Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (149)

Search Parameters:
Keywords = ethanol fuels (E20)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
35 pages, 2952 KB  
Review
Thermo-Catalytic Carbon Dioxide Hydrogenation to Ethanol
by Xianyu Meng, Ying Wang, Jie Li, Hongxing Wang, Chenglong Yu, Jia Guo, Zhuo Zhang, Qingli Qian and Buxing Han
Chemistry 2026, 8(2), 14; https://doi.org/10.3390/chemistry8020014 - 28 Jan 2026
Abstract
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO [...] Read more.
The catalytic hydrogenation of carbon dioxide (CO2) represents a transformative approach for reducing greenhouse gas emissions while producing sustainable fuels and chemicals, with ethanol being particularly promising due to its compatibility with existing energy infrastructure. Despite significant progress in converting CO2 to C1 products (e.g., methane, methanol), selective synthesis of C2+ compounds like ethanol remains challenging because of competing reaction pathways and byproduct formation. Recent advances in thermo-catalytic CO2 hydrogenation have explored diverse catalyst systems including noble metals (Rh, Pd, Au, Ir, Pt) and non-noble metals (Co, Cu, Fe), supported on zeolites, metal oxides, perovskites, silica, metal–organic frameworks, and carbon-based materials. These studies reveal that catalytic performance hinges on the synergistic effects of multimetallic sites, tailored support properties and controlled reaction micro-environments to optimize CO2 activation, controlled hydrogenation and C−C coupling. Mechanistic insights highlight the critical balance between CO2 reduction steps and selective C−C bond formation, supported by thermodynamic analysis, advanced characterization techniques and theoretical calculations. However, challenges persist, such as low ethanol yields and undesired byproducts, necessitating innovative catalyst designs and optimized reactor configurations. Future efforts must integrate computational modeling, in situ/operando studies, and renewable hydrogen sources to advance scalable and economically viable processes. This review consolidates key findings, proposes potential reaction mechanisms, and outlines strategies for designing high-efficiency catalysts, ultimately providing reference for industrial application of CO2-to-ethanol technologies. Full article
Show Figures

Figure 1

22 pages, 3525 KB  
Review
Rhodium-Based Electrocatalysts for Ethanol Oxidation Reaction: Mechanistic Insights, Structural Engineering, and Performance Optimization
by Di Liu, Qingqing Lv, Dahai Zheng, Chenhui Zhou, Shuchang Chen, Hongxin Yang, Liwei Chen and Yufeng Zhang
Catalysts 2026, 16(2), 114; https://doi.org/10.3390/catal16020114 - 23 Jan 2026
Viewed by 146
Abstract
Direct ethanol fuel cells (DEFCs) have gained considerable attention as promising power sources for sustainable energy conversion due to their high energy density, low toxicity, and renewable ethanol feedstock. However, the sluggish ethanol oxidation reaction (EOR) kinetics and the formation of strongly adsorbed [...] Read more.
Direct ethanol fuel cells (DEFCs) have gained considerable attention as promising power sources for sustainable energy conversion due to their high energy density, low toxicity, and renewable ethanol feedstock. However, the sluggish ethanol oxidation reaction (EOR) kinetics and the formation of strongly adsorbed intermediates (e.g., CO*, CHx*) severely hinder catalytic efficiency and durability. Rhodium (Rh)-based catalysts stand out for their balanced intermediate adsorption, efficient C–C bond cleavage, and superior CO tolerance arising from their unique electronic structure. This review summarizes recent advances in Rh-based EOR catalysts, including monometallic Rh nanostructures, Rh-based alloys, and Rh–support composites. The effects of morphology, alloying, and metal–support interactions on activity, selectivity, and stability are discussed in detail. Strategies for structural and electronic regulation—such as nanoscale design, alloying modulation and interfacial engineering—are highlighted to enhance catalytic performance. Finally, current challenges and future directions are outlined, emphasizing the need for Rh-based catalysts with high activity, selectivity and stability, integrating in situ characterization with theoretical modeling. This work provides insights into the structure–activity relationships of Rh-based catalysts and guidance for designing efficient and durable anode catalysts for practical DEFC applications. Full article
Show Figures

Figure 1

15 pages, 5279 KB  
Article
High-Density Aviation Fuel or Diesel-Range Naphthenes Are Synthesized from Biomass-Derived Isophorone and Furfural
by Mengze Sun, Xing Zhang, Jiamin Yan, Hui Zhang, Zhipeng Li, Li Huang, Song Jin, Wei Wang and Ning Li
Catalysts 2026, 16(1), 83; https://doi.org/10.3390/catal16010083 - 10 Jan 2026
Viewed by 342
Abstract
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone [...] Read more.
High-density aviation fuels and diesel-range cycloalkanes are in high demand for the transportation sector, but the development of sustainable and high-efficiency synthesis routes from biomass-derived platform chemicals remains a key challenge. High-density aviation fuel and diesel-grade cycloalkanes were successfully synthesized from biomass-derived isophorone and furfural through a continuous process of selective hydrogenation, aldol condensation, and hydrodeoxygenation reaction. (E) 2-(Furan-2-methylene)-3,5,5-trimethylcyclohex-1-one (1A) was obtained by selective hydrogenation of isophorone to obtain 3,3,5-trimethylcyclohexanone (TMCH), which was then subjected to aldol condensation with furfural. The system studied key reaction parameters such as solvent type, temperature, catalyst type, catalyst loading, and reaction time that affect the aldol condensation of TMCH and furfural. The yield of 1A reached 98.69%, under optimized conditions using NaOH as the catalyst at a molar ratio of 3,3,5-trimethylcyclohexanone:furfural = 1:1, NaOH 0.15 g, anhydrous ethanol as the solvent, and a reaction temperature of 313 K for 1 h. A series of nickel-based catalysts supported on porous materials, including SiO2, CeO2, Al2O3, Hβ, and HZSM-5, were prepared and characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). These catalysts were evaluated for the hydrodeoxygenation of 1A. Among them, the 10% Ni-SiO2 catalyst exhibited the highest catalytic activity, affording a C9–C14 cycloalkane yield of 88.32% and a total carbon yield of 99.6%. This work demonstrates a promising and sustainable strategy for producing branched cycloalkanes in the diesel and jet fuel range from lignocellulosic biomass-derived platform chemicals. Full article
(This article belongs to the Section Biomass Catalysis)
Show Figures

Graphical abstract

18 pages, 1680 KB  
Article
Effects of Ethanol Blends on Plug-In Hybrid Electric Vehicle Gaseous and Particulate Emissions Formation and Toxicity
by Maedeh Makki, Troy Hurren, Alexa Canchola, Zisimos Toumasatos, Ying-Hsuan Lin and Georgios Karavalakis
Energies 2025, 18(24), 6461; https://doi.org/10.3390/en18246461 - 10 Dec 2025
Viewed by 343
Abstract
This research investigates how blending ethanol with gasoline influences both gaseous and particulate emissions, as well as the toxicological characteristics of particulates emitted from a plug-in hybrid electric vehicle adapted to run on fuel mixtures containing up to 85% ethanol by volume. Testing [...] Read more.
This research investigates how blending ethanol with gasoline influences both gaseous and particulate emissions, as well as the toxicological characteristics of particulates emitted from a plug-in hybrid electric vehicle adapted to run on fuel mixtures containing up to 85% ethanol by volume. Testing was conducted on E10, E30, and E83 fuels, while the vehicle was exercised on a chassis dynamometer over three repetitions of the Federal Test Procedure and US06 cycles. Results showed important reductions in nitrogen oxide emissions for E30 and E83 for both cycles, along with reductions in particulate matter mass, black carbon, and solid particle number. Total hydrocarbon emissions demonstrated increases with E30 and E83 and tracked well with increases in benzene, toluene, ethylbenzene, and xylene isomers. Formaldehyde and acetaldehyde emissions trended in sympathy with higher-ethanol blending. The use of E30 and E83 blends produced more reactive emissions, which subsequently adversely affected the ozone-forming potential for these fuels compared to E10. The toxicological properties exhibited mixed results, with the higher-ethanol blends showing reduced oxidative stress compared to E10, while E83 induced a higher cytotoxic response relative to E30 and E10 fuels. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

23 pages, 3064 KB  
Article
Comparing Ecuadorian Cocoa Mucilage-Based Bio-Ethanol and Commercial Fuels Toward Their Performance and Environmental Impacts in Internal Combustion Engines
by Cristian Laverde-Albarracín, Juan Félix González González, Beatriz Ledesma Cano, Silvia Román Suero, José Villarroel-Bastidas, Diego Peña-Banegas, Samantha Puente-Bosquez and Sebastian Naranjo-Silva
Energies 2025, 18(24), 6378; https://doi.org/10.3390/en18246378 - 5 Dec 2025
Viewed by 659
Abstract
In response to Ecuador’s need for sustainable and locally sourced transport fuels, this study evaluates the energetic and environmental performance of a biofuel (bioethanol-based) derived from the mucilage of the CCN51 cocoa variety, analyzed under controlled operating conditions in an internal combustion engine. [...] Read more.
In response to Ecuador’s need for sustainable and locally sourced transport fuels, this study evaluates the energetic and environmental performance of a biofuel (bioethanol-based) derived from the mucilage of the CCN51 cocoa variety, analyzed under controlled operating conditions in an internal combustion engine. Bioethanol obtained from this feedstock was blended with Ecuador’s commercial Extra gasoline to produce an E5 formulation, experimentally compared with Extra (85 RON) and Super (92 RON) fuels. Physicochemical analysis following NTE INEN 2102 revealed a research octane number of 85.8 and a lower heating value of 45.22 MJ/kg. Static tests performed on a Hyundai i10 engine (2021) at 700 and 2500 rpm showed that the E5 blend achieved higher energy and exergy efficiencies (21.17% and 64.12%, respectively) than Extra gasoline, approaching Super performance. Environmentally, the E5–CCN51 blend reduced carbon monoxide (CO) by ~10–15% and unburned hydrocarbons (HC) by ~5–8%, while maintaining λ ≈ 1. Variations in O2 and CO2 confirmed enhanced oxidation and more complete combustion. Overall, these findings demonstrate the technical feasibility and environmental relevance of CCN51 cocoa mucilage as a sustainable ethanol source, contributing to cleaner combustion, circular bioeconomy promotion, and energy resilience in tropical developing regions. Full article
(This article belongs to the Special Issue Conversion and High-Value Utilization of Biomass Resources)
Show Figures

Figure 1

19 pages, 2097 KB  
Article
Comprehensive Efficiency Analysis of Ethanol–Gasoline Blends in Spark Ignition Engines
by Ádám István Szabó, Zaid Tharwat Mursi, Anna Wégerer and Gábor Nagy
Eng 2025, 6(10), 256; https://doi.org/10.3390/eng6100256 - 2 Oct 2025
Viewed by 4098
Abstract
This paper investigates the effects of using 10% v/v (E10) and 30% v/v (E30) ethanol–gasoline blends on spark ignition (SI) engine fuel consumption, brake-specific fuel consumption, brake thermal efficiency, combustion parameters and exhaust gas temperature. The 30% v/ [...] Read more.
This paper investigates the effects of using 10% v/v (E10) and 30% v/v (E30) ethanol–gasoline blends on spark ignition (SI) engine fuel consumption, brake-specific fuel consumption, brake thermal efficiency, combustion parameters and exhaust gas temperature. The 30% v/v ethanol–gasoline blend was designed not to exceed the octane number (RON and MON) of the regular commercially available reference fuel (E10); therefore, the knock resistance of the reference and research fuel does not differ significantly. The tests were conducted on an AVL internal combustion engine test cell using a four-stroke, four-cylinder, turbocharged SI engine with direct injection and a compression ratio of 12.2:1. The engine was manufactured in 2022, and it is the latest commercially available version currently in production. Engine tests were conducted under stoichiometric conditions (when possible) at loads ranging from 2–20 bar brake mean effective pressure and engine speeds ranging from 1000–6000 rpm, and the fuel consumption, brake-specific fuel consumption, combustion parameters, exhaust gas temperature and brake thermal efficiency were measured using the two different ethanol–gasoline blends. Test results showed that the higher concentration ethanol–gasoline blend—due to its lower density, lower heating value and higher latent heat of vaporization—had increased fuel consumption, brake-specific fuel consumption and decreased brake thermal efficiency, while exhaust gas temperature also decreased (at 2500 rpm 12 bar BMEP, the differences were 11%, 6.6%, −0.78% and −3.7%, respectively). Peak combustion pressures were identical under the same operating conditions, but the peak combustion temperature of E30 was on average 3% lower. Full article
Show Figures

Figure 1

15 pages, 1213 KB  
Article
Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90
by Malaika Amjad, Muhammad Abbas, Abdullah Langou, Imrana Niaz Sultan and Afrasiab Khan Tareen
Fermentation 2025, 11(10), 565; https://doi.org/10.3390/fermentation11100565 - 30 Sep 2025
Cited by 1 | Viewed by 1349
Abstract
Bioethanol manifests an extraordinary potential to overcome the severe energy crises and reliance on fossil fuels, yet it supports the sustainable and cost-effective production of fuels for automobile engines and contributes to the reduction of greenhouse gas (GHG) emissions and other global climate-related [...] Read more.
Bioethanol manifests an extraordinary potential to overcome the severe energy crises and reliance on fossil fuels, yet it supports the sustainable and cost-effective production of fuels for automobile engines and contributes to the reduction of greenhouse gas (GHG) emissions and other global climate-related challenges. The present study examines the potential of Mixed Lignocellulosic Biomass (MLB) as a sustainable feedstock for the consistent year-round production of bioethanol. The primary MLB sources considered in this research to underscore the significance of this heterogeneous strategy include sweet sorghum bagasse (SSB), sugarcane bagasse (SCB), and date palm trunk (DPT). Each of the three feedstocks, i.e., SSB, SCB, and DPT, were individually subjected to alkaline pretreatment, a step aimed at breaking down structural barriers and facilitating greater release of fermentable sugars during fermentation. Likewise, the alkaline-pretreated biomasses were subjected to simultaneous saccharification and fermentation (SSF) for 96 h, both individually as well as in various combined proportions. Individually, pretreated sweet sorghum bagasse (SSB) fibers produced the highest ethanol concentration, of 30.79 ± 0.44 g/L; an ethanol yield of 0.40 ± 0.62 g/g; an ethanol productivity of 0.42 ± 0.87 g/L/h; and a theoretical ethanol yield of 79.81% at 72 h. In contrast, the combination of MLB (50% of pretreated SSB and 50% of DPT fibers) produced a significantly higher ethanol concentration of 31.47 ± 0.57 g/L and an ethanol productivity of 0.653 ± 0.24 g/L/h in much less time, i.e., 48 h of SSF fermentation. The empirical data confirms that MLB offers a sustainable paradigm for ethanol biosynthesis by curtailing fermentation time and optimizing economic and operational efficacy. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass Valorisation, 2nd Edition)
Show Figures

Figure 1

24 pages, 1916 KB  
Review
The Potential of Bioethanol from Agricultural Crop Residues: A Case Study of Algeria
by Monirul Islam Miskat, Aditta Chowdhury, Sadiq M. Sait and Rabiul Islam
Bioresour. Bioprod. 2025, 1(1), 3; https://doi.org/10.3390/bioresourbioprod1010003 - 19 Sep 2025
Viewed by 2059
Abstract
Due to the ever-increasing energy demand, Algeria’s sustainable energy crisis is a significant problem. Plant and crop residues can be a solution to this problem if they are used for bioethanol production, a viable alternative to fossil fuels. This study explores the potential [...] Read more.
Due to the ever-increasing energy demand, Algeria’s sustainable energy crisis is a significant problem. Plant and crop residues can be a solution to this problem if they are used for bioethanol production, a viable alternative to fossil fuels. This study explores the potential of existing agricultural crop residues to overcome the sustainable energy crisis in Algeria. Agricultural residues such as cereals, roots and tubers, pulses, oil crops, vegetables, and fruits have great potential to solve the problem. The agricultural residues that are normally wasted can be utilized to produce bioethanol, which provides sustainable energy and also help to obtain a clean environment. It has been found that 1.65 million tons of bioethanol can be produced from Algeria’s available residues, which is equivalent to 44.10 petajoule of energy. Cereal and fruit residues contribute to most bioethanol generation, about 47.22% and 23.38%, respectively. In addition, bioethanol generated from residue can be used in Algeria’s transportation sector. Considering Algeria’s current energy condition, gasoline blended with ethanol such as E10 and E5 can be used in Algerian vehicles since no modification of vehicles is needed for utilizing these fuels. Research indicates that lignocellulosic biomass sources in Algeria, such as Alfa, olive pomace, and cereal straw, could provide up to 0.67 million tons of oil equivalent (Mtoe), representing approximately 4.37% of the energy consumption of the transport sector in Algeria. Algeria has the potential to produce up to 73.5 Mtoe and 57.9 Mtoe of renewable energy utilizing the energy crops. This study will also encourage relevant policymakers to develop sustainable energy policies that will enhance the renewable energy share in Algerian energy dynamics. Full article
Show Figures

Figure 1

16 pages, 4698 KB  
Article
Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends
by Szymon Wyrąbkiewicz, Jerzy Kaszkowiak, Marcin Zastempowski and Maciej Gajewski
Energies 2025, 18(17), 4606; https://doi.org/10.3390/en18174606 - 30 Aug 2025
Viewed by 844
Abstract
This article presents the results of research on the effects of various bioethanol concentrations in gasoline blends (E0, E10, E30, E50, E100) and increased fuel dosage (+10% and +20%) on spark-ignition engine performance and exhaust emissions. Experiments were conducted on a chassis dynamometer [...] Read more.
This article presents the results of research on the effects of various bioethanol concentrations in gasoline blends (E0, E10, E30, E50, E100) and increased fuel dosage (+10% and +20%) on spark-ignition engine performance and exhaust emissions. Experiments were conducted on a chassis dynamometer under strictly controlled laboratory conditions using a MAHA MGT-5 exhaust gas analyzer and a MAHA MPM-4 particulate matter analyzer. Power, torque, carbon monoxide (CO), carbon dioxide (CO2), hydrocarbons (HC), oxygen (O2), and particulate matter emissions were analyzed. It was found that up to a 50% bioethanol content, power and torque remained stable, while with E100, a significant decrease in these parameters was observed, partially offset by the increased fuel dosage. CO emissions systematically decreased with increasing bioethanol content, reaching minimum values at E100, while HC emissions generally decreased. CO2 content did not show clear trends, while O2 levels in the exhaust gas increased with higher ethanol concentrations. Particulate matter emissions were irregular, with the lowest values at E30 for the nominal dose and at E10 for the increased dose. The studies revealed significant nonlinearities in the effect of ethanol concentration on emissions, challenging the common assumption of monotonic changes. The results have practical implications for optimizing the calibration of engine control systems, meeting emission standards, and assessing the potential of bioethanol as a road transport fuel. Full article
Show Figures

Figure 1

19 pages, 1939 KB  
Article
Development and Optimization of Chemical Kinetic Mechanisms for Ethanol–Gasoline Blends Using Genetic Algorithms
by Filipe Cota, Clarissa Martins, Raphael Braga and José Baeta
Energies 2025, 18(16), 4444; https://doi.org/10.3390/en18164444 - 21 Aug 2025
Cited by 1 | Viewed by 1479
Abstract
Reduced chemical kinetic mechanisms are essential for enabling the use of complex fuels in 3D CFD combustion simulations. This study presents the development and optimization of a compact mechanism capable of accurately modeling ethanol–gasoline blends, including Brazilian Type-C gasoline (27% ethanol by volume) [...] Read more.
Reduced chemical kinetic mechanisms are essential for enabling the use of complex fuels in 3D CFD combustion simulations. This study presents the development and optimization of a compact mechanism capable of accurately modeling ethanol–gasoline blends, including Brazilian Type-C gasoline (27% ethanol by volume) and up to pure ethanol (E100). An initial mechanism was constructed using the Directed Relation Graph with Error Propagation (DRGEP) method applied to detailed mechanisms selected for each surrogate component. The resulting mechanism was then refined through three global iterations of a genetic algorithm targeting ignition delay time (IDT) and laminar flame speed (LFS) performance. Five candidate versions (Mec1 to Mec5), each containing 179 species and 771 reactions, were generated. Mec4 was identified as the optimal configuration based on quantitative error analysis across all tested conditions and blend ratios. The final mechanism offers a balance between predictive accuracy and computational feasibility, making it well-suited for high-fidelity simulations in complex geometries involving multi-component ethanol–gasoline fuels. Full article
Show Figures

Figure 1

13 pages, 3072 KB  
Article
Effects of Biodiesel–Ethanol–Graphene Droplet Volume and Graphene Content on Microexplosion: Distribution, Velocity and Acceleration of Secondary Droplets
by Jing Shi, Changhao Wang, Wei Zhang and Kesheng Meng
Processes 2025, 13(8), 2646; https://doi.org/10.3390/pr13082646 - 21 Aug 2025
Viewed by 741
Abstract
Under the continuous tightening of global carbon emission policies, the search for sustainable low-emission energy sources is of great significance to reduce the reliance on the use of fossil fuels and to save energy and reduce emissions. Biodiesel–ethanol–graphene mixed fuel has high combustion [...] Read more.
Under the continuous tightening of global carbon emission policies, the search for sustainable low-emission energy sources is of great significance to reduce the reliance on the use of fossil fuels and to save energy and reduce emissions. Biodiesel–ethanol–graphene mixed fuel has high combustion efficiency and low emission characteristics, and an in-depth study of its evaporation and microexplosion characteristics during the heating process can help to better understand the characteristics of this fuel. In this paper, the evaporation, microexplosion, sub-droplet distribution and kinematic properties of biodiesel–ethanol–graphene droplets under different temperatures, volumes and mixing ratios were investigated by simulating the air atmosphere using a modified tube furnace experimental platform. It was found that the BD50E50 (1%G) droplet produced a weak microexplosion under 600 °C, and three secondary droplets were formed, with the largest secondary droplet area reaching 5.28 mm2. The BD50E50 (1%G) droplet produced strong microexplosion under 800 °C conditions, and 10 secondary droplets were formed, with the largest secondary droplet area of 3.02 mm2. Different intensities of microexplosion and ejection phenomena produced by the biodiesel–ethanol–graphene droplets during the heating process were found, and it was found that the temperature and droplet volume determine whether the microexplosion of the mixed droplets can occur or not, while the intensity of the microexplosion determines the number of secondary droplets and the speed of movement. Additionally, the velocity and acceleration of secondary droplets produced by ejection were significantly greater than those produced by microexplosion. These studies provide a theoretical basis for the application of this fuel. Full article
(This article belongs to the Special Issue Advances in Engineering Thermodynamics and Numerical Simulation)
Show Figures

Figure 1

15 pages, 2063 KB  
Article
Research on Combustion, Emissions, and Fault Diagnosis of Ternary Mixed Fuel Marine Diesel Engine
by Peng Geng, Xiong Hu and Xiaolu Chang
J. Mar. Sci. Eng. 2025, 13(8), 1561; https://doi.org/10.3390/jmse13081561 - 14 Aug 2025
Cited by 1 | Viewed by 612
Abstract
This study aimed to investigate the effects of diesel/ethanol/n-butanol mixed fuel on the marine diesel engine combustion and emissions at different ethanol blending ratios, different single injection times, and pre-injection times. In addition, this study takes the injector fault phenomenon as an example, [...] Read more.
This study aimed to investigate the effects of diesel/ethanol/n-butanol mixed fuel on the marine diesel engine combustion and emissions at different ethanol blending ratios, different single injection times, and pre-injection times. In addition, this study takes the injector fault phenomenon as an example, simulates the three fault phenomena of the injector, and uses a variety of algorithms to optimize the probabilistic neural network model to achieve the fault state identification and diagnosis of the injector. The results of research showed that, with the increase in the ethanol blending ratio, the peak cylinder pressure shows a decreasing trend. The ignition delay period is extended, and the peak instantaneous heat release rate increases. Compared with D100, the nitrogen oxide (NOx) emissions of D50E40B10 mixed fuel are reduced by 12.3%, soot emissions are reduced by 29.18%, and carbon monoxide (CO) emissions are increased by 5.7 times. With the injection time advances, the peak values of cylinder pressure and heat release rate show an increasing trend, soot emissions gradually decrease, and NOx and CO emissions gradually increase. The peaks of the cylinder pressure and heat release rate in the pilot injection stage gradually decrease as the pilot injection time advances, while the peak heat release rate in the main injection stage increases. In terms of emissions, NOx emissions first decrease and then increase as the pilot injection time advances, while soot emissions gradually increase. The average accuracy of the PSO-PNN neural network model reaches 90%, and the average accuracy of the WOA-PNN neural network model reaches 95%. Therefore, the WOA-PNN neural network model is determined to be the optimal injector fault diagnosis model, which can be applied to the identification and diagnosis of injector fault states of diesel engines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 2672 KB  
Article
Development Process of TGDI SI Engine Combustion Simulation Model Using Ethanol–Gasoline Blends as Fuel
by Bence Zsoldos, András L. Nagy and Máté Zöldy
Appl. Sci. 2025, 15(15), 8677; https://doi.org/10.3390/app15158677 - 5 Aug 2025
Viewed by 985
Abstract
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its [...] Read more.
The Fit for 55 package introduced by the European Union aims to achieve a 55% reduction in greenhouse gas emissions by 2030. In parallel, increasingly stringent exhaust gas regulations have intensified research into alternative fuels. Ethanol presents a promising option due to its compatibility with gasoline, higher octane rating, and lower exhaust emissions compared to conventional gasoline. Additionally, ethanol can be derived from agricultural waste, further enhancing its sustainability. This study examines the impact of two ethanol–gasoline blends (E10, E20) on emissions and performance in a turbocharged gasoline direct injection (TGDI) spark-ignition (SI) engine. The investigation is conducted using three-dimensional computational fluid dynamics (3D CFD) simulations to minimize development time and costs. This paper details the model development process and presents the initial results. The boundary conditions for the simulations are derived from one-dimensional (1D) simulations, which have been validated against experimental data. Subsequently, the simulated performance and emissions results are compared with experimental measurements. The E10 simulations correlated well with experimental measurements, with the largest deviation in cylinder pressure being an RMSE of 1.42. In terms of emissions, HC was underpredicted, while CO was overpredicted compared to the experimental data. For E20, the IMEP was slightly higher at some operating points; however, the deviations were negligible. Regarding emissions, HC and CO emissions were higher with E20, whereas NOx and CO2 emissions were lower. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

22 pages, 848 KB  
Article
Modeling Prediction of Physical Properties in Sustainable Biodiesel–Diesel–Alcohol Blends via Experimental Methods and Machine Learning
by Kaan Yeşilova, Özgün Yücel and Başak Temur Ergan
Processes 2025, 13(7), 2310; https://doi.org/10.3390/pr13072310 - 20 Jul 2025
Cited by 3 | Viewed by 1595
Abstract
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range [...] Read more.
This study investigated the production of biodiesel from canola oil, the formulation of sustainable ternary fuel blends with diesel and alcohol (ethanol or propanol), and the experimental and machine learning-based modeling of their physical properties, including density and viscosity over a temperature range of 10 °C to 40 °C. Biodiesel was synthesized via alkali-catalyzed transesterification (6:1 methanol-to-oil molar ratio, 0.5 wt % NaOH of oil) and blended with diesel and alcohols (ethanol and propanol) in varying volume ratios. The experimental results revealed that blend density decreased from 0.8622 g/cm3 at 10 °C to 0.8522 g/cm3 at 40 °C for a blend containing ethanol. Similarly, the viscosity showed a significant reduction with temperature, e.g., the blend exhibited a viscosity decline from 8.5 mPa·s at 10 °C to 7.2 mPa·s at 40 °C. Increasing the alcohol or diesel content further reduced density and viscosity due to the lower intrinsic properties of these components. The machine learning models, Gaussian process regression (GPR), support vector regression (SVR), artificial neural networks (ANN), and decision tree regression (DTR), were applied to predict the properties of these blends. GPR demonstrated the best predictive performance for both density and viscosity. These findings confirm the strong potential of GPR for the accurate and reliable prediction of fuel blend properties, supporting the formulation of alternative fuels optimized for diesel engine performance. These aspects contribute new insights into modelling strategies for sustainable fuel formulations. Full article
(This article belongs to the Section AI-Enabled Process Engineering)
Show Figures

Figure 1

24 pages, 6684 KB  
Article
Solvolysis and Mild Hydrogenolysis of Lignin Pyrolysis Bio-Oils for Bunker Fuel Blends
by Antigoni G. Margellou, Fanny Langschwager, Christina P. Pappa, Ana C. C. Araujo, Axel Funke and Konstantinos S. Triantafyllidis
Energies 2025, 18(14), 3683; https://doi.org/10.3390/en18143683 - 12 Jul 2025
Viewed by 1233
Abstract
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into [...] Read more.
The projected depletion of fossil resources has initiated research on new and sustainable fuels which can be utilized in combination with conventional fuels. Lignocellulosic biomass, and more specifically lignin, can be depolymerized towards phenolic and aromatic bio-oils which can be converted downstream into bunker fuel blending components. Within this study, solvolysis under critical ethanol conditions and mild catalytic hydrotreatment were applied to heavy fractions of lignin pyrolysis bio-oils with the aim of recovering bio-oils with improved properties, such as a lower viscosity, that would allow their use as bunker fuel blending components. The mild reaction conditions, i.e., low temperature (250 °C), short reaction time (1 h) and low hydrogen pressure (30–50 bar), led to up 65 wt.% recovery of upgraded bio-oil, which exhibited a high carbon content (63–73 wt.%), similar to that of the parent bio-oil (68.9 wt.%), but a lower oxygen content and viscosity, which decreased from ~298,000 cP in the parent lignin pyrolysis oil to 526 cP in the hydrotreated oil, with a 10%Ni/Beta catalyst in methanol, and which was also sulfur-free. These properties permit the potential utilization of the oils as blending components in conventional bunker fuels. Full article
(This article belongs to the Special Issue New Challenges in Lignocellulosic Biomass Conversion)
Show Figures

Figure 1

Back to TopTop