Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90
Abstract
1. Introduction
2. Materials and Methods
2.1. Biomass Preparation
2.2. Pretreatment of Each Biomass
2.2.1. Sugarcane Bagasse
2.2.2. Date Palm Trunk
2.2.3. Sweet Sorghum Bagasse (SSB)
2.3. Chemical Composition Analysis
2.4. Enzyme Hydrolysis of Raw and Pretreated Fibers
2.5. Inoculum Preparation
2.6. Simultaneous Saccharification and Fermentation for Ethanol Production Using Separate and Mixed Lignocellulosic Biomass
- SSB + SCB + DPT (3.333% each)
- SSB + SCB (50% each)
- SSB + DPT (50% each)
- SCB + DPT (50% each)
2.7. Analytical Methods
2.8. Statistical Analysis
3. Results
3.1. Chemical Compositional Analysis of Sweet Sorghum Bagasse, Sugarcane Bagasse, and Date Palm Trunk
3.2. Enzyme Hydrolysis of Raw Material and Pretreated Biomasses
3.3. Simultaneous Saccharification and Fermentation of Sweet Sorghum Bagasse, Sugarcane Bagasse, and Date Palm Trunk Separately
3.3.1. Simultaneous Saccharification and Fermentation of Pretreated Sweet Sorghum Bagasse for Ethanol Production
3.3.2. Simultaneous Saccharification and Fermentation of Pretreated Sugarcane Bagasse for Ethanol Production
3.3.3. Simultaneous Saccharification and Fermentation of Pretreated Date Palm Trunk for Ethanol Production
3.4. Simultaneous Saccharification and Fermentation of Mixed Lignocellulosic Biomass
3.4.1. Simultaneous Saccharification and Fermentation of Mixed Lignocellulosic Biomass (Pretreated Sweet Sorghum Bagasse + Sugarcane Bagasse + Date Palm Trunk) for Ethanol Production
3.4.2. Simultaneous Saccharification and Fermentation of Mixed Lignocellulosic Biomass (Pretreated Sugarcane Bagasse Fibers and Sweet Sorghum Bagasse Fibers) for Ethanol Production
3.4.3. Simultaneous Saccharification and Fermentation of Mixed Lignocellulosic Biomass (Sweet Sorghum Bagasse Fibers and Date Palm Trunk Fibers) for Ethanol Production
3.4.4. Simultaneous Saccharification and Fermentation of Mixed Lignocellulosic Biomass of (Sugarcane Bagasse Fibers and Date Palm Trunk Fibers) for Ethanol Production
3.5. Fermentation Kinetics
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandel, A.K.; Garlapati, V.K.; Jeevan Kumar, S.P.; Hans, M.; Singh, A.K.; Kumar, S. The role of renewable chemicals and biofuels in building a bioeconomy. Biofuels Bioprod. Biorefin. 2020, 14, 830–844. [Google Scholar] [CrossRef]
- Scarlat, N.; Motola, V.; Dallemand, J.F.; Monforti-Ferrario, F.; Mofor, L. Evaluation of energy potential of Municipal Solid Waste from African urban areas. Renew. Sustain. Energy Rev. 2015, 50, 1269–1286. [Google Scholar] [CrossRef]
- Joshi, M.; Manjare, S. Chemical approaches for the biomass valorisation: A comprehensive review of pretreatment strategies. Environ. Sci. Pollut. Res. 2024, 31, 48928–48954. [Google Scholar] [CrossRef]
- Devi, A.; Bajar, S.; Kour, H.; Kothari, R.; Pant, D.; Singh, A. Lignocellulosic biomass valorization for bioethanol production: A circular bioeconomy approach. Bioenergy Res. 2022, 15, 1820–1841. [Google Scholar] [CrossRef] [PubMed]
- Dahadha, S.; Amin, Z.; Bazyar Lakeh, A.A.; Elbeshbishy, E. Evaluation of different pretreatment processes of lignocellulosic biomass for enhanced biomethane production. Energy Fuels 2017, 31, 10335–10347. [Google Scholar] [CrossRef]
- Singhvi, M.; Zinjarde, S.; Kim, B.-S. Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality. Energies 2022, 15, 8987. [Google Scholar] [CrossRef]
- Imamoglu, E.; Sukan, F.V. The effects of single and combined cellulosic agrowaste substrates on bioethanol production. Fuel 2014, 134, 477–484. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, N.; Saini, S.; Singh, C.; Barnwal, P.; Panghal, A. Ethanol from lignocellulosic biomass: Pretreatment challenges and opportunities in sustainable waste management and energy Production. Biofuels Bioprod. Biorefin. 2025. [Google Scholar] [CrossRef]
- Chen, J.; Ma, X.; Liang, M.; Guo, Z.; Cai, Y.; Zhu, C.; Wang, Z.; Wang, S.; Xu, J.; Ying, H. Physical–Chemical–Biological Pretreatment for Biomass Degradation and Industrial Applications: A Review. Waste 2024, 2, 451–473. [Google Scholar] [CrossRef]
- Broda, M.; Yelle, D.J.; Serwańska, K. Bioethanol Production from Lignocellulosic Biomass—Challenges and Solutions. Molecules 2022, 27, 8717. [Google Scholar] [CrossRef]
- Borisova, A.S.; Pihlajaniemi, V.; Kont, R.; Niemelä, K.; Koitto, T.; Mikkelson, A.; Väljamäe, P.; Kruus, K.; Marjamaa, K. The effect of soluble phenolic compounds from hydrothermally pretreated wheat straw on Trichoderma reesei cellulases and commercial enzyme cocktails. Biomass Convers. Biorefin. 2024, 14, 971–984. [Google Scholar] [CrossRef]
- Sultan, I.N.; Khienpanya, N.; Tareen, A.K.; Laemsak, N.; Sirisansaneeyakul, S.; Vanichsriratana, W.; Parakulsuksatid, P. Kinetic study of ethanol production from different sizes of two-step pretreated oil palm trunk by fed-batch simultaneous saccharification and fermentation. Agric. Nat. Resour. 2022, 56, 287–298. [Google Scholar]
- Tareen, A.K.; Sultan, I.N.; Songprom, K.; Laemsak, N.; Sirisansaneeyakul, S.; Vanichsriratana, W.; Parakulsuksatid, P. Two-step pretreatment of oil palm trunk for ethanol production by thermotolerent Saccharomyces cerevisiae SC90. Bioresour. Technol. 2021, 320, 124298. [Google Scholar] [CrossRef] [PubMed]
- Singla, D.; Taggar, M.S. Mixed Lignocellulosic Feedstocks: An Effective Approach for Enhanced Biofuel Production. In Agroindustrial Waste for Green Fuel Application; Springer: Berlin/Heidelberg, Germany, 2023; pp. 249–279. [Google Scholar]
- Oke, M.A.; Annuar, M.S.M.; Simarani, K. Mixed Feedstock Approach to Lignocellulosic Ethanol Production—Prospects and Limitations. BioEnergy Res. 2016, 9, 1189–1203. [Google Scholar] [CrossRef]
- Sultana, A.; Kumar, A. Optimal configuration and combination of multiple lignocellulosic biomass feedstocks delivery to a biorefinery. Bioresour. Technol. 2011, 102, 9947–9956. [Google Scholar] [CrossRef] [PubMed]
- Thomsen, M.H.; Haugaard-Nielsen, H. Sustainable bioethanol production combining biorefinery principles using combined raw materials from wheat undersown with clover-grass. J. Ind. Microbiol. Biotechnol. 2008, 35, 303–311. [Google Scholar] [CrossRef]
- Martín, C.; Thomsen, M.H.; Hauggaard-Nielsen, H.; BelindaThomsen, A. Wet oxidation pretreatment, enzymatic hydrolysis and simultaneous saccharification and fermentation of clover–ryegrass mixtures. Bioresour. Technol. 2008, 99, 8777–8782. [Google Scholar] [CrossRef]
- Rentizelas, A.A.; Tolis, A.J.; Tatsiopoulos, I.P. Logistics issues of biomass: The storage problem and the multi-biomass supply chain. Renew. Sustain. Energy Rev. 2009, 13, 887–894. [Google Scholar] [CrossRef]
- Elliston, A.; Wilson, D.R.; Wellner, N.; Collins, S.R.A.; Roberts, I.N.; Waldron, K.W. Effect of steam explosion on waste copier paper alone and in a mixed lignocellulosic substrate on saccharification and fermentation. Bioresour. Technol. 2015, 187, 136–143. [Google Scholar] [CrossRef]
- Siddiqui, Y.; Meon, S.; Ismail, R.; Rahmani, M. Bio-potential of compost tea from agro-waste to suppress Choanephora cucurbitarum L. the causal pathogen of wet rot of okra. Biol. Control 2009, 49, 38–44. [Google Scholar] [CrossRef]
- Pereira, S.C.; Maehara, L.; Machado, C.M.M.; Farinas, C.S. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol. Biofuels 2015, 8, 44. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, W.; Tan, X.; Chen, X.; Guo, Y.; Yu, Q.; Yuan, Z.; Zhuang, X. Low-temperature sodium hydroxide pretreatment for ethanol production from sugarcane bagasse without washing process. Bioresour. Technol. 2019, 291, 121844. [Google Scholar] [CrossRef]
- Tareen, A.K.; Punsuvon, V.; Sultan, I.N.; Khan, M.W.; Parakulsuksatid, P. Cellulase addition and pre-hydrolysis effect of high solid fed-batch simultaneous saccharification and ethanol fermentation from a combined pretreated oil palm trunk. ACS Omega 2021, 6, 26119–26129. [Google Scholar] [CrossRef] [PubMed]
- Tareen, A.K.; Punsuvon, V.; Parakulsuksatid, P. Investigation of alkaline hydrogen peroxide pretreatment to enhance enzymatic hydrolysis and phenolic compounds of oil palm trunk. 3 Biotech 2020, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Sun, C.; Qiu, J.; Li, X.; Liu, R.; Zhang, L. Pretreatment of sweet sorghum bagasse by alkaline hydrogen peroxide for enhancing ethanol production. Korean J. Chem. Eng. 2016, 33, 873–879. [Google Scholar] [CrossRef]
- Selig, M.; Weiss, N.; Ji, Y. Enzymatic Saccharification of Lignocellulosic Biomass; Laboratory Analytical Procedure (LAP); National renewable energy laboratory technical report, NREL/TP510-42629; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2008.
- Xue, S.; Nirmal, U.; Bowman, J.M.; David, C.; Leonardo, D.C.S.; Bruce, E.D.; Venkatesh, B. Sugar loss and enzyme inhibition due to oligosaccharide accumulation during high solids loading enzymatic hydrolysis. Biotechnol. Biofuels 2015, 8, 195. [Google Scholar] [CrossRef]
- Mankar, A.R.; Pandey, A.; Modak, A.; Pant, K.K. Pretreatment of lignocellulosic biomass: A review on recent advances. Bioresour. Technol. 2021, 334, 125235. [Google Scholar] [CrossRef]
- Vera, R.M.; Bura, R.; Gustafson, R. Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes. Biotechnol. Biofuels 2015, 8, 226. [Google Scholar] [CrossRef]
- Lee, S.C.; Oh, H.W.; Woo, H.C.; Kim, Y.H. Energy-efficient bioethanol recovery process using deep eutectic solvent as entrainer. Biomass Convers. Biorefin. 2023, 13, 15815–15826. [Google Scholar] [CrossRef]
- Shukla, A.; Kumar, D.; Girdhar, M.; Kumar, A.; Goyal, A.; Malik, T.; Mohan, A. Strategies of pretreatment of feedstocks for optimized bioethanol production: Distinct and integrated approaches. Biotechnol. Biofuels Bioprod. 2023, 16, 44. [Google Scholar] [CrossRef]
- Sun, R.; Song, X.L.; Sun, R.; Jiang, J.X. Effect of lignin content on enzymatic hydrolysis of furfural residues. Bioresources 2011, 6, 317–328. [Google Scholar] [CrossRef]
- Beluhan, S.; Mihajlovski, K.; Šantek, B.; Ivančić Šantek, M. The production of bioethanol from lignocellulosic biomass: Pretreatment methods, fermentation, and downstream processing. Energies 2023, 16, 7003. [Google Scholar] [CrossRef]
- Guo, H.; Zhao, Y.; Chang, J.-S.; Lee, D.-J. Inhibitor formation and detoxification during lignocellulose biorefinery: A review. Bioresour. Technol. 2022, 361, 127666. [Google Scholar] [CrossRef] [PubMed]
- Mujtaba, M.; Fernandes Fraceto, L.; Fazeli, M.; Mukherjee, S.; Savassa, S.M.; Araujo de Medeiros, G.; do Espírito Santo Pereira, A.; Mancini, S.D.; Lipponen, J.; Vilaplana, F. Lignocellulosic Biomass from Agricultural Waste to the Circular Economy: A Review with Focus on Biofuels, Biocomposites and Bioplastics. J. Clean. Prod. 2023, 402, 136815. [Google Scholar] [CrossRef]
- Cheenkachorn, K.; Mensah, R.Q.; Dharmalingam, B.; Gundupalli, M.P.; Rattanaporn, K.; Tantayotai, P.; Show, P.L.; Sriariyanun, M. The Versatility of Mixed Lignocellulose Feedstocks for Bioethanol Production: An Experimental Study and Empirical Prediction. BioEnergy Res. 2023, 17, 1004–1014. [Google Scholar] [CrossRef]
- Nguyen, Q.A.; Yang, J.; Bae, H.-J. Bioethanol production from individual and mixed agricultural biomass residues. Ind. Crops Prod. 2017, 95, 718–725. [Google Scholar] [CrossRef]
- Berchem, T.; Schmetz, Q.; Lepage, T.; Richel, A. Single and mixed feedstocks biorefining: Comparison of primary metabolites recovery and lignin recombination during an alkaline process. Front. Chem. 2020, 8, 479. [Google Scholar] [CrossRef]
- Arora, S.; Sarao, L.K.; Singh, A. Bioenergy from Cellulose of Woody Biomass. In Agroindustrial Waste for Green Fuel Application; Srivastava, N., Verma, B., Mishra, P.K., Eds.; Springer Nature: Singapore, 2023; pp. 89–120. [Google Scholar] [CrossRef]
Chemical Composition | SSB | SCB | DPT | |||
---|---|---|---|---|---|---|
Before Pretreatment | After Pretreatment | Before Pretreatment | After Pretreatment | Before Pretreatment | After Pretreatment | |
Extractive | 11.49 ± 0.53 | - | 10.02 ±0.84 | - | 18.56 ± 0.61 | - |
Cellulose | 47.11 ± 0.59 | 68.60 ± 0.80 | 42.53 ± 0.47 | 66.09 ± 0.29 | 39.73 ± 0.64 | 73.96 ± 0.43 |
Hemicellulose | 11.70 ± 0.31 | 9.58 ± 0.16 | 31.22 ± 0.92 | 13.70 ± 0.86 | 22.86 ± 0.67 | 9.35 ± 1.01 |
Lignin | 14.02 ± 0.21 | 7.79 ± 0.19 | 18.39 ± 0.53 | 7.31 ± 0.33 | 23.64 ± 0.29 | 6.67 ± 0.18 |
Ash | 7.96 ± 0.46 | 3.90 ± 0.08 | 2.80 ± 0.31 | 1.19 ± 0.08 | 1.46 ± 0.11 | 0.80 ± 0.05 |
Mixed Feedstock | Ethanol Concentration (g/L) | Ethanol Yield (g/g) | Ethanol Productivity (g/L/Hour) | Ethanol Theoretical Yield (%) | Max Ethanol Time (Hours) |
---|---|---|---|---|---|
SSB | 30.79 (±0.44) ab | 0.40 (±0.62) | 0.42 (±0.87) | 79.81 | 72nd |
SCB | 28.20 (±0.49) bc | 0.390 (±0.78) | 0.598 (±0.11) | 76.66 | 48th |
DPT | 29.98 (±0.31) b | 0.342 (±0.59) | 0.415 (±0.29) | 71.41 | 72nd |
SSB + SCB + DPT | 27.87 (±0.11) bcd | 0.360 (±0.71) | 0.386 (±0.04) | 70.81 | 72nd |
SSB + SCB | 24.96 (±0.70) e | 0.332 (±0.81) | 0.345 (±0.49) | 65.21 | 72nd |
SSB + DPT | 31.47 (±0.57) a | 0.396 (±0.36) | 0.653 (±0.24) | 77.76 | 48th |
SCB + DPT | 29.68 (±0.36) bc | 0.380 (±0.12) | 0.615 (±0.22) | 74.51 | 48th |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amjad, M.; Abbas, M.; Langou, A.; Sultan, I.N.; Tareen, A.K. Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90. Fermentation 2025, 11, 565. https://doi.org/10.3390/fermentation11100565
Amjad M, Abbas M, Langou A, Sultan IN, Tareen AK. Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90. Fermentation. 2025; 11(10):565. https://doi.org/10.3390/fermentation11100565
Chicago/Turabian StyleAmjad, Malaika, Muhammad Abbas, Abdullah Langou, Imrana Niaz Sultan, and Afrasiab Khan Tareen. 2025. "Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90" Fermentation 11, no. 10: 565. https://doi.org/10.3390/fermentation11100565
APA StyleAmjad, M., Abbas, M., Langou, A., Sultan, I. N., & Tareen, A. K. (2025). Valorization of Mixed Lignocellulosic Biomass for Bioethanol Production Using Thermotolerant Yeast Saccharomyces cerevisiae SC90. Fermentation, 11(10), 565. https://doi.org/10.3390/fermentation11100565