Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends
Abstract
1. Introduction
- -
- optimize the calibration of engine control systems when fueled with bioethanol–gasoline blends;
- -
- assess compliance with the requirements of current and future emission standards;
- -
- develop recommendations for the use of bioethanol in vehicles operated in real world traffic conditions.
2. Objective and Scope of the Study
- -
- optimizing the calibration of engine control systems for bioethanol–gasoline blends;
- -
- supporting compliance with current and future emission standards;
- -
- identifying directions for further research on the energy and environmental efficiency of blended fuels.
3. Research Plan and Program
- Preparation of the fuel mixture and calibration of the injection system for each combination of bioethanol concentration and fuel rate.
- Conducting measurements under strictly controlled environmental conditions (temperature, pressure, humidity) using a repeatable engine warm-up procedure.
- Recording measurement data and preliminary analysis to identify trends and relationships between variables.
4. Research Methodology
- -
- optimize the calibration of engine control systems when fueled with bioethanol–gasoline blends;
- -
- assess and optimize compliance with current and future exhaust emission standards;
- -
- develop practical recommendations for vehicle manufacturers and end users.
5. Analysis of Results
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Al-Hasan, M. Effect of ethanol-unleaded gasoline blends on engine performance and exhaust emission. Energy Convers. Manag. 2003, 44, 1547–1561. [Google Scholar] [CrossRef]
- Sonawane, S.; Sekhar, R.; Warke, A.; Thipse, S.; Varma, C. Forecasting of Engine Performance for Gasoline-Ethanol Blends using Machine Learning. Eng. Technol. Sci. 2023, 55, 340–355. [Google Scholar] [CrossRef]
- Kaszkowiak, J.; Hujo, L.; Jablonicky, J. Impact of the content of alcohol in petroleum on the level of an unsupercharged engine’s noise. In MATEC Web of Conferences, Proceedings of the 18th International Conference Diagnostics of Machines and Vehicles, Bydgoszcz, Poland, 12 December 2019; EDP Sciences: Les Ulis, France, 2019; Volume 302, p. 01007. [Google Scholar] [CrossRef]
- Waluyo, B.; Setiyo, M.; Saifudin Wardana, I. Fuel performance for stable homogeneous gasoline-methanol-ethanol blends. Fuel 2021, 294, 120565. [Google Scholar] [CrossRef]
- Akansu, S.; Tangöz, S.; Kahraman, N.; İlhak, M.; Açıkgöz, S. Experimental study of gasoline-ethanol-hydrogen blends combustion in an SI engine. Int. J. Hydrogen Energy 2017, 42, 25781–25790. [Google Scholar] [CrossRef]
- Vega, L.P.; Bautista, K.T.; Campos, H.; Daza, S.; Vargas, G. Biofuel production in Latin America: A review for Argentina, Brazil, Mexico, Chile, Costa Rica and Colombia. Energy Rep. 2024, 11, 28–38. [Google Scholar] [CrossRef]
- Kiehbadroudinezhad, M.; Merabet, A.; Ghenai, C.; Abo-Khalil, A.G.; Salameh, T. The role of biofuels for sustainable MicrogridsF: A path towards carbon neutrality and the green economy. Heliyon 2023, 9, e13407. [Google Scholar] [CrossRef] [PubMed]
- BP Statistical Review of World Energy. 2022. Available online: https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf (accessed on 18 October 2022).
- Demiray, E.; Karatay, S.E.; Dönmez, G. Evaluation of pomegranate peel in ethanol production by Saccharomyces cerevisiae and Pichia stipitis. Energy 2018, 159, 988–994. [Google Scholar] [CrossRef]
- Saladini, F.; Patrizi, N.; Pulselli, F.M.; Marchettini, N.; Bastianoni, S. Guidelines for emergy evaluation of first, second and third generation biofuels. Renew. Sustain. Energy Rev. 2016, 66, 221–227. [Google Scholar] [CrossRef]
- Demiray, E.; Ertuğrul Karatay, S.; Dönmez, G. Efficient bioethanol production from pomegranate peels by newly isolated Kluyveromyces marxianus. Energy Sources Part A Recovery Util. Environ. Eff. 2019, 42, 709–718. [Google Scholar] [CrossRef]
- Cabral, M.M.S.; de Souza Abud, A.K.; de Farias Silva, C.E.; Almeida, R.M.R.G. A produção de bioetanol a partir de fibra de casca de coco. Cienc. Rural 2016, 46, 1872–1877. [Google Scholar] [CrossRef]
- Cavelius, P.; Engelhart-Straub, S.; Mehlmer, N.; Lercher, J.; Awad, D.; Brück, T. The potential of biofuels from first to fourth generation. PLoS Biol. 2023, 21, e3002063. [Google Scholar] [CrossRef]
- Zastempowski, M.; Kaszkowiak, J.; Jablonicky, J.; Hujo, L.; Gromnicki, M. Effect of Using Gasoline with Bioethanol on Power, Torque and Selected Exhaust Gas Components: Case Study of a Small Spark-Ignition Outboard Engine. Pol. Marit. Res. 2025, 32, 95–102. [Google Scholar] [CrossRef]
- Agarwal, A.K. Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energy Combust. Sci. 2007, 33, 233–271. [Google Scholar] [CrossRef]
- Demirbas, A. Biofuels sources, biofuel policy, biofuel economy and global biofuel projections. Energy Convers. Manag. 2008, 49, 2106–2116. [Google Scholar] [CrossRef]
- Awogbemi, O.; Von Kallon, D.V.; Onuh, E.I.; Aigbodion, V.S. An overview of the classification, production and utilization of biofuels for internal combustion engine applications. Energies 2021, 14, 5687. [Google Scholar] [CrossRef]
- Elfasakhany, A. State of art of using biofuels in spark ignition engines. Energies 2021, 14, 779. [Google Scholar] [CrossRef]
- Masera, K.; Hossain, A.K. Biofuels and thermal barrier: A review on compression ignition engine performance, combustion and exhaust gas emission. J. Energy Inst. 2019, 92, 783–801. [Google Scholar] [CrossRef]
- Carioca, J.O.B. Biofuels: Problems, challenges and perspectives. Biotechnol. J. 2010, 5, 260–273. [Google Scholar] [CrossRef]
- Lam, M.K.; Lee, K.T. Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnol. Adv. 2012, 30, 673–690. [Google Scholar] [CrossRef]
- Richardson, D.M.; Blanchard, R. Learning from our mistakes: Minimizing problems with invasive biofuel plants. Curr. Opin. Environ. Sustain. 2011, 3, 36–42. [Google Scholar] [CrossRef]
- Aleksandrowicz, P. Modeling head-on collisions: The problem of identifying collision parameters. Appl. Sci. 2020, 10, 6212. [Google Scholar] [CrossRef]
- Kostek, R.; Aleksandrowicz, P. Simulation of the right-angle car collision based on identified parameters. In Proceedings of the 11th International Congress of Automotive and Transport Engineering—Mobility Engineering and Environment (CAR2017), Pitesti, Romania, 8–10 November 2017; IOP Publishing: Bristol, UK, 2017; Volume 252, p. 012013. [Google Scholar] [CrossRef]
- Skrucany, T.; Stopkova, M.; Stopka, O.; Milojević, S. Design of a daily-user methodology to detect fuel consumption in cars with spark ignition engine. Appl. Eng. Lett. 2020, 5, 80–86. [Google Scholar] [CrossRef]
- Gandolfo, J.; Gainey, B.; Lawler, B. Influence of Exhaust Gas Recirculation on Knock in a Spark Ignition Engine Fueled with Ethanol–Gasoline Blends. SAE Int. J. Engines 2025, 18, 349–363. [Google Scholar] [CrossRef]
- Belgiorno, G.; Ianniello, R.; Di Blasio, G. Ethanol Fuel as Enabler for High-Efficiency and Low-Soot Combustion in Dual-Fuel and Blend Modes. SAE Int. J. Engines 2025, 18, 521–539. [Google Scholar] [CrossRef]
Category of Variables | Description |
---|---|
Independent variable |
|
Dependent variables |
|
Experimental data |
|
Engine type | Internal combustion, with spark ignition |
Cylinder arrangement | inline engine |
Type of injection | Multi-point MPI |
Displacement [ccm] | 1242 |
Compression ratio | 10.0 |
Number of cylinders | 4 |
Number of valves per cylinder | 2 |
Turbocharging | none |
Nominal power [KW] | 44 |
Torque [Nm] | 102 |
Exhaust emission standard | Euro 5 |
Type of dynamometer | DC 2WD single-axle dynamometer (DynoTech DS04 2WD, Kościerzyna, Poland) |
Weight | 1180 kg |
Width | 3600 mm |
Length | 1120 mm |
Height | 350 mm |
Maximum speed | 260 km/h |
Lifting capacity of the elevator | 3500 kg |
Ethanol content | 0% | 10% | 30% | 50% | 100% |
Power [kW] | 46.47 | 46.32 | 46.76 | 45.00 | 25.37 |
Torque [Nm] | 100.9 | 100.8 | 102.4 | 101.2 | 68.6 |
Particulate matter [ppm] | 143 | 104 | 70.8 | 121 | 101 |
CO [%] | 2.3 | 0.89 | 0.25 | 0.30 | 0.08 |
CO2 [%] | 10.6 | 12.7 | 11.5 | 9.7 | 10.0 |
HC [%] | 334 | 292 | 356 | 183 | 142 |
O2 [%] | 2.3 | 0.76 | 6.60 | 8.3 | 5.87 |
Ethanol content | 0% | 10% | 30% | 50% | 100% |
Power [kW] | 46.84 | 45.74 | 46.62 | 46.99 | 33.82 |
Torque [Nm] | 100.7 | 100.4 | 103.1 | 103.9 | 84.1 |
Particulate matter [ppm] | 111 | 122 | 102 | 125 | 128 |
CO [%] | 3.9 | 0.45 | 0.85 | 0.20 | 0.05 |
CO2 [%] | 14.0 | 11.6 | 11.7 | 10.7 | 10.7 |
HC [%] | 260 | 161 | 217 | 104 | 55.7 |
O2 [%] | 1.9 | 3.23 | 4.2 | 6.93 | 6.8 |
Ethanol content | 0% | 10% | 30% | 50% | 100% |
Power [kW] | 46.25 | 45.81 | 47.35 | 46.69 | 37.06 |
Torque [Nm] | 100.1 | 98.8 | 102.4 | 102.2 | 92.1 |
Particulate matter [ppm] | 115 | 106 | 114 | 119 | 107 |
CO [%] | 2.99 | 1.95 | 2.89 | 0.26 | 0.04 |
CO2 [%] | 11.5 | 10.6 | 10.2 | 12.0 | 12.5 |
HC [%] | 232 | 210 | 268 | 88.5 | 63.0 |
O2 [%] | 4.31 | 2.95 | 3.26 | 4.37 | 4.76 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wyrąbkiewicz, S.; Kaszkowiak, J.; Zastempowski, M.; Gajewski, M. Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends. Energies 2025, 18, 4606. https://doi.org/10.3390/en18174606
Wyrąbkiewicz S, Kaszkowiak J, Zastempowski M, Gajewski M. Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends. Energies. 2025; 18(17):4606. https://doi.org/10.3390/en18174606
Chicago/Turabian StyleWyrąbkiewicz, Szymon, Jerzy Kaszkowiak, Marcin Zastempowski, and Maciej Gajewski. 2025. "Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends" Energies 18, no. 17: 4606. https://doi.org/10.3390/en18174606
APA StyleWyrąbkiewicz, S., Kaszkowiak, J., Zastempowski, M., & Gajewski, M. (2025). Emissions and Particulate Characteristics of Spark-Ignition Engines Fueled with Bioethanol–Gasoline Blends. Energies, 18(17), 4606. https://doi.org/10.3390/en18174606