from both external sources and arginine degradation. Urea degradation is suppressed by nitrogen catabolite repression (NCR) in Saccharomyces [...] Read more.
Ethyl carbamate (EC) is a potential carcinogen that forms spontaneously during Chinese rice wine fermentation. The primary precursor for EC formation is urea, which originates from both external sources and arginine degradation. Urea degradation is suppressed by nitrogen catabolite repression (NCR) in Saccharomyces cerevisiae. The regulation of NCR is mediated by two positive regulators (Gln3p, Gat1p/Nil1p) and two negative regulators (Dal80p/Uga43p, Deh1p/Nil2p/GZF3p). DAL80 revealed higher transcriptional level when yeast cells were cultivated under nitrogen-limited conditions. In this study, when DAL80-deleted yeast cells were compared to wild-type BY4741 cells, less urea was accumulated, and genes involved in urea utilization were up-regulated. Furthermore, Chinese rice wine fermentation was conducted using dal80Δ cells; the concentrations of urea and EC were both reduced when compared to the BY4741 and traditional fermentation starter. The findings of this work indicated Dal80p is involved in EC formation possibly through regulating urea metabolism and may be used as the potential target for EC reduction. Full article
(This article belongs to the Special Issue New Frontiers in Fermented Products)
Show Figures

Figure 1

11 pages, 2612 KB  
Article
Formation of Ethyl Carbamate during the Production Process of Cantonese Soy Sauce
by Kai Zhou, Lorenzo Siroli, Francesca Patrignani, Yuanming Sun, Rosalba Lanciotti and Zhenlin Xu
Molecules 2019, 24(8), 1474; https://doi.org/10.3390/molecules24081474 - 15 Apr 2019
Cited by 24 | Viewed by 5883
Abstract
The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, [...] Read more.
The aim of this work was to clarify the formation of ethyl carbamate (EC) and its influence factors throughout the production process of Cantonese soy sauce. The results showed that EC was not detected in the koji-making and early moromi fermentation stages, but started to be generated when pH of the moromi decreased to about 4.9—at the same time, the levels of ethanol, urea and citrulline increased significantly. Most EC was formed during raw soy sauce hot extraction (40.6%) and sterilization (42.9%) stages. The EC content exhibited the highest correlation with ethanol throughout the whole production process (R = 0.97). The simulation soy sauce produced in laboratory led the same conclusion—moreover, the contents of EC, ethanol and citrulline were higher in soy sauce fermented at 30 °C than in soy sauce fermented at 15 °C. Extraction of raw soy sauce by squeezing contributed little to EC formation. Further research showed that citrulline and ethanol led to significant increases in EC levels in raw soy sauce upon heating. These results indicate that ethanol and citrulline are two critical precursors of EC and that EC is mainly formed during the heat treatment stage of soy sauce. Full article
(This article belongs to the Special Issue Advanced Analysis of Contaminants of Emerging Concern )
Show Figures

Figure 1

17 pages, 1929 KB  
Article
Combined Use of S. pombe and L. thermotolerans in Winemaking. Beneficial Effects Determined Through the Study of Wines’ Analytical Characteristics
by Ángel Benito, Fernando Calderón and Santiago Benito
Molecules 2016, 21(12), 1744; https://doi.org/10.3390/molecules21121744 - 18 Dec 2016
Cited by 60 | Viewed by 7228
Abstract
The most common way to produce red wine is through the use of Saccharomyces cerevisiae strains for alcoholic fermentation and lactic acid bacteria for malolactic fermentation. This traditional winemaking methodology produces microbiologically stable red wines. However, under specific conditions off-flavours can occur, wine [...] Read more.
The most common way to produce red wine is through the use of Saccharomyces cerevisiae strains for alcoholic fermentation and lactic acid bacteria for malolactic fermentation. This traditional winemaking methodology produces microbiologically stable red wines. However, under specific conditions off-flavours can occur, wine quality can suffer and human health problems are possible, especially after the second fermentation by the lactic acid bacteria. In warm countries, problems during the malolactic fermentation arise because of the high pH of the must, which makes it very difficult to properly control the process. Under such conditions, wines with high acetic acid and histamine concentrations are commonly produced. This study investigates a recent red
wine-making technology that uses a combination of Lachancea thermotolerans and Schizosaccharomyces pombe as an alternative to the conventional malolactic fermentation. This work studies new parameters such as aroma compounds, amino acids, ethanol index and sensory evaluation. Schizosaccharomyces pombe totally consumes malic acid while Lachancea thermotolerans produces lactic acid, avoiding excessive deacidification of musts with low acidity in warm viticulture areas. This methodology also reduces the malolactic fermentation hazards in wines with low acidity. The main products are wines that contain less acetic acid, less biogenic amines and precursors and less ethyl carbamate precursors than the traditional wines produced via conventional fermentation techniques. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Figure 1

16 pages, 807 KB  
Article
Chelation-Assisted Substrate-Controlled Asymmetric Lithiation-Allylboration of Chiral Carbamate 1,2,4-Butanetriol Acetonide
by Adeem Mahmood, Hamad Z. Alkhathlan, Saima Parvez, Merajuddin Khan and Sohail A. Shahzad
Molecules 2015, 20(6), 9890-9905; https://doi.org/10.3390/molecules20069890 - 28 May 2015
Viewed by 6027
Abstract
The lithiation of 2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl diisopropylcarbamate (1) is achieved freely by sec-butyllithium in diethylether with high lk-diastereoselectivity: the bicyclic chelate complexes 3a and 3b are reacted with electrophiles to form optically active precursors 4a and 4b with >95% diastereoselectivity. In [...] Read more.
The lithiation of 2-(2,2-dimethyl-1,3-dioxolan-4-yl)ethyl diisopropylcarbamate (1) is achieved freely by sec-butyllithium in diethylether with high lk-diastereoselectivity: the bicyclic chelate complexes 3a and 3b are reacted with electrophiles to form optically active precursors 4a and 4b with >95% diastereoselectivity. In addition, tertiary diamines can undergo an external complexation in contest with the internal oxygen ligand, leading to improved stereoselectivities. The further reactions of lithiated carbamates with trans alkenyl-9-BBN derivatives after 1,2 metallate rearrangements, gave the key intermediate α-substituted allylic boranes 7. Subsequent allylboration of aldehydes gave (Z)-anti-homoallylic alcohols 8 in good yield and excellent d.r. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Graphical abstract

Back to TopTop